
Page 560 Third International Symposium on Space Terahertz Technology

< N 9 3 - 2 7 7 7 3

Simulation of Electron Transport
in

Quantum Well Devices

D. R. Miller, K. K. GuIIapalli, V. R. Reddy, and D. P. Neikirk

Department of Electrical and Computer Engineering

Microelectronics Research Center

The University of Texas at Austin

1.0 Introduction

Double barrier resonant tunneling diodes (DBRTD) have received much attention as

possible terahertz devices. Experimentally, DBRTD's have shown detection capabilities at

sub-millimeter wavelengths1. When used as oscillators, small amounts of power have also

been measured in sub-millimeter range2. Despite these impressive experimental results, the

specific of the device physics (i.e., how the electrons propagate through the structure) are

only qualitatively understood. Therefore, better transport models are warranted if this

technology is to mature.

Near the heterostructure double barrier region, it is generally accepted that quantum

mechanical transport, via tunneling and reflections, dominate the electron dynamics.

However, most DBRTDs in use today are designed with extended spacer regions. These

spacer regions serve the function of increasing the real part of the overall device impedance

while simultaneously reducing the imaginary part, thereby incorporating DBRTDs in

millimeter wave circuits a far easier task. Since the spacer regions are sufficiently removed

from the heterojunctions, electron propagation should be govern by semiclassical and not

quantum mechanical considerations. Here, semiclassical refers to transport which is

adequately describe using some form of the semiclassical Boltzmann equation.
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Past simulation models of DBRTD structures have evolved from simple

Schrodinger equation solutions of a free electron in a double barrier potential to more

complicated methods involving multiband, multivalley Schrodinger solutions3'4 or single

valley kinetic equations that utilizes quantum Wigner functions5-6-7. These methods are

expected to work reasonably well for ideal DBRTD structures with parabolic bands in
which only quantum mechanical reflections and tunneling are important. However,

because the Schrodinger or single valley Wigner models do not include realistic phonon

scattering or band structure effects (i.e., multiple valleys, rton-parabolicity, multiple bands,
etc.) these models do not adequately address the transport through the semiclassical region.

Alternatively, the semiclassical Boltzmann equation provides an adequate description of the

semiclassical region, but fails completely near the DBRTD heterostructure region.

To model a DBRTD structure with two distinct transport regions, two options are
available. The first option incorporates a composite scheme by which each region is
modeled with an equation suitable for that region. The two solutions are then matched at a
quantum / classical interface to obtain a self consistent solution throughout the device. We
find combinations of a free particle Schrodinger equation for the quantum region coupled
with either the drift/diffusion8 or Monte Carlo9 formalism for the semiclassical region quite
useful. However, agreement between experiment and theory is still lacking since the
simple Schrodinger equation is only an approximate solution of the electron transport
within the heterostructure region.

The second option is to model the entire device with one self consistent formalism

that, in principle, can account for all the important device physics for each region. The
kinetic equation based upon the Lattice Wigner function is a promising candidate for such a

task. In this paper, we will use the Lattice Wigner function to explain important transport

issues associated with DBRTD device behavior.

2.0 The Lattice Wigner Function

The lattice Wigner function10-11 we employ is based on the discrete spectrum

composed of Wannier and Bloch crystal representations, making it different from other

Wigner function methods. Because of the choice of representations, band structure effects

are explicitly included in the kinetic equation. Thus, issues such as F to X tunneling, non-

parabolicity of the conduction bands, or effective mass variations across the heterojunction,
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can be examined in detail. Phonon scattering is also included through the standard

semiclassical Boltzmann collision term.

