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I. Introduction

For many scientific applications in the terahertz frequency range, heterodyne reception

is the only technique which exhibits the necessary combination of high spectral resolution,

large instantaneous bandwidth and excellent sensitivity. A key component in these receivers

is the non-linear resistive mixer element. In general, the mixer element should have high

intrinsic speed, the sharpest possible non-linearity, low parasitic element values, low intrinsic

noise and impedance levels which can be easily matched to the RF circuit. However, no

single device exhibits all of these properties and some tradeoffs are necessary [1].

The GaAs Schottky barrier diode is the most widely used mixer element at

submillimeter wavelengths. These diodes are commonly used in the temperature range from

300 K to 10 K and have demonstrated excellent performance from below 100 GHz to over

3 THz [2,3]. The closest competitor for Schottky diodes is the SIS element which has

demonstrated record sensitivities at millimeter and long-submillimeter wavelengths [4,5,6].

However, SIS devices are not yet competitive at terahertz frequencies and present

superconductor mixer elements require cryogenic cooling which increases the cost and size

of the receiver system.
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Schottky barrier diodes for terahertz applications are typically fabricated as a micron

to sub-micron circular anode metallization on GaAs which is contacted with a sharp wire

(whisker). This structure has the benefits of the simplicity of the fabrication of the diode chip,

the minimal shunt capacitance of the whisker contact and the ability of the whisker wire to

couple energy to the diode. However, whisker-contacted diodes are costly to assemble and

difficult to qualify for space applications. Also, complex receiver systems which require many

diodes are difficult to assemble [7,8].

objective of this paper is to discuss the advantages of planar Schottky diodes for

high frequency receiver applications and to summarize the problems of advancing the planar

technology to the terahertz frequency range. Section II will discuss the structure, fabrication

and performance of state-of-the-art planar Schottky diodes. In Section DI the problems of

designing and fabricating planar diodes for terahertz frequency operation are discussed along

with a number of viable solutions. Section IV summarizes the need for futher research and

cooperation between diode designers and RF engineers.

II. Planar Mixer Diodes

Planar Schottky barrier diodes have been developed by numerous laboratories over the

past ten years [9,10,11,12]. This effort has resulted in many benefits. Not only has the

troublesome and somewhat fragile whisker contact been eliminated, but receivers which

require two or more individual diode chips, such as balanced mixers, are much easier to

assemble. Single chips with two or more diodes in a fixed configuration, such as an

antiparallel diode pair, are easy to fabricate and the extension of the diode contact pads to

form a planar antenna has been demonstrated. Future work should allow additional receiver

components such as filters, oscillators and amplifiers to be integrated with the diode.



Page 602 Third International Symposium on Space Terahertz Technology

The surface channel planar diode, shown in Figs. 1 and 2, has been developed for use

at both millimeter and submillimeter wavelengths [9,13]. The chip substrate is semi-insulating

GaAs. The epitaxial GaAs structure consists of a thin n-type layer on top of a thick, heavily

doped n+ buffer layer. The anode is formed on the n-type GaAs with SiO2 providing

passivation and insulation. An ohmic cathode pad is formed on one end of the chip in close

proximity to the anode. The anode is connected to a bonding pad by means of a narrow

finger. A trench is formed beneath the finger and completely across the width of the chip to

isolate the anode contact pad from the cathode. The isolation trench can be etched deeply into

the semi-insulating substrate and the wall of this trench can be positioned very close to the

anode. These two features combine with the inherent air-bridge to reduce the shunt

capacitance between the contact pads and the shunt capacitance from the contact finger to the

conductive GaAs of the cathode. This structure produces lower shunt capacitance than other

designs which rely on mesa or proton isolation.

The major fabrication steps of the surface channel structure are illustrated in Fig. 3.

Starting with the GaAs wafer (1), a layer of silicon dioxide is deposited using chemical vapor

deposition from silane and oxygen (2). The ohmic contact region is patterned, the SiO2 and

n-GaAs are removed and the ohmic contact metallization is deposited and alloyed (3). An

opening for the anode is patterned and etched into the SiO2, leaving a thin layer of oxide to

protect the GaAs until the anode metallization can be deposited. The remaining oxide in the

anode well is removed with buffered hydrofluoric acid and platinum and gold are

electroplated to form the diode and fill the oxide well (4). A thin layer of chromium and gold

is deposited over the entire wafer by sputtering. Photoresist is applied and patterned and gold

is plated into the opening to form the anode contact pad and finger. The resist is removed and

the sputter deposited gold and chromium surrounding the anode contact pad and finger are
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Figure 1. Surface Channel Planar Diode Structure

Figure 2. SEM Photographs of a Surface Channel Planar Diode
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Figure 3. Surface Channel Diode Fabrication Sequence
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etched away (5). Finally, the surface channel is patterned with photoresist and the SiO2 and

GaAs are etched to form the isolating trench (6).

This fabrication sequence offers several advantages compared to other configurations:

(1) expensive and troublesome proton bombardment is not required, (2) planarization is

unnecessary, and (3) the wafer surface is nearly flat for the critical steps of anode formation

and anode-to-finger alignment.

