# FERMION REALIZATION OF EXCEPTIONAL LIE ALGEBRAS FROM MAXIMAL UNITARY SUBALGEBRAS 

A. SCIARRINO<br>Universitá di Napoli Federico II<br>Dipartimento di Scienze Fisiche<br>Mostra d'Oltremare Pad. 19<br>80125 NAPOLI ITALY


#### Abstract

From the decomposition of the exceptional Lie algebras (ELAs) under a maximal unitary subalgebra a realization of the ELAs is obtained in terms of fermionic oscillators.


## 1 Introduction

Realizations of classical Lie algebras (LAs) in terms of bosonic and/or fermionic oscillators are known long since and are very useful in several physical contexts. Via the embedding of $S O(8) \oplus S O(8) \subset E_{8}$ a realization of ELAs in terms of fermionic oscillators has been obtained by the author [1]. However it is more convenient to dispose of several different realizations of ELAs which allow to describe in a more appropriate way different subalgebras embedding chains. Moreover, e.g., the embeddings $G_{2} \subset S O(7)$ and $F_{4} \subset E_{6}$ are not "deformable", while the embeddings $S U(3) \subset G_{2}$ and $S O(9) \subset F_{4}$ are "deformable". The proposal of this contribution is to present a realization of ELAs in terms of multilinears in fermionic oscillators via the embedding of a maximal unitary subalgebra. It should be quoted that constructions of ELAs as bilinears in fermionic fields in the basis $S U(9)$ and $S U(3)^{4}$ has been obtained by Koca [2]. While Koca's approach makes a more evident connection with physical applications in a GUT framework, the multilinear approach keeps a closer connection with the algebraic structure of LAs (roots, weights, etc.). Moreover this formalism allows to obtain multilinear realizations for all the fundamental representations and for generators and vector spaces of all maximal embeddings of ELAs [3].

## 2 Composition law for fermionic multilinears

Let us introduce a set of $N$ fermionic oscillators $a_{i}^{+}, a_{i}$ satisfying: $(i, j=1,2, \ldots, N)$

$$
\begin{equation*}
\left\{a_{i}^{+}, a_{j}^{+}\right\}=\left\{a_{i}, a_{j}\right\}=0 \quad\left\{a_{i}, a_{j}^{+}\right\}=\delta_{i j} . \tag{1}
\end{equation*}
$$

A fermionic multilinear (f.m.) $X$ is defined by the following formula:
$\left(f_{i}=a_{i}^{+}, f_{-i}=a_{i}, i>0\right)$

$$
\begin{equation*}
X=\prod_{i} f_{i} \quad i \in I \subset Z^{*} \tag{2}
\end{equation*}
$$

The number of $f_{i}$ will be called the order of $X$.
We define the contraction of two bilinears $X$ and $Y$ of, resp., order $N$ and $N^{\prime}$ as a operation giving a f.m. ( $\widehat{X Y}$ ) obtained from the $m$. $X Y$ by deleting the couples (if any) ( $f_{i}, f_{-i}$ ) with $f_{i}$ "in" $X$ and $f_{-i}$ "in" $Y$, multiplied by a factor $(-1)^{n}, n$ being the number of transpositions necessary to obtain all the $f_{i}$ near to $f_{-i}$ in $X Y$, and by a rational coefficent $\mathrm{C}\left(N, N^{\prime}, Z\right), Z$ being the number of contractions.

We define a composition law ( $X \circ Y$ ) of two f.m. by the following equation ( $i_{k} \in I, j_{i} \in J$ )

$$
\begin{equation*}
X \circ Y=\frac{1}{2} \times(\widehat{X Y}-\widehat{Y X})+\delta_{I_{1}-J} \times \frac{1}{N} \sum_{k} \sum_{i}\left(f_{i_{k}} f_{j_{1}}-f_{j_{1}} f_{i_{k}}\right) \times(-1)^{k-1} \delta_{i_{k} j_{t}} \tag{3}
\end{equation*}
$$

We remark:

- $X \circ Y=-(Y \circ X)$
- $X \circ Y=[\mathrm{X}, \mathrm{Y}] \quad\left(\mathrm{N}, \mathrm{N}^{\prime} \in 1,2\right)$

We put $\left(\mathbf{N}, \mathrm{N}^{\prime}=1,2,3,6 ; N_{T}=\right.$ order of $\left.\widehat{X Y}\right)$ :

- $C\left(N, N^{\prime}, 0\right)=1$
- C $\left(\mathbf{N}, \mathbf{N}^{\prime}, 1\right)=\delta_{N_{T}, N}$ or $\delta_{N_{T}, N}$,
- $\mathrm{C}(\mathbf{N}, \mathrm{N}, \mathrm{N}-1)=\frac{2}{\mathbf{N}}$
- $\mathrm{C}(\mathrm{N}, 2 \mathrm{~N}, \mathrm{~N})=\frac{1}{2} \quad(N>1)$
- $\mathbf{C}\left(\mathbf{N}, \mathrm{N}, \frac{\mathrm{N}}{2}\right)=-1 \quad$ ( N even)