In a multiple barrier heterostructure device with multiple non-parabolic conduction

band valleys and no interband coupling, it is possible to write separate, but coupled, kinetic
equations for each valley. The Wigner function for the 1th valley, f{ , is found from the

solution of

9f i
w(R,k) [ I3en(k) BfffU) eE 9f:w(Rtk) [ raf i
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where the barrier scattering matrices, BO, BI, and 82 are given by

1
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The indices, j and q, indicate the jth conduction band valley and the qth barrier. The
coefficients, BM-Q, are the potential energy terms that account for one heterostructure

barrier. In equations 1 through 4, n is the band index, k and k' are crystal momenta, R

and R' are lattice vectors, NL is the number of lattice sites, and E is the electric field.
Vn^)is the potential energy diagonal matrix element of the m* pulse function that localizes

u *i *i
the barrier. The change in the i"1 valley effective mass (mA), velocity (VA ), and the offset

energy (AE1) are given by
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where £^amer(ki) and en
u (kj) are the minimum conduction band energies of the 1th valley

for the barrier and bulk materials, respectively.

As noted earlier, equation 1 accounts for both effective mass variations across the

heterostructure interface and intervalley coupling. The intervalley coupling is possible
since the 1th valley distribution function fj is coupled to the j1*1 valley distribution function
wfj through the barrier terms. Effective mass variation effects are due to the crystal

momentum dependence of the barrier, and result in the spatial derivatives of the distribution

function in the B^ q and BJ q terms. Mass variations are also responsible for raising and/or

lowering the barrier height, as seen in the expression for Bj q. This is because the energy

band of the bulk material may rise at a different rate than the energy band of the barrier

material for a given momentum change. For semiconductors with non-parabolic valleys,

additional barrier scattering terms arise due to the higher derivatives associated with the

Wigner-Moyal expansion. However, in this paper we will assume that the effective masses

and the non-parabolicity factors are approximately the same for the bulk and barrier

material. Therefore, BI, 82, and all other higher barrier scattering terms will be set to zero.

Including some sort of phonon collision processes into a Wigner function

calculation of an DBRTD is not new. Most calculations have approximated the influence

on carrier transport from phonon collisions using the relaxation time approximation7-12'13.

In addition, these calculations have restricted phonon scattering events to one valley.

However, because of the high electric fields within the DBRTD structure, intervalley

scattering is required. Thus, we will assume that the total scattering matrix, Sjotal. is given

by

where Spop, S Acoustic. and Sintervalley refer to the polar optical, acoustical, and intervalley
phonon scattering matrices, respectively. Assuming non-degenerate statistics, we can write

the collision term in equation 1 for the 1th valley Wigner function as

where Ny is the total number of valleys. The material parameters as well as the functional

form for each scattering matrix are identical to those used in Monte Carlo device

simulations and are given in reference 14.
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The Wigner distribution function for each valley is defined in the three dimensional

crystal momentum space. If the structure and the electric field are homogeneous in two of

the spatial variables (independent of Ry and Rz), equation 1 reduces to a four dimensional

integral/differential equation. Since solutions to the four dimensional problems are

exceedingly difficult, further simplification is required. We do this by characterizing the

distribution function that is transverse to the electric fields by a Maxwellian defined at some

transverse temperature Tt. Furthermore Tt is assumed to vary with longitudinal position.

Thus, for electric fields in the (100) direction with quantum well barriers grown in the

(100) plane, the total distribution function is approximated by the product of a transverse

and a longitudinal distribution functions

f i
w(Rx ,kx ,ky ,kz) = fi

R'(Rx,kx)exP(-E;/kbTt(Rj) (9)

where kx, ky, and kz are defined with respect to the valley minimum. The transverse

energy for non-parabolic valleys , Et, is assumed to be of the form

(10)

where ai is the non-parabolicity factor for the ith valley. Note that although the

longitudinal and transverse distribution functions are not coupled through the electric field

or the barrier scattering matrix, they are coupled by the phonon scattering matrix. It is

because of the this coupling that the transverse temperature significantly impacts the device

physics, as discussed in the next section.