SEM photographs of two surface channel diode chips are shown in Figs. 4 and 5. The

SC2T1 single anode chip is about 125 x 375 x 75 microns. This device has a total

capacitance of about 14 fF, zero-bias junction capacitance of 2.5 fF and series resistance of

12-15 Q. This gives a figure-of-merit cutoff frequency of 4.2 THz for the junction. The

SC2T1 has been tested in a room temperature mixer at 345 GHz with a mixer noise

temperature of 1,370 K (DSB) and a conversion loss of 9.5 dB (SSB) [14]. This is

comparable to the best whisker-contacted diode results. The SC1T4 chip is an antiparallel

diode pair for subharmonic pumping. It is only 80 x 180 x 50 microns. These chips have a

Figure 4. SC2T1 Planar Diode Chip Figure 5. SC1T4 Planar Antiparallel
Diode Pair
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total capacitance of about 16 fF, zero-bias junction capacitance of 3 fF per anode and series

resistance of 7-9 Q. This diode has been successfully used in a room temperature mixer at

205 GHz with a mixer noise temperature of 800 K (DSB) and a conversion loss of 4.4 dB

(DSB) using an LO of approximately 100 GHz [15]. This result is better than has been

previously reported for antiparallel subharmonic mixers of either planar or whisker-contacted

design.

A dual anode planar diode chip for balanced mixer operation is shown in Fig. 6. This

chip was developed in collaboration with Aerojet General, Electronic Systems Division under

the direction of Robert Haas. This configuration allows individual DC bias of each diode.

This device has excellent DC electrical characteristics and is being evaluated in a 100 GHz

mixer.

Figure 6. Planar Balanced
Mixer Diode Chip
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m. Planar Diodes for THz Frequency Applications

The surface channel diode structure must be optimized for terahertz operation. These

improvements reflect the fundamental need to reduce the R^C]0 product, minimize shunt

capacitance, and to efficiently couple energy into the diode. These optimization issues are

addressed in the following subsections:

A. Reduction of Anode Diameter

Theory and experimental results with whisker-contacted diodes have shown that very

small anodes combined with higher active layer doping are necessary for good performance

in the THz range [16]. Whisker-contacted diode chips have been fabricated at UVa with

anodes as small as 0.25 microns using direct write electron beam lithography and reactive ion

etching [17]. Planar diodes have been fabricated at UVa with 0.5 micron diameter, anodes

using optical lithography and reactive ion etching. We are also investigating a novel

Electroplate Window Shrink (EWS) technique. In this method, circular openings are etched

through a thin (0.1 micron) metal layer which overlies silicon dioxide, using UV lithography
• 'a

and wet or dry etch methods. Metal is then electroplated onto this thin conductive layer.

Since the plating proceeds laterally as well as vertically, the diameter of the openings is

reduced. These reduced-diameter windows are then used as a non-eroding mask to RIE etch

the silicon dioxide. Etched wells less than 0.2 microns in diameter have been formed in this

manner.

It should be realized that the main issue is not just the fundamental task of forming

small anode wells, but also the problems of uniformity and control of anode size. The UVa

anode formation process depends on leaving a thin layer of SiO2 of known thickness in the

bottom of the anode wells after RIE. This protective layer is removed by etching with
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- buffered hydofluoric acid just prior to anode formation. Underetching of this remaining oxide

results in open circuits or high resistance. Overetching can result in high Cj0 and in some

cases, excessive diode noise [18]. Unlike whisker-contacted diode chips which can be etched

and plated on a chip-by-chip basis, all planar diode anodes on a wafer are formed

simultaneously. This obviously places very tight limits on dielectric thickness, thickness

uniformity and etch rate calibration.

For these reasons, it would be most helpful to have a very thin RIE etch stop layer

to protect the GaAs. This etch stop layer would relax the requirements for oxide thickness

and uniformity and allow reasonable overetching during RIE without the risk of damage or

contamination of the junction area. Schemes which utilize mutiple layers of different

dielectrics could, in principle, satisfy this need. A very thin layer (100-500 A) of silicon

dioxide could first be deposited onto the GaAs. This would be followed with a thicker layer

of another dielectric, such as silicon nitride, polyimide or boron-doped silicon dioxide. This

thick layer could be patterned and selectively etched (possibly with a dielectric or metal

mask) so that the underlying thin layer of oxide acts as an RIE etch stop. Research in this

important fabrication area will provide improved control of anode diameter and the reliable

production of sub-half micron planar diode anodes.

B. Optimization of Chip Geometry

The dimensions and layout of planar diode chips must be optimized for terahertz

frequency applications. The volume of the chip must be reduced to minimize the field

disturbing effect of high dielectric constant GaAs and to allow the devices to fit into the

smaller waveguides which are required at higher frequencies. The geometry of the planar

diode must be improved to minimize shunt capacitance.



Third International Symposium on Space Terahertz Technology Page 609

Shunt capacitance in the planar diode structure can be separated into two primary

components: capacitance from the anode contact finger and pad-to-pad capacitance through

the high dielectric constant substrate. Finger capacitance will be reduced by several means.

