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A defect approach coupled with matched asymptotic ex-
pansions is used to derive a new set of boundary layer equa-

tions. This method ensures a smooth matching of the bound-
ary layer with the inviscid solution. These equations are
solved to calculate boundary layers over hypersonic blunt bod-

ies, involving the entropy gradient effect. Systematic compar-
isons axe made for both axisymmetric and plane flows in sev-
eral cases with different Mach and Reynolds numbers. After
a brief survey of the entropy layer characteristics, the defect

boundary layer results are compared with standard boundary

layer and full Navier-Stokes solutions. The entropy gradient
effects are found to be more important in the axisymmetrlc
case than in the plane one. The wall temperature has a great

influence on the results through the displacement effect. Good
predictions can be obtained with the defect approach over a

cold wall in the nose region, with a first order solution. How-
ever, the defect approach gives less accurate results far from
the nose on axisymmetric bodies because of the thinning of
the entropy layer.

Introduction

A blunt body in hypersonic flow is preceded by a bow

shock wave, detached in front of the nose. This strong curved
shock wave induces an entropy gradient in the shock layer.

For an inviscid flow, the entropy gradient is related to the
vorticity through Crocco equation :

curlVAV= -gradH,+TgradS

Therefore, velocity and temperature gradients also exist in
an inviscid shock layer. The standard boundary layer theory

of Prandtl cannot take into account normal gradients out-
side of the boundary layer. Van Dyke proposed an enlarged
theory called higher-order boundary layer theory based on

matched asymptotic expansions for high Reynolds numbers

[11, 12]. Two expansions corresponding to different approxi-
mations of the Navier-Stokes solutions are built. One of them

called outer expansion is valid far from the wall, where the
viscous effects are negligible. The other one called inner ex-
pansion describes the boundary layer where the viscous effects
are dominating. The Prandtl boundary layer equations then
represent the first term of an expansion in powers of a small
pararneter. The external flow normal gradients are accounted

for in the second order term, which is a small perturbation
of the first order solution. SeverM other second order effects,

like the wall curvature, the displacement or the rarefied gas
effects are brought into evidence. The mdn advantage of this
systematic method is to give not only the equations but also

the matching conditions between the different zones.

For hypersonicreentryflows,the Reynolds number isof-

tenmoderate athigh altitudes,becauseofthe low densityof

air.The boundary layersare thus thickand can be of the

same orderofmagnitude asthe entropylayer,and the invis-

cidflowquantitiescan undergoimportant variationsbetween

the walland theedge ofthe boundary layer.Because ofthe

hypothesisofReynolds number tendingtowards infinity,the

boundary layerisassumed tobe verythininVan Dyke'sthe-

ory and the inviscidflowgradientsare representedonly by

theirwallvalue.So thesecondorderexpansioncannotensure

a good matching ofthe boundary layerwith the inviscidflow

ifthe inviscidprofilesarenot linear,and the influenceofthe

externalvorticityon the skinfrictionand the wallheat flux

isnot correctlyestimated.

Defect approach

Decomposition

To ensurea smooth matching at any orderwhatever the ex-

ternalflow,a defectapproach has been used,coupledwith

asymptoticexpansions[3].In the boundary layerregion,the

variablesare no longerthe physicalvariables,but the dif-

ferenceof them with the externalsolution(Le Balleur[91).

We considera steadytwo-dimensionalflowofidealgas.The

variablesp,u, v,p and T stand for the density,tangential

and normal component ofthe velocity,pressureand temper-

ature.The equationsare writtenin a system oforthogonal

curvilinearcoordinates(_,77)where _ representsthe curvilin-

earabscissaalongthe body and 7/isthe distanceto the wall.

Allthe variablesare made dimensionlessby referencingthem

to the upstream valuesp= and Uo=,the nose radiusRo and

To = U_/C r.So we write:

P = PE + PD

v = v8 + vo - vE(LO)

P =PZ +PD

T=TE+TD

where the subscriptE standsfor the external variablesand

the defectvariablesare labelledD. The term vE(_,0)has

been added to keep the conditionVD(_,O) = 0 at the wall

whateverthe va3ueofvE.

Expansionsarethen writtenusingthesame smallparam-

etere asVan Dyke :

1 p=u= P,,o
c=_ Re= /_(To)



The external functions depends on the coordinates ((, 77). The

outer expansions read :

vr(_,,)

= u,(_,_), eu_((,_) + ---

= v_(_, 7) + _t_(_,,7) + ---

= P:((, 7) + _P_(_,,7) + ---

= ,_:((,,?) + _n2(_,,?) + ---

= T,((,_) + eT2((,r/) + .-.