3.0 Simulation Results

The first obvious question that can be addressed with the lattice Wigner function is

how close to the quantum well an electron is when quantum mechanical reflections and/or

tunneling affect the electron's behavior. One measure of this distance is obtained by

comparing the size of the barrier matrix (Bo) with the size of the phonon matrix (STotal) a*
each lattice site. However, such a direct comparison may provide an overestimate of the

extent of the quantum region. During one phonon scattering interval, an electron may



Third International Symposium on Space Terahertz Technology Page 565

propagate through many lattice sites due to either a high electric field or a high initial

velocity. Therefore, the effective barrier scattering strength is an average over all lattice

sites occupied during the mean free flight time between collisions. In other words, the

barriers' influence on the electrons is best determined by the matrix

BToul-'

•I «Bimen

J" BJjj-m(Rx(t),kx(t))dt
• In

(11)
integrated over the classical trajectory. In equation 11, BQ is the matrix defined by equation

2, and Rx(t) and kx(t) are given by the semiclassical equations of motion.
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Figure 1. Effective quantum well scattering strength versus
position from the center of a 6/19/6 GaAs/AlAs quantum
well.

It is difficult to evaluate the above equation for the general case. However, Figure

1 shows the effective quantum well scattering strengths determined by taking the matrix

norm of BT0tai for two simplified conditions. The structure is a 6/19/6 GaAs/AlAs

quantum well. The first solid line assumes the case Of an extremely slow electron in which

the electron transverses only one lattice site between phonon collisions. The second line

assumes that the mean free path was 32 monolayers, corresponding to a distance of 90.6

A. In both cases the electric field was set to zero, which significantly simplified the

integration along the classical trajectory. Also plotted are the momentum relaxation times

corresponding to different electric fields. These values represent the size of the phonon
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scattering matrix (Sjotal) determined using standard Monte Carlo simulations of

homogeneous material9. Thus, when comparing the relative strengths of the quantum well

and the phonon scattering matrices, one should compare the fast electron case with the high

field momentum relaxation time since these two conditions usually exist together.

Similarly, the slow electron case corresponds to the zero electric field relaxation time.

Two points are worth emphasizing from Figure 1. The first is that slow electrons

are influenced by the quantum well with greater strength and at greater distances when

compared to fast electrons. The second point, however, is the one which we want to

emphasize. DBRTD structures are usually operated at extremely high electric fields (200

kV/cm) and under ballistic conditions. Therefore, as can be seen from the fast electron

curve of Figure 1, the region where the barrier potential has the greatest impact on electron

dynamics is within 65 monolayers of the center of the well. Beyond that region, phonon

scattering is more important. This fact supports the hypothesis that much of the DBRTD is

governed by semiclassical considerations for devices that extend 400 to 800 monolayers
from the quantum well.

The Wigner function has been used extensively to account for the quantum
transport within the heterostructure region of a DBRTD device. However, the question
arises as too its ability to properly account for electron transport within the semiclassical
region. To show that this is possible, we have used the Lattice Wigner Function to

calculate the velocity versus electric field characteristics for homogeneous GaAs. For
homogeneous samples, equation 1 reduces to

To solve this equation, the first step is to integrate over the transverse crystal momentum
directions. The resulting one dimensional phonon scattering matrix is then combined with
the matrix generated by the electric field term to yield the equation

R',.j.k',

where T is the combined phonon/electric field matrix and fjRxJ.kx is the vectorized

longitudinal distribution function. The valid solution exists when the minimum eigenvalue

of T is equal to zero 15. If the minimum eigenvalue is not zero, the electric field and the

valley transverse temperatures, Tt, are adjusted so that homogeneous equation can be
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satisfied. In affect, we are using the transverse valley temperatures as fitting parameters to
achieve a reasonable velocity versus field curve. Once the zero eigenvalue is calculated, the
eigenvector for that eigenvalue can be determined, from which the velocity is obtained.
Note that pure state tunneling models using only the Schrodinger equation do not produce
reasonable velocity-field curves for GaAs.