## 3 Realization of $E_{8}$

We consider the embedding $\mathrm{SU}(9) \subset E_{8}$. The adjoint representation of $E_{8}$ decomposes as :

$$
\begin{equation*}
248 \Longrightarrow 80+84+\overline{8} 4 \tag{4}
\end{equation*}
$$

Introducing a set of 9 fermionic creation and annihilation operators and we can write ( $\mathrm{i}, \mathrm{j}=1,2, . ., 9$ ):

$$
\begin{align*}
80 & \left.\equiv\left\{a_{i}^{+} a_{j}\right\} \quad(i \neq j), \quad a_{k}^{+} a_{k}-a_{k+1}^{+} a_{k+1}=h_{k}-h_{k+1} \quad(k \neq 9)\right\}  \tag{5}\\
84 & \equiv\left\{a_{i}^{+} a_{j}^{+} a_{k}^{+}+\frac{1}{6!} \varepsilon_{i j k l m n p q r} a_{l} a_{m} a_{n} a_{p} a_{q} a_{r}\right\}  \tag{6}\\
\overline{8}_{4} & \equiv\left\{a_{i} a_{j} a_{k}+\frac{1}{6!} \varepsilon_{i j k l m n p q r} a_{l}^{+} a_{m}^{+} a_{n}^{+} a_{p}^{+} a_{q}^{+} a_{r}^{+}\right\} \tag{7}
\end{align*}
$$

In the following we call:

- $a_{i}^{+}$"hermitian coniugate" (h.c.) of $a_{i}$;
- $\varepsilon_{i j k l m n p q r} a_{l}^{+} a_{m}^{+} a_{n}^{+} a_{p}^{+} a_{q}^{+} a_{r}^{+}$"dual coniugate" (d.c.) of $a_{i} a_{j} a_{k}$.

Proposition 1 The above set of bilinears and trilinears in the fermionic oscillators closes and satisfies the Jacobi identity under the composition law (०) defined in Sec. 2.

The generators corresponding to the simple roots are:

$$
\begin{equation*}
\alpha_{1} \rightarrow a_{1}^{+} a_{2}, \quad \alpha_{2} \rightarrow a_{1} a_{2} a_{3}+d . c ., \quad \alpha_{k} \rightarrow a_{k-1}^{+} a_{k} \quad(3 \leq k \leq 8) \tag{8}
\end{equation*}
$$

The generator corresponding to the highest root is $a_{8}^{+} a_{9}$.

## 4 Realization of $E_{7}$

In the embedding $S U(8) \subset E_{7}$ the adjoint representation decomposes as:

$$
\begin{equation*}
133 \Longrightarrow 63+70 \tag{9}
\end{equation*}
$$

The $\operatorname{SU}(8) \subset E_{7}$ is not contained in the $\mathrm{SU}(9) \subset E_{8}$, Exploiting the property that the two unitary algebras have a common maximal subalgebra $\operatorname{SU}(6)$, the following realization of $E_{7}$ is obtained ( $\mathrm{i}, \mathrm{j}, \mathrm{k}=1,2, . .6 ; r=1,2, . ., 5$ ):

$$
\begin{gather*}
63 \equiv\left\{\begin{array}{l}
a_{i}^{+} a_{j}, \quad a_{7}^{+} a_{8}^{+} a_{9}^{+}+\text {d.c., } \quad a_{i}^{+} a_{7}, \quad a_{i}^{+} a_{8}^{+} a_{9}^{+}+\text {d.c., } \quad h . c . \\
\\
\left.h_{r}-h_{r+1}, \quad \frac{2}{3}\left(h_{7}+h_{8}+h_{9}\right)-\frac{1}{3} \sum_{i} h_{i}, \quad 2 h_{7}-h_{8}-h_{9}\right\} \\
\\
70 \equiv\left\{a_{i} a_{j} a_{7}+\text { d.c., } \quad a_{i} a_{j} a_{k}+\text { d.c., } \quad \text { h.c. }\right\}
\end{array}\right. \text {, }
\end{gather*}
$$

## 5 Realization of $E_{6}$

In the embedding $S U(6) \oplus S U(2) \subset E_{8}$ the adjoint representation decomposes as:

$$
\begin{equation*}
78 \Longrightarrow(35,1)+(1,3)+(20,2) \tag{12}
\end{equation*}
$$

We have ( $\mathrm{i}, \mathrm{j}, \mathrm{k}=1,2, . .6 ; r=1,2, . .5$ ):

$$
\begin{gather*}
(35,1) \equiv\left\{a_{i}^{+} a_{j}, \quad h_{r}-h_{r+1}\right\}  \tag{13}\\
(1,3) \equiv\left\{a_{7}^{+} a_{8}^{+} a_{9}^{+}+\text {d.c., } \quad \text { h.c., } \quad \frac{2}{3}\left(h_{7}+h_{8}+h_{9}\right)-\frac{1}{3} \sum h_{i}\right\}  \tag{14}\\
(20,2) \equiv\left\{a_{i} a_{j} a_{k}+\text { d.c., } \quad \text { h.c. }\right\} \tag{15}
\end{gather*}
$$

