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Abstract

,• In this paper we discuss the influence of the DC biasing circuit on operation of parallel

/' biased quasioptical Josephson junction oscillator arrays. Because of nonuniform distribution of

the DC biasing current along the length of the bias lines, there is a nonuniform distribution of

magnetic flux in superconducting loops connecting every two junctions of the array. These DC

self-field effects determine the states of the array. We present analysis and time-domain numerical

simulations of these states for four biasing configurations. We find conditions for the in-phase

states with maximum power output. We compare arrays with small and large inductances and

determine the low inductance limit for nearly-in-phase array operation. We show how arrays can

be steered in H-plane using the externally applied DC magnetic field.

""*"-•——-.• Introduction

The Josephson junction is a natural choice for submillimeter local oscillator since it is a

"voltage controlled oscillator" with typical voltage scales of mV and an oscillation frequency fj =

483 GHz per mV of dc bias. The existence of Josephson radiation into the terahertz range has

been demonstrated at Cornell [1]. A major disadvantage of the Josephson junction is its very low

output power. With DC voltage bias of 1 mV at 483 GHz, a junction which could accept 100 ^A

will put out less than 100 nW of RF power. Therefore, practical local oscillators must use arrays

of many junctions oscillating in phase. Submillimeter Josephson oscillator arrays with usable

power levels have been made at Stony Brook [2] and NIST [3].

We have proposed to build a large 2-D active grid array of parallel biased Josephson

junctions [4]. In our design, every junction drives a single antenna and the power from the whole

array is quasioptically combined. By biasing all junctions in parallel, we assure that all of them
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radiate at exactly the same frequency. For maximum radiated power, all junctions must also be in

phase.

The DC biasing circuit of the 2-D quasioptical Josephson array plays a very important role

in phase-locking of Josephson junctions. In a two-dimensional array the DC biasing current is

supplied at the ends (Fig. 1). Because of that, the DC current is nonuniformly distributed along

the length of the biasing line. This current induces the nonuniform DC magnetic flux in

superconducting loops between every two neighboring junctions. Because of the superconducting

quantum interference effects [5], these self-induced fluxes determine the phase differences between

the neighboring junctions, and therefore the states of the array. These effects will be referred to as

the DC self-field effects. It is clear that, depending on the particular bias circuit, the in-phase state

can only be a special, rather than common state of the parallel 2-D Josephson junction array.

If the rows of the 2-D parallel Josephson array are biased independent from each other, the

DC self-field effects are, to the first order, limited to each row, and the whole 2-D array can be

looked at as a collection of 1-D parallel arrays. We will therefore investigate these DC self-field

effects in linear parallel arrays.

N-junction linear parallel array

The most general biasing scheme for the linear parallel array is presented in Fig. 2. We use

the RSJC model of the Josephson junction that consists of ideal Josephson junction, shunt

resistance and parasitic capacitance (Fig. 2). The ideal Josephson junction is described by
relationships between its current I, voltage V and phase difference <J> of the superconducting

quantum mechanical wave function between two sides of the junction

I = Icsin«D), ^ = ^V

where Ic is the junction critical current. Assuming that all junctions are identical, the circuit from

Fig. 2 can be described with the following system of equations:
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where <(>j is the superconducting wave function phase difference across the j* junction, ij is the

total current through the j* junction, YJ, YL and YR are biasing currents and <pex is the normalized

externally applied DC magnetic flux,

YR= out

0 (l.b)

with capacitance and inductance parameters P and X, respectively, given by

D f1 T O« l-i

M —. X = ̂ , Lj = —2-, 00=^-
j J 2 7 t l c 2e (Lc)

where Lj is the zero-bias Josephson junction inductance and OQ = 2.07 X 1(H5 Wb is the flux

quantum. In equations (l.a-c), time is given in units of ^, all currents in units of Ic and

normalized junction voltages, that are just time derivatives of junction phases fy, in units of IcR.

In the case of 2-junction array, the in-phase solution has been reported by Ben-Jakob et al

[6]. Here we present solutions for several N-junction arrays with different biasing configurations:

the LL ("left"-"left"), LR ("left"-"right"), UD ("up"-"down") and CB ("central bias") biased array

(Fig. 3). Although the LL and LR bias are directly applicable to parallel biased two-dimensional

arrays, the other two configurations are used in other array architectures, such as series-parallel

combinations, etc.
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In-phase states

The general solution of eq. (1) for the junction phases fy is

tyT) = cot + f/T) + (

G> =

f/t+T) = f/T), T= —, (fj(T))=0
0) (2)

where "< >" denotes time average, co is the normalized DC voltage across junctions, fj's are some
general, periodic functions with zero time-average and <{>j(0) are constants. For the in-phase

solution, the following condition must hold for every two neighboring junctions

(3)

where mj must be an integer. Note that mj represents the number of fluxons in the j* loop.