The above procedure yields good agreement with the Monte Carlo results, as

indicated in Figure 2. Here, a velocity field curve generated by equations 12 and 13 is

compared against a three valley model calculated using standard Monte Carlo techniques.

Furthermore, the temperatures required to obtain this level of agreement are comparable to

the transverse temperatures calculated from the homogeneous Monte Carlo simulations.

However, at low electric fields there is a larger discrepancy between the two alternative

approaches. This difference is probably due to the fact that the transverse distribution

function is not precisely Maxwellian. However, this error is fairly small, demonstrating

that the Lattice Wigner function is capable of simulating both the quantum transport region

and the classical transport regions of a device.
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Figure 2. Velocity field calculation for a 3 valley spherical
non-parabolic Wigner function model. Also shown is the
corresponding result from a Monte Carlo simulation. The
scattering parameters used for each calculation are identical,
and are found in reference 14.

Thus far, we have applied the Lattice Wigner function to determine generic

properties of bulk materials and of resonant tunneling transport. This formalism's real
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usefulness can be demonstrated by applying it to an actual DBRTD device. Shown in

Figure 3 is a typical GaAs/AlAs DBRTD. The quantum well consists of 6 monolayer

AlAs barriers separated by 19 monolayer GaAs well. As can be seen in Figure 3, a

moderately doped, extended spacer region is added to the right hand side of the quantum

well. As will be shown latter, it is the semiclassical transport through the extended spacer

layer that can have a serious impact on device behavior.
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Figure 3. 6/19/6 GaAs/AlAs DBRTD used for the device
simulations. The x axis origin is defined as the center of the
quantum well.

The equilibrium electron concentration, found by integrating the Lattice Wigner

function over momentum space, is shown in Figure 4. However, under bias conditions,

obtaining the electron concentration via the Lattice Wigner function is much more

complicated. The basic problem is in determining the transverse temperature profile of the

spacer region. We have previously shown using a composite Schrodinger/Monte Carlo

model9, that for typical bias voltages, electrons are quickly scattered into the upper satellite

values once they emerge from the quantum well. This intervalley scattering between

equivalent and non-equivalent conduction band valleys quickly heats up the carrier

distribution functions in the transverse direction. The effect of the carrier heating on the

charge densities can be considerable.
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Figure 4. Equilibrium electron concentration for the device
shown in Figure 3.
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Figure 5. Electron concentrations obtained from the Lattice
Wigner formalism for two different transverse temperature
profiles. The dc bias is at 0.7 V.
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Figure 5 illustrates the effect of transverse temperature on the simulated electron

concentration for this device biased at 0.7 V. The dashed curve shown in this figure was

generated under the assumption of constant transverse temperature within the spacer

region. As seen from this curve, the electron density actually decreases past the quantum

well region, indicating an increase in the overall electron velocities. The increase in the

electron velocities is a result of a non-physical assumption. Because the transverse

temperature in this space charge region is kept artificially low, the electron population is
also artificially cooled, keeping all electrons in the fast F valley. Therefore, unrealistically

high velocities would be predicted under this constant temperature assumption. This can
lead to unrealistic high frequency performance predictions, since fast electrons generally
result in improved frequency response.

Also shown in Figure 5 are the results of a Lattice Wigner function calculation
using a transverse temperature profile obtained through the Schrodinger/Monte Carlo
model. As seen from this figure, the electron concentration is increased significantly over
the constant temperature model, indicating a slowing down of the electron population
within the spacer region. The reduced velocity is a result of the increased phonon
scattering within the F valley, as well as some F to L intervalley transfer. This slowing of

the electrons can have an significant impact on the device performance, as discussed below.
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Figure 6. Transverse temperature profile for the device
given in Figure 3. The dc bias is at 2.0 volts. The
temperature was obtained from a Schrodinger/Monte Carlo
transport model discussed in reference 9.
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The bias of 0.7 V is well below the voltage at which peak current is expected in this
device. However, even under these conditions, the Monte Carlo simulated F transverse

temperature peaks at 2500 Kelvin. At even higher biases, the transverse temperature

becomes extremely high. Figure 6 shows the transverse temperature profiles extracted

through a three valley Schrodinger/Monte Carlo model for a device biased at 2.0 V . As
seen from this figure, the F temperature can exceed 7000 degrees Kelvin. Even the upper

satellite valleys are exceptionally hot Thus, we would expect that most of the electrons for

this bias voltage are in the upper satellite valley, which is indeed the case.