In the inner region, a stretched normal coordinate _/= r//_ is

used for the defect variables :

_,o(_,_) = _,(_,_) + _2(_,#) + ...

v_(_,_) = _:(_,#) + c_(_,#) + ...

pD(_,_) = _(_,#) + _(_,,_) + ""

p_,(_,,_)= _(_,,_) + _,_(_, _) + ...

TD((,r/) = h((,£7) + e_((,_) .+ "'"

The expansion for v must be shifted to avoid the degeneracy

of the continuity equation. These expansions are then brought

into the Navier-Stokes equations, and terms of like power of

are equated.

Equations
In the outer region, the defect variables are null and the equa-

tions for the outer flow are exactly the same as for Van Dyke's

theory, i.e. Euler equations. Concerning the inner region, one

must first bring the above expansions into t_eNavier-Stokes

equations, then substract the external equations, and at last

equate same powers of _. For practical convenience, the inner

equations can then be rewritten in outer coordinates, using r/

instead of ¢/_ and replacing £h and ,Su by :

_(_,_) = _,(_,_) -_(_,_) = _(_,_)

Then the following first-order equations are obtained :

- continuity :

- _-momentum :

0%: 0U__2
p: )u: !

- _/-momentum :

_ _

- energy :

- state :

p_ = ,y

The symbol r represents the distance from the wall to the

symmetry axis, with j = 0 for plane and j = 1 for axisym-

metric bodies. As in Prandtl equations, the wall curvature

appear in the first-order equations only through the trans-

Verse curvature radius in the c0ntinuity equation. The second-

order equations are small-perturbations of the above ones plus

source terms due to curvature effects, like in Van Dyke theory.

Matchinl_ conditions

Each expansion must satisfy the boundary conditions corre-

sponding to its own validity domain. The upstream conditions

are to be applied to the outer expansion and the wall condi-

tions to the inner one. The missing conditions are obtained

by matching the inner and outer expansions. At the edge of

the boundary layer, we can write :

---+U E

U ----_ U E

P -'*PE

p --*p_

T --* T_

and so for the defect variables--:

up..-.,, 0

.n --. _s(_, 0)

Po -_ 0

pn -"*0

Tn "-' O

Thus at first order : ....

lira u_ = 0
q.-._

y,(_,0) = 0

lim p: = 0
r/.-.oo

lim _l = 0

tim p_ = 0

The conditions on 7, P and T are not independant since they

are linked through the state equation. The condition on v is

not a boundary condition for the inner expansion but it gives

the wall condition for the outer flow.

The wall conditions for the inner flow are :

T=7'l+t_+¢(T_+t_) =Tw

hence :

u:((,0) = -g:(_,0)

-,(6, 0) = 0

t,((,0) = T, - T:(_,0)



Discussion

Thanks to the small perturbation approach, the calculations

of external flow and boundary layer are uncoupled and can

be performed separa£ely provided that a specified sequence

is respected. First order external problem must be solved

first, then first order internal, second order external, and so

on. The defect boundary layer equations are parabolic and

can be solved by space marching at a very low cost, like the

standard Prandtl equations.

The conditions at the edge of the boundary layer ensure

a smooth merging of the boundary layer into the inviscid flow

whatever the inviscid profiles. From a theoretical point of

view, it can be shown that the defect expansions are consistent

with Van Dyke's ones by the fact that at a given order they

differ only by terms which are higher-order in Van Dyke's

theory.

Using the above conditions, the first order y-momentum

equation reduces to

pl =0

So, the pressure in the first-order boundary layer is every-

where equal to the local inviscid flow pressure, instead of its

wall value like in Van Dyke's theory.

Applications

To experiment the defect approach, several cases have been

selected for a blunt body in a hypersonic flow of ideal gas.

