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1 Overview

Given a universe of discourse X—a domain of possible outcomes—an ex-
periment may consist of selecting one of its elements, subject to operation
of chance, or of observing the elements, subject to imprecision.

A priori uncertainty about the actual result of the experiment may be
quantified, representing either the likelihood of the choice of z € X or the
degree to which any such z € X would be suitable as a description of the
outcome. The former case corresponds to probability distrib’ution, while the
latter gives a possibility assignment on X.

Study of such assignments and thier properties comes under the purview
of possibility theory [1]. It, like probability theory, assigns values in between
0 and 1 to express likelihoods of outcomes. Here, however, similarity ends.
Possibility theory uses mazimum and minimum functions to combine uncer-
tainty, where probability theory uses plus and times operations. This leads
to a very dissimilar theory in its analytical framework, even though they
share several semantic concepts.

One of them consists of expressing quantitatively the uncertainty asso-
ciated with a given distribution [2, 3]. Its value corresponds to the gain
of information that would result from conducting an experiment and ascer-
taining its actual result. This gain becomes simutaneously a decrease in
uncertainty about the outcome of an experiment.

The other concept we consider in depth is one of specificity. Although
it has been introduced previously in a few different forms, a closer analysis
shows that they share main epistemic features. We follow here the presen-
tation of Ramer and Yager {10].
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Fuzzy set (X,p) can be considered as a form of a likelihood function,
with the elements of X where p reaches its maximum playing privileged role.
When selecting z : p(zp) = max p(z) is important to ask how definite has
been such decision, and whether another element would offer a close choice.

In this interpretation, specificity becomes an attribute of the complete
set of possibilities, the attribute assuming either numeric or linguistic values.
Here we develop a comprehensive model of such specificity, expressed as a
numerical function of a possibility assignment.

\ \ 2 Introduction
N\

“IThis paper demonstrates how an integrated theory can be built on the foun-
dation of possibility theory. Information and uncertainty were cosidered in
‘fuzzy’ literature since 1982. Our departing point is the model proposed by
Klir [4, 5] for the discrete case. It was elaborated axiomatically by Ramer
[9], who also introduced the continuous model [7].

Specificity as a numerical function was considered mostly within Dempster-
Shafer evidence theory. An explicit definition was given first by Yager [11],
who has also introduced it in the context of possibility theory [12]. Ax-
iomatic approach and the continuous model have been developed very re-
cently by Ramer and Yager [10]. They also establish a close analytical
correspondence between specificity and information.

In literature to date, specificity and uncertainty are defined only for
the discrete finite domains, with a sole exception of [10]. Our presentation
removes these limitations. We define specificity measures for arbitrary mea-
surable domaingge When discrete, they can be finite or infinite or, in general
have BEX)< oo or u(X) = oco. prespecified pattern. By abuse of the
language we refer to this model as a continuous one.

We adopt the convention of avoiding, whenever possible, subscripts and

y/ indices. We do not specify explicitly basis of logarithms, as its change would

simply amount to a multiplying all expressions by the same constant. Fol-
lowing tradition, binary logarithms—Ilog,—are assumed for the discrete dis-
tributions, and natural—In— for the continuous cases. We use (p) for the
decreasing rearrangement of the sequence (p;). For finite sequences, rear-
rangements are permutations of their elements. For infinite sequences and
functions we construct rearrangements using cuts. To define f, given f on
X, we want all their a~cuts to be of the same measure. We put

P(y) = p({z : f(=) 2 ¥}),
- f(2) = P7(2).
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Now for the discrete rearrangements we associate with the sequence (p) =
(P1,.--,Pn,---) astep function f: z — py;, where [z] denotes the greatest
integer no less than z. Then the descending rearrangement f corresponds

to (p).

3 Information and uncertainty

We use the model of possibility theory introduced by Zadeh [13]. We view
mapping p as assigning a degree of assurance or certainty that an element of
X is the outcome of an experiment. A priori we know only the distribution
p; to determine z € X means to remove uncertainty about the result, thus
entailing a gain of information. We would be particularly interested in quan-
tifying that gain of information, which would also express the uncertainty
inherent in the complete distribution p.

Following established principles of information theory [3], we stipulate
that such information function satisfies certain standard properties. For p;
on X and p; on Y we define a noninterracting, joint distribution p; ® p2
on X XY as

P ® p2 : (z,y) — min(p1(z), p2(y)).

If p was already defined on a product domain X x Y, we construct its
projections (marginal distributions) using mazimum operation

p’:z— maxp(z,y), P”:y+— maxp(z,y).