4.0 Impact on High Frequency Behavior

Much of the discussion concerning the ultimate frequency limitations of DBRTD

devices has centered on the frequency limitations imposed by the quantum well itself. It

has been projected that the quantum well is capable of operating at terahertz frequencies16.

However, the preceding discussion illustrates that the semiclassical spacer regions can have

a dramatic impact on the behavior of DBRTD devices. Because of the efficient phonon

scattering processes, the actual number of free carriers within the spacer layer is much

higher than predicted by either a pure state Schrodinger solution, a one valley Wigner

solution, or a multiple valley constant temperature Lattice Wigner solution. This free

charge contributes to a positive resistance which is equivalent in every way to the space

charge resistance found in transit time diodes 17. The magnitude of the space charge

resistance is fundamentally determined by the total number of free carriers within the

region. Therefore, any analysis which does not realistically describe electron densities

cannot be used to project the high frequency performance of a real device.

Understanding space charge resistance is important because it is generally felt that

in order to improve the output power of a DBRTD device, one must dramatically increase

the current density. In reality, this procedure will be useful only up the point where

deleterious space charge resistance effects become dominant. This can be seen even under

static conditions. For example, considered the measured dc-/V curve of an InGaAs/AlAs

DBRTD structure, shown in Figure 7. The total spacer region for this device was 1250A.

With available simulation tools, it is possible to model comparable structures with

artificially increased current densities. Thus, five static simulations where performed using

a composite quantum injector/drift/diffusion model, as described in reference 18. For each
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simulation, the DBRTD spacer regions where kept constant. The only difference between

each simulation is an assumed increase in the current density of the device, starting with the

dc-IV curve given in Figure 7. The results of the simulations are shown in Figure 8. As

the current density is magnified, the presence of the free carriers within the spacer regions

can cause a major portion of the negative resistance regime to become positive. It is

obvious that this positive resistance would prevent useful device operation, despite the fact

that the difference between the peak and valley current is exceptionally high.

o
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o

Figure 7. The experimentally measured de-TV curve for an
InGaAs/AlAs DBRTD. The structure is similar to Figure 3
except that the total spacer layer to the right of the quantum
well is 1250A.

The current density where space charge resistance becomes important depends on

two factors. The first is the length of the spacer regions. As the length is decreased, the

total number of carriers within the region is also reduced. The price paid for this reduction

is a corresponding decrease in the overall device impedance. Furthermore, it is doubtful

that the spacer region can be eliminated beyond a certain point, since there is always a

depletion region formed due to the high electric fields near the quantum well. This is even

true if the heavily doped contacts are immediately adjacent to the quantum well.
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Figure 8. The simulated effect of the space charge resistance
on the dc-/V curve. These curves were generated using the
Schrodinger/Drift Diffusion composite model in which the
current given by Figure 7 was scaled upward 10, 20, 30,
40, and 50 times.

The second factor dictating when the space charge resistance becomes important is

determined by the velocity of the carriers. Higher velocities result in lower electron

concentrations, since total current must be conserved. It is in predicting -these

concentrations and velocities that previous quantum mechanical models have failed, thus

failing to predict the importance of the spacer regions in overall low and high frequency

device behavior. Thus, in order to accurately project the ultimate performance of DBRTDs,

it is critical to use a quantum kinetic formalism such as the Lattice Wigner function. Future

results using this model should lead to a determination of the behavior of DBRTDs at

terahertz frequencies.
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