## 6 Realization of $F_{4}$

In the embedding $S U(4) \oplus S U(2)^{\prime} \subset F_{4}$ the adjoint representation decomposes as:

$$
\begin{equation*}
52 \Longrightarrow(15,1)+(1,3)+(4,2)+(4,2)+(6,3) \tag{16}
\end{equation*}
$$

The most convenient way to identify the elements of $F_{4}$ is the following:
i) draw the Dynkin diagram of $E_{8}$;
ii) from i) draw, by folding, the Dynkin diagram of $F_{4}$, identify the corresponding simple roots and the highest root;
iii) draw the extended Dynkin diagram of $F_{4}$ and then, by deleting a dot, identify $S U(4) \oplus S U(2)^{\prime}$.

We get for the $52(i, j, k=1,2, . .6)$ :

$$
\begin{align*}
& a_{7}^{+} a_{8}^{+} a_{9}^{+}+d . c ., \quad a_{i}^{+} a_{j} \quad(i+j=7), \quad h . c . \\
& a_{j}^{+} a_{j}+(-1)^{k+l-1} a_{k}^{+} a_{l} \quad(i \neq j \neq k \neq l ; i+j \leq k+l ; i+j+k+l=14), \quad \text { h.c. } \\
& a_{i} a_{j} a_{k}+d . c . \quad(i<j<k ; i+j+k=M ; M=6,7,9,10, . .14), \quad h . c . \\
& a_{i} a_{j} a_{t}+a_{k} a_{1} a_{4}+d . c . \quad(t=1,3.4 ; i \neq j \neq k \neq l ; i+j+k+l=7), \quad h . c . \\
& -\frac{2}{3}\left(h_{1}+h_{2}+h_{3}\right)+\frac{1}{3} \sum_{i} h_{i}, \quad h_{3}+h_{4} \\
& h_{1}+h_{5}-h_{2}-h_{8}, \quad h_{2}+h_{4}-h_{3}-h_{5} \tag{17}
\end{align*}
$$

## 7 Realization of $G_{\mathbf{2}}$

In the emdedding $\operatorname{SU}(3) \subset G_{2}$ the adjoint representation decomposes as

$$
\begin{equation*}
14 \Longrightarrow 8+3+\overline{3} \tag{18}
\end{equation*}
$$

where ( $\mathrm{i}=1,2, . .9 ; \mathrm{j}=1,2 . .6$ ):

$$
\begin{align*}
8 \equiv & \left\{a_{1} a_{2} a_{3}+d . c ., \quad a_{7} a_{8} a_{9}+\text { d.c., } \quad a_{4}^{+} a_{3}, \quad h . c .\right. \\
& \left.-\frac{2}{3}\left(h_{1}+h_{2}+h_{3}\right)+\frac{1}{3} \sum_{i>3} h_{i} \quad-\frac{2}{3}\left(h_{7}+h_{8}+h_{9}\right)+\frac{1}{3} \sum_{j} h_{j}\right\}  \tag{19}\\
& 3+\overline{3} \equiv\left\{a_{1}^{+} a_{8}, \quad a_{2} a_{3} a_{8}+\text { d.c., } \quad a_{1}^{+} a_{4}^{+} a_{8}^{+}+\text {d.c., } h . c .\right\} \tag{20}
\end{align*}
$$

## 8 Conclusions

One of the advantages of the oscillators construction of LAs is the knowledge of the Fock space which becomes the carrier space of irrep. of the the LAs.

In the case of construction of LAs $\mathrm{SU}(\mathrm{N})$ by using fermionic oscillators it is well known that the carrier space of antisymmetric irreps. can be realized on the Fock space. As the fundamental irreps. of $G_{2}, E_{6}, E_{7}$, of dimension, resp. $7,27,56$, decompose under the maximal unitary subalgebras as a sum of antisymmetric irreps. as:

$$
\begin{align*}
7 & \Longrightarrow 3+\overline{3}+1 \\
27 & \Longrightarrow(15,1)+(\overline{6}, 2) \\
56 & \Longrightarrow 28+\overline{28} \tag{21}
\end{align*}
$$

one can think that on the Fock space of the fermionic oscillators it is possible build up the fundamental representations, at least, of these ELAs. Indeed for $G_{2}$ this has already been obtained [4].

## References

[1] A. Sciarrino, J.Math.Phys. 30, 1674 (1989)
[2] M. Koca, Phys. Rev. D 24, 2645 (1981)
[3] A. Sciarrino, "Fermionic multilinear realization of exceptional Lie algebras", in preparation
[4] L. Frappat and A. Sciarrino, J.Phys A 25, L383 (1992)