Condition (3) is fulfilled if

f j(t) = f (T)

J •> (4)

where tj is the time delay between the phases of the two neighboring junctions. Substituting (3)

into the system (l.a) and equating all the currents ij leads solutions

m j - J a 9ex (LLbias) (5.a)

j 2 ex (LRbias) (5.b)

mj =(Pex (UD bias) (5.c)

J 2 ex (CBbias) (5.d)

where "" in eq. 5.d denotes integer division, and parameter 'a' is given by
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a = -
2;cN (6)

where IDC is ^e tota^ DC biasing current. In order for mj to be an integer, which is the
precondition for the in-phase solution, it is necessary that both (pex and a be integers:

<Pex=kq>

where k<p and k are integers. The only exception is the LR array with odd number of junctions N,

where "a" must be an even integer (2 k). The arrays will be in phase for all currents i^ that satisfy

(8)

Note that these in-phase states are achieved without external locking mechanisms.

Numerical simulations

System (1) is solved numerically using the 4th order Runge-Kutta method [7]. Figure 4
shows the I-V and dV/dl-I curves of the 4 junction LL biased array with X,=20 and P=0.5.

According to eq. (8), the in-phase states appear for current bias ik= 1.256 k (ik'=0.314 k for bias

current normalized to the number of junctions, N, as in the Figure 4). The in-phase states are

visible as voltage maximums in the I-V curve and sharp and deep minimums in dV/dl-I curve, for

k=4 to 7. Similar structure has been observed experimentally by Clarke et al [8].

Other states

The dV/dl-I curve of Figure 4 reveals considerable periodic structure between the in-phase

states. Under certain conditions, that will be specified below, these "other" states, for current bias

IDC * ik» correspond to the general solution of eq. (2) that satisfies the following:

= li-T
J J (9)
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where ej(i) is an error term and Hj does not need to be an integer. Furthermore, jij is found from
the same equations as mj (5), except that a and cpex are no more restricted to integer numbers. In

other words, all states of the parallel array are described with phases at neighboring junctions

shifted in time by an amount determined by the DC biasing current and external magnetic field (eq.
5). It is convenient to define the relative normalized time shift 0j between the waveforms of

functions fj+i and fj

6-=T.modT = u,;mod 1 ,imJ J J (IV)

where "mod" is the modulus function, so that 0 < 9j < 1. It has been shown by perturbation

analysis [6] that in the case of 2-junction array solution (9) holds in the neighborhood of the in-
phase state (ioc = ik + Aioc) and it has been suggested that it will hold for any state between the
in-phase states, for the case of weak coupling (X »1).

Figure 5.a shows the circled part of the dV/dl-I curve of Fig. 4. Points labeled "1" and "4"
correspond to the in-phase states with k=4 and k=5, respectively. The voltage waveforms on
individual junctions for these two states are shown in Figures 6.a and 7.a, respectively. Point "2"
of Fig. 5.a correspond to DC biasing current IDC = 5.65, so eq. (5.a) gives Hi=4.5, H2=5 and
|13=5.5 for the number of fluxons in each loop. From eq. (10) we find that relative time shifts
should be 0i=0.5 between the voltages of the junctions 2 and 1, 02=0 for junctions 3 and 2 and

63=0.5 between junctions 4 and 3. Numerical simulations shown in Figure 6.b confirm this

prediction.

Point "3" of Fig. 5.a correspond to IDC = 5.42, and again from equations (5.a) and (10)
we obtain 6i=0.333, 62=0.666 and 63=0. The voltage (and phase) at junction 2 is time shifted by

third of a period from that of junction 1, voltage at junction 3 is shifted by two-thirds from that of
junction 2, so that it is in phase with junction 1. Finally, junction 4 is in phase with junctions 1

and 3. This situation is shown in Figure 6.c. All other states can be determined in a similar
fashion.

Radiated power

As a measure of how good an array performs as an oscillator for a particular bias, we
calculate the available radiation power. We are interested in power array would radiate broadside
in the far-field. We define m* harmonic power on unit (1 Q) resistance as

P(m) =
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where Vj(m) is m* harmonic voltage on j^1 junction. This power is given in units of (Ic R)2. We

assume that the resistance R of the RS JC model (Fig. 2) includes both the radiation resistance and
n

losses. The actual radiated power will at best be the power P(m) on resistance -y.

