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Abstract

The Dirac oscillator is a relativistic generalization of the quantum harmonic oscillator. In particular,
the square of the hamiltonian for the Dirac oscillator yields the Klein-Gordon equation with a potential

of the form: (ar 2 + bL. S), where a and b are constants. To obtain the Dirac oscillator, a "minimal

substitution" is made in the Dirac equation, where file ordinary derivative is replaced with a covariant
derivative. However, an unusual feature of the covariant derivative in this case is that the potential is a

non-trivial element of the Clifford algebra. A theory which naturally gives rise to gauge potentials which
are non-trivial elements of the Clifford algebra is that based on local automorphism invarimlce. I present

an exact solution of the automorphism gauge field equations which reproduces both the potential term
and the mass term of the Dirac oscillator.

1 Introduction
The Dirac oscillator exhibits many interesting features. It is the relativistic generalization of the

classic non-relativistic harmonic oscillator Sclu'6dinger equation to the Dirac equation in the

sense that the square of the Dirac hamihonian yields the relativistic Klein-Gordon equation for

the spinor fields with a potential of the form: (at 2 + bL. S) where a and b are constants [1,2,3].

The equation is exactly solvable as in the non-relativistic case [4], and exhibits a hidden

supersymmetry [4,5]. In addition, this particular form of potential has been used to model the

inter-quark interactions in the hope of obtaining a realistic model of the hadrons [6,7]. Finally,

an interesting version involving a "scalar" coupling has been investigated [8].

A highly unusual feature of the Dirac oscillator is that the potential which is introduced as

a "minimal substitution" is a non-trivial element of the Clifford algebra. This is to be contrasted

with all "usual" gauge theories where the potentials are Clifford scalars (that is, the potentials

multiply the unit element of the algebra). A theory which naturally incorporates gauge potentials

which are general elements of the Clifford algebra is that based upon local automorphism

invariance [9,10]. The basic idea behind automorphism gauge theory is the observation that the

particular matrix representation chosen for the Clifford algebra generators should not effect the

physical predictions of the theory. If we then demand that this freedom of choice be allowed

locally we obtain automorphism gauge theory.

In this paper I present a set of exact "chirar' solutions of the automorphism gauge field

equations which reproduces both the potential term and the mass term of the Dirac oscillator as a

special case. Additional details and further discussion of these topics may be found in reference

[11 ], upon which this paper is based.
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2 The Dira6Osciilator
The connection between the l)irac oscillator and the automorphism gauge theory is mos! easily

seen by considering the "minimal substltutl n thai is made to obtain the Dirac oscillator [a,4]:

p --->p- imco[]r (1)

This "minimal substitution" has the interesting properly of being dependent upon the Clifford

algebra generators ([5 is the Dirac matrix), aud suggests thai the theory can be derived from the

auiomorphism gauge theory, since in this case the gauge potentials naturally occur as general

elements of the Clifford algebra

To obtain the covariant form of the Dirac oscillalor equation we introduce a unit limelike

fourvector u, and an anfisymmetric tensor r_v formed from the timelike unit vector and the

spacetime coordinate vector:

1,/Pl./i.t = 1 , rriv - (u_txv -UvXrt) (2)

In the "rest flame "these take the form:

ul_ : (1,0, 0, 0) , r0i : Xi , #'ij : 0

Now the covariallt Dirac equation may be written as:

I 1 LV1?rtprt _ m + 7mc0rrL_¥r q_ = 0 (4)

where the matrices y_v are the bivector elements of the Clifford algebra basis [12]. This

equation has an electromagnetic interpretation as a particle with zero charge interacting via a

magnetic dipole moment with a radial electric field. In this case the vector u_ may be

considered the four-velocity of the center of the electric field. Note that the electromagnetic

interpretation is valid as long as we take equation (4) as our starling point. However, if we wish

!o view this equation as arising from a minimal substitution of a covariaul derivative for an

ordinary derivative, then the electromagnetic interpretation is untenable.

3 LocalAutomorphism lnvariance
I now approach the problem from the point of view of local automorphism invariance [9,10].

Although the theory may be developed in spaces of arbitrary dimension and signature, we will
restrict our attention to the case of four-dimensional spacetime. If we assume that the particular

matrix representation of the Clifford algebra generators may be chosen arbitrarily at each point

in space, then we obtain a gauge theory based on the aulomorphism group U(2,2). To

incorporate this local invariance into the theory, the ordinary derivative must be replaced with the

covarianl derivative:
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where the gauge potential is given by [9,12]:

1 ,.,P(_ ,A, = a ,l + aPo' p+ ,rpo - bP, p - b ,rl

and for the field strength tensor we find:

F_.tv : O_tAv - O,,Ala + ig[A_t,Av ]
1 fP(Y ,

= .f_tv1 +f0rtvyo + 7J _tvroer - h°_tvYo - h_tvy

(5)

(6)

(7)

Making the minimal substitution into the Dirac lagrangian we find:

LT

I ~ ittv-g_ ,O1 + al-tyrt + 3alt'to - b Y_tv
(_)

where we have made the def'mitions:

1 ,. _,vpcr ll3txvp(_b P(_ (9)(I) - aPp , a_ = _vprr- , b_tv =

and we see that the automorphism gauge fields couple to the fermion field through scalar, vector,
pseudovector, and bivector (spin) interactions. Notice that we have not included the mass term in

the basic lagrangian since the scalar coupling (Yukawa interaction) will give rise to mass. The

explicit form for the field strength tensor in terms of the gauge potentials and a more detailed

derivation of the Dirac part of the lagrangian can be found in my notes on local automorphism

invariance [9].

