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Abstract

We show how the derivation of group-subgroup (IR to IR) branch-

ing rules is facilitated by the use of the much simpler (Weyl) orbit-

orbit branching rules.

1 Introduction

We must begin by relating our subject to harmonic oscillators. This is easy if we

use as basis states for an IR polynomials in the states of the fundamental IR's

of the group under consideration. The variables representing the fundamen-

tal states can be replaced by creation operators for similarly labeled harmonic

oscillators--the Schwinger boson calculus.

The audience does not need to be convinced of the utility of "building blocks"

of larger objects of interest in physics. The role of (Weyl) orbits as constituents

of IR's (we use IR as an abbreviation for basis of an irreducible representation)

has not been exploited much. Their use simplifies considerably the derivation

of group-subgroup (IR) branching rules.

The problem is broken into three steps: I decomposition of the group IR into

group orbits, II decomposition of each group orbit into subgroup orbits and III

the assembly of subgroup orbits into subgroup IR's.

In § 2 we discuss steps I and III; in § 3 we discuss step II. Most of the material

presented here appears in articles by Patera and Sharp[l] and by Gingras, Patera

and Sharp[2].
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2 Orbits expanded in IR's and vice versa.

Let An be a set of weights of a semisimple algebra and cn the multiplicity of the

weight An; we suppose the weights have Weyl symmetry. Then the weights can

be written as a superposition of weights of iR's:

Z A)_'cn = Z Xaga.
1"1 a

(1)

X= is the character of the IR (a) and g= is an integer which we call the multiplicity

of (a) even though it may now take negative as well as positive values. The

dummies Ai carry weight components Ai as exponents: (A x -_- lIi Aix').

To find g= use Weyl's character formula

x,, =

where _= is the Weyl ch_acteristic function

W

(3)

The sum is over Weyl reflections, (-1) W is the determinant of the matrix of

W, i.e., +1 according to whether W is a product of an even or odd number

of relections and R is half the sum of the positive roots, or the sum of the

fundamental weights; _0 is the characteristic of the scalar IR (a = 0). Then _--i

n _

Now _= has just one term A _+R in the dominant Weyl sector, so g_ is the

coefficient of A a in _n AX"-Rcn_ 0" We take the An in (1) to be the weights of

the Weyl orbit [A]. Then g= is the multiplicity of the IR (a) in the expansion of

the orbit [A].

The sum in (4) can be visualized graphically in the spirit of a Speiser[3] dia:

gram. But sinceS-pelser,s methodology iS impracticable for rank higher than 2

we pre_ra nmerical approach, effecting Weyl reflections with the help of the

Cartan matrix. For illustration we use the G2 orbit [2,1]. The instructions given

in th e caption off.Table I apply unchanged for any simple group. An orbit weight
is recognized as lying on a reflection hyperplane]f any of its weight components

is zero at any stage of the reflection process (e.g. in Column 2 or 3). This

completes our description of step IIi, in which subgroup orbits are converted to

subgroup IR's.
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TABLE I. The G2 orbit [2,1] expanded in modules.

1 2

{2,1} {3,2}

{_,7} {i,s}

{_,s} {2,9}

{$,s} {_,9}

{5,8} {6,?}

{3,_} {4,7}

3 4

{3,2} (2,1)

-{1,5} -(0,4)

-{2,3} -(1,2)

{1,3} (0,2)

{1,4} (0,3)

-{1,2} -(0,1)

Column 1 contains those orbit weights which do not lie on a re-

flection line. Column 2 contains the weights of Column 1 augmented

by R. Column 3 contains the weights of Column 2 reflected to the

dominant sector with sign 4-1 according to whether an even or odd

member of relections is involved. Column 4 contains the IR's in the

expansion of the orbit [2,1], obtained from Column 3 by subtract-

ing R.
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We now turn to step I, in which group IR's are decomposed in group orbits.

We first carry out step III for all group orbits no further from the origin than

the highest weight of the IR under discussion. Only orbits of the same con-

gruence class _ erie IR in question need tobecpnjjdered- These orbit ---* Ia

expansions define the triangular orbit-IR matrix which is easily inverted to give

the IR-orbit matrix; it gives the orbit content of IR's. This procedure is simpler

to implement than other methods such as Freudenthal's recursion formula for

weight multiplicities, or the character formulas of Weyl or Demazure.

