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Abstract.

During the last five years Fuzzy Logic has gained enormous popularity, both in the academic and
industrial worlds, breaking up the traditional resistance against changes thanks to its innovative
approach to tackling problems.
The success of this new methodology has led microelectronics industries to create a brand new class
of machines, called Fuzzy Machines, to overcome the limitations of traditional computing systems
when utilized as Fuzzy Systems.
This paper gives firstly an overview of the methods by which Fuzzy Logic data structures are
represented in the machines (each with its own advantages and inefficiencies), then introduces
WARP (Weight Associative Rule Processor) which is a dedicated VLSI megacell allowing the
realization of a fuzzy controller suitable for a wide range of applications.
WARP represents an innovative approach to VLSI Fuzzy controllers utilizing different types of data
structures for characterizing the membership functions during the various stages of the Fuzzy
processing.
WARP dedicated architecture has been designed in order to achieve high perfonnance exploiting
the computational advantages offered by the different data representation adopted.
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Section 1. Fuzzy Machines

Computer evolution is tending towards specialized machines which are optimized to meet the needs of particular
languages or classes of problems. One result of this trend is that many systems now contain one or more general
purpose processors supported by a variety of specialized devices (e.g. mathematical or graphical coprocessors)
optimized for specific operations.
While the numerical computation field is comprehensively served by machines and specialized integrated components
able to calculate numerical algorithms at very high speed and with great accuracy, there is little cost-effective
hardware to support newer approaches to logic, particularly those involving non exact information processing.
In particular, the type of processing required to solve problems using Fuzzy Logic with its peculiar data structures
cannot be effectively carried out on machines designed for completely different kinds of algorithms and data
representations. To deal with the calculus involving the data structures of Fuzzy Logic such as Fuzzy Sets (with their
related membership functions) and Term sets [1], Fuzzy Machines have been introduced.
With respect to the functionality these devices can be gathered into two main groups:

• FUZZY COPROCESSORS

• FUZZY CONTROLLERS

Fuzzy Coprocessors represent the equivalent of a general purpose machine with respect to Fuzzy calculus: they are
the key for turning standard systems into Fuzzy Systems. These machines should not to be considered as the main
processors of a system, but rather as an indispensable support in speeding up fuzzy applications.

Fuzzy controllers represent the next step in the evolution of intelligent controls and their use can lead to a
technological breakthrough in this area. A Fuzzy controller is a particular Fuzzy device equipped with an interface
suitable for driving physical actuators: it accepts deterministic values and produces a deterministic value.

With respect to the technology utilized a Fuzzy Machine can be implemented in the following ways:

• SOFTWARE IMPLEMENTATION

• DEDICATED HARDWARE IMPLEMENTATION
• HYBRID MACHINES
• FULLY DIGITAL MACHINES

The Software implementation of Fuzzy machines is presently the most widely used one; while this approach well
suites off-the-line processing it becomes inadequate whenever processes requiring high or medium high dynamics
appear.

Among the Dedicated hardware implementations, the Fully Digital approach to Fuzzy Logic Dedicated Machines
is up to now the most widely employed method of implementation of dedicated machines [2], [3]. The advantages
of this technology are the generally known ones:

• Complex data management architectures
• Easy interfacing in existing systems
• Low sensitivity to technology changes

The Hybrid (mixed Analog/Digital computing) realization of fuzzy machines may possibly represent the next edge
in the computer world [4], in fact Hybrid machines provide a number of significant advantages over digital ones:

• Very high speed system throughput
• High parallelism allowed
• No need for expensive A/D and D/A converters

With this type of technology the problems mainly lie in the representation for the Fuzzy data structures, on the
analog memories required by the machine and in the sizing of some components, but great improvements in those
areas are expected in the next few years.
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A rough picture of performances in terms of FIPS (Fuzzy Inference Per Second) obtainable with various types of
platforms (and the type of applications were they are mostly applied) are illustrated in fig. 1.
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Section 2. Design of Fuzzy Machines

Among the design approaches to fuzzy machines, and in particular the Software and Fully digital ones, a great
advantage lies in the possibility of deciding during the architectural design phase the 'kind of machine" that one
wants to realize, ranging from the two opposite poles:

• Memory oriented machines

• Computing oriented machines

Memory oriented machines are characterized by having most of the computing performed off-line and then stored
in suitable formats inside the memory. This lead to the utilization of large amounts of memory because the
membership functions must be described by means of non-optimized data structures (in most cases vectors).
Generally with this solution higher performances are possible although with a certain loss in precision.