The general shape of the body is a plane or axisymmetric

hyperboloid, defined by the nose radius and the angle of the

asymptotes, at zero degree incidence. The numerical data are

given by Shinn, Moss and Simmonds [10] for a hyperboloid

equivalent to the windward symmetry line of the U.S. space

shuttle. Two points of the reentry trajectory of the STS-2

flight are considered here :

Reentry trajectory- Flight STS-2

23.4Mach M_

time (s)

altitude (km)

nose radius R0 (m)

asymptotes half-angle (o)

pressure p_ (Pa)

temperature T® (K)

velocityU® (m/s)

density p_ (kg/m s)

reference temperature To (K)

Reynolds number Re = p_,,U_Ro
_(T0)

small parameter _ = Re -x/2

Reynolds number Re_ = p_U®Ro

26.6

250

85.74

1.322

41.7

0.3634

199

7530

6.35 10 -6

56321

183.55

0.074

4792

650

71.29

1.253

40.2

4.0165

205

6730

6.80 10 -s

44900

1865.65

0.023

42374

The Prandtl number isassumed to be constant and equal

to 0.725. The ratio of specificheats _/is 1.4. The wall tem-

perature isfixed and equal to 1500 K. The viscositylaw is

Sutherland's. No comparison with experimental data is pos-

siblesincethe realgas effectsare not yet included. So Navier-

Stokes solutions[8]have been taken as reference,to compare

the two Euler + boundary layer methods. Euler calculations

are made with a code from ONERA [14]. Standard bound-

ary layer solutions are obtained using a program developed

in DERAT [2]. Only first-order boundary layer are presented

here since second-order outer flow solutions are not yet avail-

able. Several second-order calculations using Van Dyke's the-

ory have been made on a hypersonic blunt body i1, 4, 5, 6, 71.

Axisymmetric hyperboloid

Past a hyperboloid, the shock wave curvature decrease lastly

and the entropy field tends to be uniform, except for the

streamlines near the wall, which crossed the strongly curved

shock wave at the nose. In this case, the entropy layer is

characterized by a non-zero normal gradient at the wall-and

a decreasing thickness towards the rear, since the mass-flow

is constant in the entropy layer and the circumference of the

body increases (fig. 1 left). The entropy values at the wall

and at the edge of the entropy layer remain constant because

the wall is a streamline and outside of the entropy layer the

flow is isentropic. So the normal entropy gradient at the wall

deeply increases downstream. The shock layer is thinner than

in the plane case. Far from the nose, the flow is similar to

a flow past a sharp cone except in the entropy layer, whose

aspect is quite similar to a viscous boundary layer (fig. 2).

Boundary layer profiles are displayed on figures 4 to 7 for

the Mach 23.4 case. Longitudinal velocity profiles are plotted

on figure 4 at a distance of nine nose radius from the stagna-

tion point. One can see on this figure the important velocity

gradient at the wall in the inviscid flow. This gradient dimin-

ishes distinctly between the wall and the boundary layer edge.

So even with a second-order expansion, Van Dyke's method

could not give a good matching, since it considers only the

wall value of the gradient. In this case, it would widely over-

estimate the skin friction (Adams [1]). Due to the very low

wall temperature compared to the inviscid flow one, the dis-

placement effect is quasi-null and the Navier-Stokes solution

recasts exactly the inviscid profile in the outer region. In this

case, the agreement is quite good with the first-order defect

boundary layer. A composite profile has been plotted also,

using the additive composite expansion (Van Dyke [13]) con-

structed with the first order inner and outer expansions. It

gives good results for the longitudinal velocity, slightly differ-

ent of the defect ones.

The corresponding profiles for the temperature are shown

on figure 5. The defect profile is in rather good agreement

with the Navier-Stokes solution, but in this case the compos-

ite expansion written with Van "Dyke's first order solutions

gives very bad results and does not improve the inner solu-

tion. This is due to the negative slope at the wall for the

inviscid temperature. Figures 6 and 7 show the velocity and

temperature profiles at twenty-one nose radius. The growing

boundary layer has overlapped a larger part of the entropy

layer. Because of the constant total enthalpy, the positive

velocity gradient at the wall induces a negative temperature

gradient. In spite of this, the wall heat flux is increased by

the vorticity, as well as the skin friction, as can be seen on the

figures 8 and 9. But the increase is far more important for the

wall friction than for the flux. The defect approach underes-

timates slightly these quantities but gives better predictions
than the standard boundary layer.
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Figures 10 and 11 show the velocity and temperature pro-

files with an arbitrary temperature of ten times the temper-

ature of the preceding case. The displacement effect is then

far more important and it is obvious on these figures that the

Navier-Stokes solution is shifted from the Euler solution in

the outer zone. So the first-order boundary layer methods

give poor results and a second-order calculation seems to be

necessary.