3 Orbit-orbit branching rules.

Orbit'orbit branching rules are always much simpler to derive and to describe

than the usual IR-IR branching rules. One approach which has general appli-

cability makes use of the orbit-weight generating function F(M, A). Its power-

expansion

F(M,A) = __, M"AXc_,x (5)

_Jk

gives the multiplicity c_,x of {he weight {)_} in the orbit [/_]. As a simple example

the SU(3) orbit-weight generating function is

1

F(M1,M2;A1,A2) = (1 - M1A1)(1- M2A2) (6)

M1A11A2 M2Ai "1

+ (1 - M2A2)(1 - M1Ai-XA2 + (i - M1Ai-IA2)(1 - M2Ai -1)

M1A_ "1 M2A1A_ "1

+ (1 M2Ai-I)(1 M_A_ _) + (1 M_A_)(1 - _ 1- - - M2A1A_- )

M1M2A_2A_ "1

+ (1 - M2AxA_)(1 - M_A_) '

A1, A2 carry weight components in a fundamental weights basis. To Convert

the orbit-weight generating function to = orbit-orbit branching rules generat-

ing function it is necessary only to replace the dummies A which carry weight

components with new dummies carrying subgroup weight components and then

retain the part that contains only non-negative powers of the new dummies. For

example for SU(3)DSU(2)xU(1) the replacements axe A1 --* NYI,A2 _ yi.

We remark that for a dummy like Y carrying a U(1) label one should retain

both negative and positive powers. For SU(3)DSO(3) the replacements are

A_ _ N2,A2:--_ i:

The method described in the preceding paragraph becomes laborious for

higher rank groups because of the large order of the Weyl group. It is usually

simpler to determine an integrity basis for subgroup orbits by examining low
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group orbits. The integrity basis consists of "elementary" orbits, from which all

can be obtained as stretched products (orbit labels additive).

Two types of subgroup may be distinguished according to whether the Weyl

sectors of group and subgroup do or do not "line up." When we compare regions

of group and subgroup weight space, a region of subgroup weight space, say a

Weyl chamber, means the region of group weight space which projects into the

subgroup region in question. The simpler situation is that in which group and

subgroup chambers line up, i.e., each subgroup chamber contains only complete

group chambers, N/N' of them, where N and N' are the orders of the group

and subgroup Weyl groups.

Consider the lining up case. Let W be one of the N/N' group Weyl ele-

ments which carry the dominant group chamber within the dominant subgroup

chamber. Then a group-subgroup orbit pair (a,b) corresponding to the terms

AaB b in the orbit-orbit generating function can be written (a,PWa) correspond-

n, n. w oro, so  roov
B (.PWM_)j i.e., theyspace. Thus the elementary orbits correspond to Ai rIj-j

are the subgroup orbits contained in the fundamental group orbits. The com-

patibility rules for elementary orbits can be stated as follows: two elementary

orbits are compatible if and only if the two weights WM_ and WMk can be

obtained by the same Weyl element W; in particular two subaigebra orbits be-

longing to the same fundamental group orbit are incompatible. SU(3)DSO(3)

and SU(4)DSU(2) ×SU(2)×U(1) are examples of group and subgroup chambers'

lining up. A sufficient but not necessary condition for the lining up is that group

and subgroup have equal ranks; for all known maximal sub joint algebras that

is always the case. The Weyl chambers line up for a regular subgroup.

Examples of cases where the chambers do not line up are SO(..5)DSU(2) and
SU(4)DSU(2) xSU(2) (Wigner supermultiplet). When a dominant subgroup

weight lies inside a chamber of group weight space that is only partly in the

dominant subalgebra sector, it cannot be compounded from elementary orbits

belonging to fundamental algebra orbits; hence composite elementary orbits

(more than one algebra label nonzero) arise.

We conclude with an example where group and subgroup have equal rank,

F, DSO(9).

The decomposition of the fundamental group orbits is as follows:

a

[zooo] [ozoo], [ozoo]
c d

[00101 D [10011 + [00101,

f
[o00z] [zooo] + [ooo1].

b

[1OlO1,

"Names" for the elementary orbits have been written above them. Compatibility

rules are found by looking at orbits with two labels non zero; in this case we
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need examine onl); the composite F4 orbit [0011] (since a and b are the only

subgroup orbits in their respective group orbits they are compatible with all

other elementary orbits).

ce cf af
[0011]D [20011 + [1002] + [0011].

The interpretation of subalgebra orbits as products of elementary ones gives us

the compatibility rules. There are three (= N/N') sets of mutualiy Compatlbie

orbits, abce, abcf and abdf. Hence the general F4 orbit [A1,A2, A3,A4] decom-

poses into SO(9) orbits [A2 + )`3 + )`4, )`1, )`2, A3], [)`2 + )`3,)`1,)`2,)`3 + ),4] and

[)`2,)`1,)`2 + )`3,)`4].

We remark that the methods and results here apply equally to Kac-Moody

algebras.
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