The equations for the gauge fields in the absence of sources is found in the usual manner

by demanding stationary action with respect to arbitrary variations of the fields. We find:

DlaFrtV = 3_tFlaV + ig[A_t,F_tV7 = 0 (10)

Notice that we have not included the fermion source term in this equation. This is in

concordance with the original approach to the Dirac oscillator in that the potential is introduced

as an external field. To be entirely consistent, however, we must demand that the gauge

potentials satisfy equation (10).

We now make the observation that this interacting lagrangian density will yield the
equation for the Dirac oscillator (equation (4)) if the following conditions are met:
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gap = m , gbla v -- ._ m(l)Fla v (1 la)

a_t=O , a_t =0 (lib)

It is remarkable that these particular expressions for the potentials form a subset of exact "chiral"

solutions to the pure gauge field equations.

4 Chiral Solutions
We now consider a special subset of solutions to equation (13).

ansatz" defined as:

Consider the "chiral

a_t = 0 , aPOrt = 0 ,

boo = + a P_t

b_=O
(12)

and the field equations become:

f_v = _)_ta%-3va_ = h _:_tv , _l.t f_ l'tv = 0 (13a,b)

There are, of course, many solutions to equations (13), but consider the special case in which the

field strength tensor is constant and uniform. In this case equation (13b) is clearly satisfied. To

satisfy equation (13a) an obvious choice is to assume that the potential is linear in the spacetime

coordinate. Therefore we write:

a_ = clm(1 + dlm(u, x))g_ + c2m(1 + d2m(u, x))ur'ula

+ c3m2r_ + c4m2r_ + csm2s_
(14)

where the coefficients c i and d i are arbitrary dimensionless constants, and we have defined:

1E r _ (u_txv + UvXrt)rlav =3 rtv_-c , S_tv = (15)

The parameter m is a quantity with the dimension of mass and it may be conveniently chosen to

be the mass appearing in the Dirac oscillator. Finally note that equation (14) is the most general

form which is both linear in the spacetime coordinate and which involves only one arbitrary

constant vector,

The field strength tensor may be calculated directly from equation (13a) and we find:

f_v = m2(Cldl +C3-cs)(ulagKv-uvg_)+ 2m2c4E_v'cU "c (16)
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As expected, the field strength tensor is constant and uniform, and therefore trMally satisfies

equation (13b). For the part of the gauge potential which interacts directly with the fermion (see

equations (8) and (9)) we find:

• = (4Cl +c2)m+(4cldl +c2d2 + 2c5)m2(ux) (17a)

brtv = _c3m2rlav + c4m2rpv (17b)

ala = 0 , a_ = 0 (17c)

Notice that only the symmetric part of the gauge potential contributes to the scalar interaction

(equation (17a)), and only the antisymmetric part of the gauge potential contributes to the spin

interaction (equation (17b)). This statement is generally tree as may be seen by inspection of

equation (9).

We may now recover the Dirac oscillator interactions as a special case if we make the

following choices (compare equations (11) with equations (17)):

g(4c 1 + c2) = 1 , 2gmc4 = f.O (18a)

c3 =0 , (4Cldl +c2d2+2c5)=0 08b)

Now we state without proof (see [11]) that equations (18) can always be satisfied by an

appropriate choice of gauge. In other words, the potentials appearing in the Dirac oscillator

(where we are including the mass as a constant potential) are essentially unique chiral solutions

of the automorphism gauge field equations, since the potentials may always be brought into this

form (equations (11)) by a chiral gauge transformation.

5 Summary and Conclusions
I have shown that both the mass and the potential introduced into the Dirac equation to

produce the Dirac oscillator may be viewed as a special case of a chiral solution to the

automorphism gauge field equations. In addition, this chiral solution is essentially unique in that

a gauge transformation can always be found which puts the potential in the form displayed ill the

Dirac oscillator.

To gain insight into the physical interpretation of this system consider the more familiar

situation of an electron interacting with a constant magnetic field. In this case, since the field

strength is constant and uniform, the electromagnetic potential will be a linear function of the

spacetime coordinate. As is well known [13], this system exhibits harmonic oscillator behavior

in the two spatial directions perpendicular to the magnetic field. Therefore, the point of view

considered in this paper is actually more like this situation in thai there is a constant and uniform

field strength and a corresponding linear potential. This should be contrasted with the direct

electromagnetic interpretation of a particle with zero charge and non-zero magnetic momenl

interacting with a linear electric field. Notice, however, that the case of a constant automorphism
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field strength does not lend itself easily to the construction of hadrons as advocated by

Moshinsky el al [5.6] since we do not view each particle as giving rise to the antomorphism field

(though they certainly must contribute to the antomorphism field as does the electron to the

magnetic field, bul this is taken here to be a "higher order effect"). In other words, to build the

mesons (for example) we may consider a linearly rising potential between the quark-antiquark

pair, but the situation with a constant automorphism field is more akin to putting several

electrons in a constant magnetic field and neglecting the interactions between them. Each

electron undergoes cyclotron motion but the centers of the individual cyclotron orbits are

uncorrelated. These two pictures are clearly at odds, and we therefore do not necessarily expect

local automorphism invariant gauge field theory to lend itself easily to a model of the hadrons.

In fact, the motivation for considering local automorphism invariance is more one of aesthetics in

that it may be considered to arise from a generalization of the Principle of Equivalence, and an

important anticipated goal is a truly unified approach to the electroweak and gravitational

interactions, but these issues will be discussed elsewhere [14].

The approach to the Divac oscillator discussed in this paper naturally generalizes to

spacetimes of arbitrary dimension and signa_tre. In particular, the specific cases of two, three,

five, and six dimensions are likely to generate interesting results. In addition, as this appl!cation
shows, the general theory of local automorphism invariance should be a worthwhile and

interesting avenue of exploration.
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