The velocity and temperature profiles at nine nose radius

abscissa in the Mach 26.6 case are presented on figures 12

and 13. Because of the lower density, the Reynolds number

is small and the boundary layer is about twice as thick as in

the Mach 23.4 case. So a large part of the entropy layer is

overlapped by the boundary layer. The inviscid velocity and

temperature gradients at the edge of the boundary layer are

far weaker than their wall values. Due to the high value of the

expansion parameter _, the second order effects are more im-

portant and a slight displacement efl'ect is visible between the

Euler and Navier-Stokes profiles outside the boundary layer.

The agreement between the Navler-Stokes and defect profiles

is rather good, but the shear at the wall is a bit too high

for the later one. Note that because of the negative inviscid

temperature gradient st the wall, the Van Dyke's composite

expansion gives again poor results on the temperature profile.

Figures 14 and 15 show the saxne quantities at twenty-

one nose radius from the nose. The entropy layer is now com-

pletely included into the boundary layer, and the gradients

in the entropy layer become higher than those of the viscous

boundary layer. So the hypothesis of neglecting the viscous

effectsin the external flow does not hold any longer and the

defectboundary layerprobably gives overestimated values for

the slope at tee wall of the velocity profile. But no Navier-

Stokes solution is yet available on such a large domain.

The corresponding skin friction and wall heat flux are

shown on figures 16 and 17. As forecast from the velocity

profiles, the defect approach improves greatly the standard

boundary layer result, but widely overestimates the skin fric-

tion on the rear of the body. The predictions concerning the

wall heat flux seem to be more reliable.

Plane hyperbola

Let us now consider a plane hyperbola in the same conditions

of hypersonic flows. On figure 1-right are displayed the en-

tropy levels in the inviscid shock layer. The main difference

with the a--'isymmetric case is that now the entropy gradient

is null at the wall (Van Dyke [12]). Figure 3 shows entropy

profile across the shock layer. The entropy gradient layer is

thus located at a short distance above the wall. So the ve-

locity and temperature gradients in the inviscid flow are null

at the wall as well, and their influence will be significant only

with a very thick boundary layer. Moreover, far downstream,

the flow can be assimilated to a parallel flow and the entropy

layer'sthicknessremains constant whereas in the a.xisymmet-

riccase the entropy layergets thinner towards the rear part of

the body. Thus the entropy gradient remains bounded. Since

itisnullat the wall,itsinfluenceon the skin frictionand the

heat fluxwillnow be far lessimportant.

On figures18 and 19 are plotted the velocity and temper-

ature profileson the Mach 23.4 hyperbola at nine nose radius

abscissa.The inviscidgradients are hardly visibleoutside the

boundary layerand allthe methods give the same results.

When the Reynolds number islower, the matching of the
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boundary layer with the inviscid flow takes place in the gra-

dient region, as can be seen on the figures 20 and 21 for the

case Mach 26.6 . The defect method gives a good matching

and a correct agreement with Navier-Stokes solutions, but the

two boundary layer methods give similar results near the wall.

Thus no significant difference is visible on the skin friction and

the wall heat flux shown on figures 22 and 23.

(_onclusion

Several boundary layer calculations have been performed on

various hypersonic bodies, including plane or axisymmetric

shapes. The behaviour of the solutions far from the stag-

nation point has been particularly investigated. The different

cases presented here showed both the interest and the limits of

boundary layer methods to compute hypersonic flows. More-

over, the importance of taking into account the second or-

der effects when calculating boundary layers at low Reynolds

numbers has been brought into evidence. The most important

of them are the entropy gradient effect and the displacement

effect in the considered cases. They can deeply modify the

wall quantities_such _ the skin friction or._the wall heat flux,

which are essentied to predict the total drag of the vehicle and

to design the thermal protection.

Using the matched asymptotic expansions technique, the

defect approach allows us to improve the results of the stan-

dard higher-order boundary layer theory of Van Dyke, for a

similarcost. Particularly, it ensures a smooth matching of

the viscous and inviscid flows, even when the inviscid profiles

vary significantly through the boundary layer. When the wall

temperature is low and thus the displacement effect is negli-

gible, first-order defect calculations can give good results and

reproduce Navier-Stokes solutions with a reasonable accuracy

at a lower cost, as long as the entropy layer is not too thin

compared to the viscous boundary layer. But it gives less ac-

curate results on axisymmetric hyperboloids at low Reynolds

number far from the stagnation point, when the inviscid flow

normal gradients are higher than those of the boundary layer.

The inviscid flow concept seems to be invalid then.
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