The width of the contact finger can be reduced from the current value of about 2.5 microns

to 1 micron. Improved mask design, alignment and surface channel etch control will allow

the surface channel wall to be etched as close as possible to the anode. A thick (1 micron)

dielectric, perhaps a polyimide, would further reduce finger capacitance.

Pad-to-pad shunt capacitance can be reduced by decreasing pad area, increasing pad

separation, increasing the surface channel depth and/or reducing substrate thickness. Our

present technology produces chips which are 50 microns thick with pads which are 30 x 60

microns and a surface channel depth of 10 microns. For the lowest possible pad-to-pad

capacitance, the GaAs substrate can be removed. This has been demonstrated in a procedure

that replaces the GaAs with quartz, as shown in Fig. 7 [19]. The quartz substrate can be

permanent or it can be removed once the chip is bonded to a circuit as shown in Fig. 8.

Figure 7. Surface Channel Diode Chip Figure 8. Surface Channel Diode Chip
with Quartz Substrate with Quartz Substrate

Removed After Bonding



Page sio Third International Symposium on Space Terahertz Technology

The effect of finger length on planar diode performance is an important issue,

particularly for waveguide mixers. Longer fingers result in reduced pad-to-pad capacitance

but increased finger inductance. A new mask set has been fabricated which will provide

small area, antiparallel planar diodes with finger lengths from 10 microns to 50 microns in

10 micron steps on the same wafer. This mask was designed in collaboration with Peter

Seigel of JPL and the devices will be RF tested at JPL in a waveguide mixer at frequencies

as high as 600 GHz.

Very short contact fingers are required in integrated antenna designs. Surface channel

formation is very difficult when the contact finger is under 10 microns in length. Research

is underway to characterize a combination of chlorine-based reactive ion etching and wet

chemical etching processes to form the surface channel isolation trench with these short

contact fingers. The new mask sets for both the small area antiparallel chips and the log

periodic antenna designs include levels for this new process.

C. Minimization of Ohmic Contact Resistance

Ohmic contact resistance contributes to diode series resistance and thus reduces cutoff

frequency. As contact pad dimensions shrink, ohmic contact resistance increases. This is of

particular importance in the case of integrated antenna devices where the pad geometry is

dictated by the antenna design. Specific contact resistance can be improved by using a very

highly doped buffer layer and through the use of a more advanced ohmic contact technology.

For example, ohmic contacts to an n4"1" InGaAs layer are reported to have specific contact

resistivity as low as 10"7 Q-cm2, a factor of 50 to 100 better than our present ohmic contacts.
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This would be most beneficial for planar THz antenna structures which require small pad

geometries near the anode.

D. Integration of Antenna Structures

The problem of efficient energy coupling to the planar diode is exacerbated at higher

frequencies where the wavelength begins to approach the size of the chip. For whisker-

contacted diodes, the whisker itself is used as the antenna element and mixers with a long

whisker (4A,) positioned parallel to the axis of a corner cube have demonstrated excellent

performance at frequencies as high as 4 THz [3].

Another approach for planar diodes is to integrate an antenna, in the form of a bow-tie

or log periodic shape onto the chip [20]. The fabrication is straightforward, with the antenna

being an extension of the anode and cathode pads and the radiation can be coupled to the

antenna through the substrate (GaAs or quartz). An integrated bowtie antenna-diode is shown

in Fig. 9. It is 700 x 1000 x 50 microns thick with a 0.5 micron anode and an 8 micron

finger length. Preliminary RF testing with unoptimized coupling produced video response of

10 V/W.

Optimization of the integrated antenna will require close interaction between diode

designers and RF engineers. As a first step towards this goal, a mask set for the fabrication

of log periodic antenna-diodes has been designed in cooperation with Gabriel Rebeiz of the

University of Michigan and devices will be fabricated in the near future. With proper diode

design and good coupling of energy-to the antenna and the diode, it is hoped that RF
«

performance will exceed that of the best whisker-contacted diodes.
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Figure 9. Integrated Bowtie Antenna-Diode

IV. Discussion

Development of the planar mixer diode was driven by the need for a rugged device

which is inherently simple and easy to assemble in a mixer. However, the tradeoffs for this

structural ruggedness and simplicity are a more complex and expensive fabrication procedure,

and a more complex chip geometry with larger shunt capacitance. The RF circuit must be

redesigned to efficiently couple energy to the diode. In spite of these changes, planar GaAs

Schottky barrier diodes have demonstrated performance in the millimeter wavelength range

equal to or better than that of the best whisker-contacted diodes.

Successful operation of planar diodes at THz frequencies will require several

improvements in the diode chip including reduced anode diameter, improved control of anode

diameter, smaller chip dimensions to reduce shunt capacitance, and reduced ohmic contact

resistance. These concerns are being addressed through research of novel structures and

fabrication methods. Successful application of planar diodes in the THz frequency range will

also require optimization of the embedding circuitry and improved methods of coupling

energy to the diode. Research is underway to apply novel antenna designs to this problem and

to begin to test high performance planar diodes in waveguide assemblies and to test integrated
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antennas in open structure mixers. The success of this effort will be hastened by very close

interaction and cooperation between diode designers and RF engineers.
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