Figure 5.b shows the normalized first harmonic power radiated in the broadside direction

for different states of the array. The maximum power is obtained only in the in-phase states

(points "1" and "4"). Significant amount of power is also obtained in states where most of the

array works in phase, as is the case with state "2".

Array properties

Several important properties of arrays of Fig. 3 can be derived from equations (5-10):

1) In the absence of external magnetic field:

- the UD array will be in phase for any DC bias; the in-phase state is a natural one

for this array. Maximum power will be radiated at every operating frequency (Fig.

5-b).

- LR and CB arrays are symmetrical around the middle of the array; mN-j = -mj,

which means that the junctions j and N-j are always in phase.

2) The LR array is equivalent to the LL array with equivalent external magnetic field
N

<Pex = <Pex - y a.

3) The larger the inductance parameter X, the more in-phase states will be found in the

given current bias span (eq. 8), and corresponding DC voltage and operating frequencies

span. Similarly, the larger the array (N), the more identifiable "other" states will be found

in the dV/dl-I curve (Fig. 5.a).

Magnetically steerable array

When an array is biased in the in-phase state (ioc = ik) the normalized relative "time shift

between every two neighboring junctions is the same and proportional to the external DC magnetic

field:

' VJ (ID
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This situation is shown in Figure 7. In Fig. 7.a the LL array is biased at the in-phase state (point

"4", Fig. 5.a) with no external magnetic field. When an external magnetic field equal to a quarter

of the flux quantum is applied, the time shift between the voltages of every two neighbors is equal

to a quarter of period.

The time shift 9T translates into the linear phase shift in the frequency domain 2710.

Assuming that every junction drives one antenna, the quasioptical Josephson array becomes a
phased array [9]. The angular position OCQ of the main beam in the H-plane far- field radiation

pattern of the linear Josephson phased array becomes

2 71
_dx

(12)

where dx is the spacing between the antennas and Xo is the free space wavelength . The broadside

radiation corresponds to ao = 90° (0 = 0). Equations (11,12) suggest that by changing the

externally applied DC magnetic field cpex it is possible to steer the Josephson array radiation pattern

in the H-plane. As stated earlier, for the LL, LR and CB biased array, this is only true if the array

is biased in the in-phase state. Since the UD array is always in the in-phase state, it can be steered

using DC magnetic field at any bias.

Limitations

The expressions (9,10) derived for the "other" states will hold only in certain range of array

parameters and bias conditions. We have derived expressions (5) for the in-phase states starting

from (1) and assuming that all currents ij are equal These expressions always hold for the in-

phase states. The same expressions (5) are found for "other" states if we solve (1) with an

assumption that DC currents <ij> are approximately the same. The only part of the DC junction

current that is different at every junction, due to DC self-field effects, is the supercurrent

<sin(<j)j)>. This part will be negligible if either the biasing current per junction is *» 1 or if

there is non-vanishing capacitance (P >1).

In our account of DC self-field effects we assumed the noiseless environment and the

identical junctions. Therefore, the stability of in-phase and "other" states to noise and variations in

junction and array parameters remains to be further investigated.
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Strongly coupled arrays (A, < 1)

When the inductance parameter X is small, it is evident from eq. (8) that the first in-phase

state appears for very large DC biasing current, which translates into large DC voltage and
operating frequency much above the critical frequency coc = (2e,#) Ic R. Depending on the

capacitance parameter fJ and shunt resistance R, the operating frequency range is at best of the

order of several coc. Therefore, the arrays with small inductances are operated in "other" states

throughout the operating range. According to eq. (5), these states should be characterized with
small time shifts between the junction phases/voltages. This is obvious, because in the limit of X -

> 0 the whole array operates as a single junction.

Figure 8.a presents simulations for 4 junction LL biased array with small inductance (X =

0.628). The normalized harmonic radiated power is shown in the wide range of bias currents.

The bias points a=0.25 and a=0.5 with no radiated first harmonic power correspond to the states

where half of the junctions are in-phase and the other half out-of-phase, according to (5.a). As

seen from the Figure 8.b, the maximum first harmonic power is below that of the UD array, with

all junctions in-phase. Figure 9 compares the first harmonic power of 4- and 5-junction array with

Same parameters. The 5-junction array shows additional minimums in radiated power

corresponding to states a=0.125 k. These minimums occur whenever there is one or more loops

of array occupied by odd number of half-flux-quantums.

