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Evaluation of integrated tuning elements with SIS devices.
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Abstract.

The resonance of integrated tuning stubs in combination with SIS detectors is measured

and modeled. The predicted resonances are compared with measurements of stubs
r
i ,
/ j

j integrated with Nb/Al2O3/Nb junctions in a log-periodic antenna using a Michelson
ii

interferometer. Different stub lengths were made on different substrates (on 200 Mm

thick quartz and on a 7 jrai thick silicon membrane) and the results show a fairly good
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^agreement with the model calculations. Quartz substrates showed resonances up to 580

GHz, silicon membrane stub resonances reach as high as 480 GHz. An observed

resonance at 560 GHz is probably a substrate effect from the membrane. The gap

frequency for all the samples is 650 GHz and no resonances are detected above this

frequency. Up to the maximum detected frequency dispersion is found to be negligible.

I Introduction.

SIS mixers with Nb/Al2O3/Nb junctions are very sensitive submm detectors. Recent

progress in SIS mixer development is due to the ability to manufacture smaller junctions

down to sub-micron dimensions1-2. Instead of continuing to put more effort into the

fabrication of smaller junctions and thus reducing the junction capacitance, it is also

possible to implement integrated tuning elements, which are fairly easy to fabricate and

result in a high sensitivity and broad bandwith. It has been shown that junctions with

integrated tuning used in submm-wave mixers give good results3'4.

The first published stub measurements used the self-pumped steps in the I-V

characteristic to measure the resonance of the stub5. A more accurate and complete

evaluation can be performed with a wide-band Michelson interferometer as first shown

by Hu et. al.6.

In this paper we first describe our design criteria for niobium stubs in combination with

niobium junctions. Next, we describe how they can be analyzed on a log-periodic antenna

with two 1 Mm2 junctions in series. Each junction has its own stub. Stubs for 100 GHz
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and 350 GHz have been designed. The first type is expected to have multiple resonances

from which the dispersion in niobium can be calculated. These antennas are made on

200 Mm thick quartz substrates and on 7 /im silicon membranes. The results are used to

separate stub and antenna resonances and to estimate the dispersion.

The organization of this paper is as follows: the theoretical background will be

introduced in Sec.II, the fabrication results are presented in Sec.ni, the experimental

details are described in Sec.IV, the comparison between theory and experiment is

discussed in Sec.V, and the conclusion will be drawn in Sec. VI.

II Model calculation.

To tune out the geometric capacitance an inductive tuning element was used. An

example of the devices studied is shown in Fig.l. Two junctions in series, placed in the

center of a log-periodic antenna, were used. To each junction a stripline type inductor

is attached. The total arrangement can be modelled with the circuit shown in Fig.2. For

completeness the connecting strip between the two junctions is included as an inductor

Lieads- IB practice this inductance is negligible in evaluating the frequency response.

Using integrated tuning, the junction impedance can not simply be described as a pure

resistor with a parallel capacitor. Instead, it must be described as a capacitor in parallel

with a complex admittance with a conductive part (GQ) and a susceptive part (BQ). Since

the experiment works in the small signal limit and the Josephson effect is suppressed by

a magnetic field, the junction admittance can be described as follows7-8:
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These equations show that the resonant frequency depends on the bias voltage and the

photon-energy. In these equations is hS>/e the energy of the photon step, V0 is the bias

voltage, and

where 1^ is the Kramers-Kronig transform, which can be calculated from the dc-IV

curve.

The inductance per unit length of the stub can be calculated as follows9:

where w is the width of the stub, k is the fringing factor10, t^ tj and td are the thicknesses

of the ground plane, the stub, and the dielectric layer respectively, and X is the

penetration depth of the niobium layers. The capacitance per unit length of the stub is

given by:

- <5>

Knowing the capacitance and the inductance of the stubrthe impedance 7^ and the

phase velocity v0 follow from the definitions:
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(7)

The impedance of a transmission line with small loss and dispersion follows from:

2= Z*'*'1 + _ Z-± _ (8)

Where a is the loss per unit length and 1 is the length of the stub. The RF coupling

coefficient CRP defined as the fraction of the available power dissipated in the junction

is given by:

(9)

where YA = 1/RA is the simplified admittance of the antenna (1/120 n), and Y; is the

admittance of the right hand side of Fig.2.

If both areas and stub lengths are equal then the resonant frequency can be

approximated from:
W C: + — + — = 0J o- Xs <a- X

(10)

In our equations we do not take into account the behaviour of the log-periodic antenna,

this is rather complex and not known in all detail. Therefore it will be very difficult to

identify the loss from the observed resonances, because it could be loss in niobium, bad

coupling to the antenna or a combination of both.
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Fig.l. Photo of a log-periodic antenna with two junctions in series. Each junction has
its own stub.

on _L, * stub J— x Quantum i K quantum

ub JL * quantum I * quantum

Fig.2 Electrical equivalent of two junctions in series with integrated tuning elements.
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III Fabrication of devices.

The detector is positioned in the center of a broad-banded log-periodic antenna. We

used 2 junctions in series of each 1 /im2 and a current density of 12000 A/cm2. On top

of the junctions the wiring layer was defined with a stub for each junction (Fig.l.). The

dielectric layer between the ground plane (antenna) and the stub was 250 nm thick

sputtered SiO2. The junctions have been fabricated with the Selective Niobium Over-Etch

Process (SNOEP)11.