Computing oriented machines come at the other end of the spectrum. Here the membership functions are stored
in compact formats and it is the machine that must operate on those complex data structures performing all of the
necessary computing (that is generally finding intersection points and calculating area/weight values).
This solution it is generally slower than the previous one but allows a greater precision.

The performances obtainable by the above approaches are greatly influenced by the level of internal parallelism that
is actually implemented. It is worth noting that this parameter affects Computing oriented machines more than
Memory oriented machines.

Another very important factor in the designing of the fuzzy machines, is the way of representing the membership
functions; different methods can be utilized according to where in the rule (IF-part or THEN-part) the connected
variable acts.
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For the membership functions bounded to the IF-part of the rules there are two main types of representation that
are commonly utilized:

• Vectorial representation

• Analytical representation

With the vectorial representation of the membership functions the universe of discourse is divided into a number
of elements N, and the interval [0,1] in L truth levels, creating a vector (î x),....̂ ^), where \it(x) represents the
truth level that best approaches the value of the membership function n(x) in the point i. With this type of
characterization, the more critical decision is choosing the most appropriate values of N and L. Generally the values
for N range from 25 to 256 and for L from 10 to 256, according to the type of technology utilized.

With the analytical representation a function that maps the universe of discourse onto the closed space [0, 1] is
provided. This is generally a piecewise linear function described by the breakpoints where the function changes
gradient. With this kind of characterization it is left to the machine to calculate the intersection point between the
membership function and the function representing the input.

Clearly, the first method, characteristic of memory oriented machines, allows greater performance to be obtained
as it is based on look-up tables rather than calculations. On the other hand the value of the intersection must be
restricted to those realistically representable with the adopted technology, while in the analytical formalization values
as precise as the machine data representation can be obtained.
The choice among the two above methods is generally a trade off between speed and precision.
The value computed from the IF-part of a rule is used to perform the inferential process on the membership
functions of the THEN-part. To perform this operation a suitable inferencing method must be used. The two most
widely employed ones are:

• Max-Min inferencing method

• Max-Dot inferencing method

The main difference between the two methods lies in the different truncation that is applied to the Membership
Functions of the THEN-part of the rules. The choice between one of the above methods of inferencing is influenced
by the type of representation of the Fuzzy Sets adopted. The Max-Min Inference method truncates the membership
function up to the threshold value ® while the Max-Dot Inference utilize the value as a scaling factor. This is clearly
explained by fig 2.

MAX-MlN method MAX-DOT method

e e

Figure 2

The Max-Min Inference is mainly adopted when the membership function is defined through a vectorial
representation, in fact in this case it is relatively easy to compare each value of the M.F. with the threshold value
and choose the smaller. The Max-Dot method it is not so easily performed because it is necessary to multiply by
the scaling factor each non-zero component of the vector. Conversely, the Max-Dot inference method is preferred
with the analytical representation, as it is easy to calculate the resulting M.F. by multiplying each breakpoint value
by the scaling factor, whereas the Max-Min method requires a new series of breakpoints to be calculated.
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There is a third method of representing the membership functions of the THEN-part in the particular case of Fuzzy
Controllers, where the output of a Fuzzy inference is not used as input for another. In this case, the M.F.
representation can be reduced to the only two parameters that are effectively needed in the assembling and
defuzzification phase: a weight representing the area underlined by the M.F. and its point of application
(barycentre). In fact the defuzzified output comes from a linear combination of those values, as clearly illustrated
in the defuzzification algorithm generally adopted:

UP. Xgt'= Barycentre of the i M.F. truncated at the 8
truth level.

UF.
AI'= Area of the J M.F. truncated at the 8 truth

2-x* level.

MFn= Number of M.F.s of the output

The inferencing method chosen strongly influences the way in which the M.F. are assembled prior to the
defuzzification phase. Essentially the two methods commonly adopted differ in the treatment of the zones of the
universe of discourse where two or more M.F.S have non-zero values.
Fig. 3 shows the two approaches: in 3(A) the resultant M.F. is obtained by taking the greater of the two component
values at any point whereas, in 3(B) the combined M.F. is obtained by simple addition of the component values. In
effect, 3(A) represents a logical combination and 3(B) an arithmetical combination of the two M.F.s.