It is clear that in order for the array with small inductance to approach the performance of

the UD array in the wide operating range, the condition for the inductance parameter must be

X«j^. More precisely, if the total time shift across the array is required to be less than a quarter of

a period, the condition is:

(13)

where ioCmax is the DC bias at the end of the operating range. So, if we wanted a 4-junction LL

biased array to approximately match the performance of UD array in Fig. 8.b, the inductance

parameter should have been X = T™ instead of -?. Such small inductances are rather unrealistic,

specially because the X parameter is proportional to the critical current Ic (eq. 1) which should be as

large as possible for large output power.

As a final illustration, Figure 10 shows the influence of the Josephson junction capacitance.
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The capacitance does not influence the occurrence or existence of in-phase and "other" states.
However, it has a severe impact on radiated power. Even at not very big capacitance (|3 = 3) the

first harmonic power is decreased at least an order of magnitude and the operating range is reduced

below 2 cot-compared to the case of very small or no capacitance.

Conclusion

We have discussed how the DC biasing circuit determines the operation of linear parallel

quasioptical Josephson junction arrays. We have shown that the maximum radiated power from

the array can be achieved only at certain operating points, corresponding to the in-phase states. We

have found that other states can be described by time-shifted phases and voltages of individual

junctions, where the time-shift is determined from the DC biasing conditions. We have shown

how the array can be steered from when in the in-phase state by application of DC magnetic field

perpendicular to the array.

When the inductance parameter X is large, there will be numerous in-phase bias points in

the desired operating range. However, the stability of these states to noise and variations in

junction parameters needs to be further investigated. When the inductance is relatively small, the

radiated power will continuously change across the wide operating range, with several points

where almost no power is radiated.

If one dimensional quasioptical arrays are designed, the UD biased array is a definite

choice, because it is in the in-phase state at every bias point. The operation of this array need to be

further analyzed when junction parameters are not identical. The extension of our considerations to

2-D arrays is straightforward, as long as rows of junctions are separately biased.
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Figure 1. Separate row bias for parallel 2-D Josephson junction array.
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Figure 2. General biasing scheme for one-dimensional parallel Josephson junction array.
The RSJC model used is shown below.
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Figure 4. Dynamic resistance and I-V curve of 4 junction LL biased array with A, = 20 and
P = 0.5. The in-phase states are seen as small steps in the I-V curve and sharp minimums
in dV/dl-I curve , labeled k=4 to k=7. The area inside a circle is shown enlarged in Fig. 5.
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0.9 1 1.1 1.2 1.3 1.4
DC Voltage [IcR] a)

UD array

0.9 1 1.1 1.2
DC Voltage [Ic R]

1.3 1.4
b)

Figure 5. Four junction array, LL bias, A. = 20, p = 0.5. a) Enlarged portion of the dV/dl-
I curve (Fig. 4) with in-phase states labeled "1" and "4" and two "other" states "2" and "3".
The waveforms of individual junction voltages for these states are shown in Fig. 6 and 7.
b) First harmonic power that correspond to states in a). The power is maximum in the in-
phase states and equal to that of the equivalent UD array.
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240
time [Lj/R]

Figure 6. The waveforms of individual junction voltages for the states of Fig. 5. a) In-
phase state, b) Junctions 1 &4 in phase, junctions 2 & 3 in phase , but out of phase with
(1&4). No power radiated, c) Junctions 1,3 & 4 in phase, junction 2 "leads" a third of a
period. Half the maximum power is radiated.
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Figure 7. The waveforms of individual junction voltages for the in-phase state labeled "4"
in Fig. 5. a) No DC magnetic field supplied, b) Quarter of the flux quantum in every
loop supplied by the external magnetic field. Voltage waveforms uniformly shifted by
quarter of a period. The main beam of the radiation is steered from the broadside direction.
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Figure 8. a) Harmonic power radiated by the 4-junction LL-biased array with X = rc/5 and

(S = 0.03. Minimums correspond to odd number of half-flux-quantums in some of the
loops, b) Comparison between the LL and UD array with same parameters. Varying
amount of power is radiated in the very broad operating range, but never a maximum
possible power, as in the case of UD array.
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Figure 9. Comparison between the 4-junction and 5-junction small inductance arrays; X =

Ti/5, (J = 0.03. As the number of junctions increase, more maximums and minimums
appear throughout the operating range.
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Figure 10. Four junction LL biased array, X = Jt/10: Influence of the Josephson junction
capacitance on power output. As the capacitance is increased, the maximum power and the
operating range rapidly decreases.