Antennas have been fabricated on 200 Mm thick quartz substrates and on 7 MHI thick

silicon membranes (Fig.3.). The membranes have been etched in ethylenediamine-

pyrocatechol-water (EPW)12. The junctions on the membranes were fabricated after the

etching of the membranes. With the obtained thickness, the membrane is transparent

which simplifies the alignment of the antenna on the membrane.

Two different stub lengths were fabricated for different purposes. Firstly, short stubs

(around 120 MHI) were designed to resonate at 350 GHz. A single resonance simplifies

the comparison with the model and it can easily be implemented in the waveguide mixer

chip design. Secondly, long stubs (around 500 jim) were designed to have a fundamental

resonance around 100 GHz and multiple resonances at higher frequencies. From the

frequencies of the resonances in principle the dispersion and loss in niobium can be

estimated.
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Fig.3. Photo of the antenna fabricated on a 7 jum thick silicon membrane.

IV Measurement set-up

For measuring the response of the detector, we used a Michelson interferometer with

a Hg arc lamp as source13 (Fig.4.). The operating frequency range was determined by a

50 nm thick kapton film beam-splitter. The mechanical traveling distance was 50 mm

resulting in a resolution of 4 GHz. Both single sided and double sided interferograms

were measured. An example of the resulting spectra with multiple resonances is plotted

in Fig.5.

The antenna was mounted in a liquid helium dewar with de-bias connections. Since the
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Michelson
interferometer

S = source (Hg-arc)
Ml = mirror 1

(moving)
M2 = mirror 2

(static)
B = beam splitter

4.2 K Dewar

Fig.4. Schematic of the Michelson interferometer.

Michelson was not under vacuum during the measurement, the water absorption lines

at 380 GHz, 448 GHz, 557 GHz and 752 GHz were visible when sufficient resolution was

used. All antennas fabricated on a quartz substrate were glued to a quartz hyper-

hemispherical lens. The lens optimizes the optical coupling and results in a better

sensitivity. We have also performed measurements with the log-periodic antenna on a

thin membrane. In that case no lens was used, resulting in a much lower signal. By using

longer integration times we could improve the signal to noise ratio to an acceptable

level.
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Fig.5 Spectrogram of a device with multiple resonances.

V Results

A: Short stubs on 200 tim quartz substrates.

Antennas with stub lenghts around 120 ̂ m were investigated to determine the specific

capacitance of the junction and the penetration depth of the niobium layers. Resonant

frequencies were measured from two different batches. The resonant frequency is

depending on the bias voltage due to the behaviour of the quantum impedance (eq.l and

eq.2). Calculated and measured results are shown in Fig.6. Best agreement between
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theory and experiment was obtained with the assumption of a specific capacitance of 55

fF/Mm2 and a penetration depth of 100 nm. These values were further used in

calculations of the long stubs. Differences between calculations and measurements are

due to the noise in the spectrogram which complicates the determination of the resonant

frequencies. No multiple resonance is observed.
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Fig.6 Calculated and measured resonant frequencies as a function of bias voltage
for two different junction batches.

I Long stubs on 200 nm quarz substrates.

Next, the resonances of a 527 ^m long stub on a quartz substrate were measured. The

results of the measurements at different bias voltages are plotted in Fig.7 and are
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compared with model calculations. At the first two resonances the measurements agree

fairly well with the model both below as well as above the gap voltage. The two higher

resonances have a larger frequency shift close to the gap than the model predicts. More

measurements with different lengths are planned for a more detailed evaluation. Stub

resonances up to 580 GHz are observed, while no antenna resonances are visible. We

do not see any dispersion in the resonances of the stubs (Fig.5).
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Fig.7 Calculated and measured resonant frequencies for an antenna with a 527 urn
long stub on a quartz substrate as a function of bias voltage.
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C; Long stubs on 7 ^m silicon membranes.

The resonances of a 527 pm long stub on a 7 ̂ m thick silicon membrane were measured.

A double sided interterogram was used to decrease the noise in the spectrogram. The

resolution (8 GHz) is lower because of the decreased scan length. The effect of the

quantum susceptance is not clearly observed because of the loss in resolution and signal.

We measured stub resonances at 110, 200 and 325 GHz. Incidentally resonances at 165,

310 and 540 GHz occur which are probably substrate resonances. The highest stub

resonance appears to be at 450 GHz which is lower than the measurements on quartz.

The lowest three resonances are compared with the model calculations in Fig.8. It is not

clear why above 330 GHz no well defined resonances occur except for the substrate

resonance at 540 GHz.
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Fig.8 Calculated and measured resonance frequencies for a 527 ̂ rn long stub
on a silicon membrane as a function of bias voltage.
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VI Conclusions

The theoretical model and the experimental results for the short stubs lead to a

penetration depth of 100 nm and a specific capacitance of 55 fF/Mm2. This is

independent of the measured batch. For long stubs the model predicts a different

behaviour at higher resonances than is measured. The measured frequency shift at the

higher resonances is larger than the model predicts. Both below and above the gap

voltage the resonances agree fairly well with the model. Resonances up to 580 GHz are

observed. For antennas fabricated on 7 /*m thick silicon membranes resonances up to 480

GHz are observed. Also possible substrate resonances are measured. No resonances

above 600 GHz are observed, which is close to the gap frequency of niobium (650 GHz).
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