There is often a need to consider a given assignment p as defined on on a
larger domain, without, however, making any essential change to the possi-
bility values it represents. We do so by defining p¥ for Y D X, as agreeing
with p on the elements of X, and 0 otherwise. Lastly, the elements of the
domain of discourse could be permuted; if s : X — X is one-to-one, we
define

s(p) : z — p(s(z)).

We now postulate [5]

additivity I(p1 ® p2) = I(p1)+ I(p2)

subadditivity I(p) < I(p")+ I(p")
symmetry I(s(p)) = I(p)
ezpansibility I(p¥)= I(p)

It turns out that these properties essentially characterize the admissible
information functions [6, 9]. Subject to the normalization of parameters, for
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the discrete case of X = {z;,...,2,}

U(p) = Y_ (i — Bi1)logi

which can be also written using finite differences notation

U(p) = Zﬁ,Vlog’l

We observe that the distribution which carries the highest uncertainty
value consists of assigning possibility 1 to all the events in X. It states that,
a priori, every event is fully possible. This distribution, carrying no prior
information, can be considered the most uninformed one.

We shall now extend previous definitions to arbitrary measurable do-
mains [7]. To avoid technical complications, we consider only a typical case
of the unit interval.

As a first step, the discrete formula U(z) = 3~ p;V logi suggests forming
lo f(z)dlnz,= [} L(;f-ld:c as a candidate expression for the value of informa-
tion. Unfortunately, f(z) is equal to 1 at 0, and the integral above diverges.
A solution can be found through a technique (used also in probability) of in-
formation distance between a given distribution and the most ‘uninformed’
one—where U-uncertainty attains its maximum. Our final formula becomes

I(f):/ol l‘Tf(’”—)dz.

This integral is well defined and avoids the annoying singularity at 0. It can
be used for a very wide class of functions, including all polynomials.

4 Principles of specificity

The discussion will be conducted in terms of a discrete countable distribution
(p:), with finite distributions viewed as the initial segments. Our objective
is to capture formally the informal intuition about specificity. The main
premise is the principle of juzrtaposition:

Sp(p) expresses the preference for a certain maximal po over any
and all the remaining p;.

Now let us consider how, having selected po = max(p), its informal speci-
ficity is estimated. We look first for the next largest p; and estimate how its
presence diminishes the specificity. The process is then iterated in the order
of decreasing values of p;, every next value lowering the estimated speci-
ficity. We can picture it as a sequential process, its input the decreasing
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rearrangement ($;). We may also surmise that, for a given i, the drop in
specificity caused by p; will not depend on the earlier inputs p;,...,p;_1.
This assumption of independent influence is consistent with the juztaposition
interpretation of specificity.

Let us consider the effect of a uniform modification of (p). For a scal-
ing ap = (apy,...,apy,...),0 < a < 1, we may assume that the rela-
tive specificities remain unchanged, while with a shift of values p -~ § =
(pr = B,...,pn — B,...) no change should occur.

Last item considered will be the effect of offering yet another choice,
identical in value to several choices already provided. The common percep-
tion of specificity is that the change due to such n-th choice will be ever less
as n increases—a diminishing return. For its relative effect, we can postulate
taking away the same proportion of the specificity still available. After all,
we consider yet another identical choice; only we consider it at stage n and
not sooner.

We can extract an analytical representation from the rules elaborated
above. The result is a linear formula

Sp(p) = p1 — ) wib;
i>2
with 3 ;sow; = 1. ;(From here we can conclude that lim;,o w; = 0, and
1> wy > w3 > ---, in agreement with the ‘diminishing returns’.

We shall consider the linear form of Sp(p) as general specificity function.
It is general enough to fit most applications and, if w; are supplied, it offers
a comparison scale among the distributions.

Coefficients w; can be established precisely if we assume the rule of con-
stant influence of equal choices. After more calculations

Sp(p) = pr — D_(W'! — )i
i>2
for some w, 0 < w < 1, producing a definite form of specificity. Choosing
w = 1 (in spirit of binary logarithms) gives Sp(p) = p1 — 2 5?1-1- In the
above formulas the role of p, is manifestly different from that of j;,¢ > 2. A
more symmetric expression can be obtained defining W; = 1 ~wy —... —w;,
resulting in a general expression

Sp(p) = Y Wi(hi — Pit1)
i>1

and the definite one

Sp(p) = > w1 (Bi — picr)-

i>1

18