M.F.1 M.F.2
MAX (M.F. 1, M.F. 2)

M.F • M.F.1 + M.F.2

(A) (B)
Figure 3

Depending on the method of representing the M.F.s it is possible to choose between the two above methods of
assembling: only the arithmetical combination is allowed with the weight/barycentre representation while either of
the two assembling methods can be chosen with the other two representations, however, the way in which M.F.s are
to be represented and combined greatly affects the machine architecture, so these decisions must be made at an
early stage in the design of a particular Fuzzy Machine.
It appears clear from what has been presented above, that an efficient general purpose fuzzy machine cannot exist
but rather one must rely on machines tailored to meet the needs of a particular class of problems.

Section 3. WARP: Weight Associative Rule Processor

WARP is a dedicated VLSI machine whose architecture has been designed in order to efficiently exploit all the
advantages of Fuzzy calculus. The major innovation with respect of traditional approaches to Fuzzy Machines has
been the adoption of different data structures for the various phases of the computational cycle. In fact one of the
greatest limiting factor in the traditional fuzzy architectures is the use of the same data representation for both the
computation connected to the IF-part and to the THEN-part of a rule.
In order to represent the membership functions connected to the Fuzzy variables of the antecedent of the rules we
adopted a vectorial representation of the Membership Functions based on 64 (26) or 128 (27) elements, each
possessing 16 (24) truth levels.
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The utilization of vectors for this phase of the Fuzzy calculus has the great advantage that in the case of a controller,
for each rule the data involved in the computing are one or more M.Fs (representing the knowledge of the system)
and one or more crisp values (representing the input from the 'external" world).
With this data representation, in order to find the matching level (hereafter called a;) between the input and the
stored M.F.S it is sufficient to get the various a corresponding to the truth level of the element located by the
projection of the input in the universe of discourse. Classically the vectors characterizing the membership functions
of a term set are stored sequentially in the memory as illustrated in fig. 4.

MEMORY DEVOTED TO THE STORAGE OF M.F.S
RELATED TO THE IF-PART OF THE RULES

Mtmb. Func. 2 M»mb. Funo. 3

Figure 4

In this situation it is necessary to independently address each memory word containing a needed a value. The
number of memory accesses is thus a function of the membership functions comprising the term set. The memory
access time being one of the most critical parameter of the computation, it appears clear that in order to obtain high
performance the number of memory accesses must be reduced as much as possible.
In order to efficiently perform the computation of the IF-part of the rule, WARP architecture has been built up
around a different idea for storing the membership functions. The WARP approach consists in storing in successive
memory location of the same memory word all the a values comprising a term set. This term set is formed by the
membership functions connected to the IF-part of the rule, as showed by fig. 5. In this way it is possible to retrieve
all the a value of a term set using the crisp input value to calculate the memory word address in the fuzzy memory
device utilized.

MEMORY DEVOTED TO THE STORAGE OF THE M.F.S
RELATED TO THE IF-PART OF THE RULES

— —-

1-1

M.F. 1
Point. 1

M.F. 2
Point: 1
Value- 7

M.F. 3
Point: 1
Value: 0

M.F. 1
Point: 2

M*mb. Func. 2 Memb. Fune. 3

Figure 5
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The number of memory accesses is a function of the M.F.S comprising a term set and inversely proportional to the
size of the memory word, obtaining a significant reduction of the number of access in comparison with the
traditional information storage methods. Assuming memory words with the same width (32) and elements of the
vectors with the same characterization (4) the number of accesses is reduced by a factor of 8 (3214).

Although the illustrated method for storing and retrieving the various a values connected to a fuzzy variable is
highly efficient, once the related 8 value (the truth level for modifying a variable of the THEN-part) has been
calculated, the vectorial computation becomes slow due to the huge time consuming process of modifying the M.F.s
of the right side of the rule with the threshold value provided and assembling all the M.F.S that will form the M.F.
furnished as output. Taking in account some limiting factors like:

• The number of parallel computational elements that realistically can comprise such a device

• The linear increase in memory size when trying to augment the number of elements which
characterize a M.F

• The necessity to cycle over all the elements of the M.F. provided as output in order to carry out
the defii77.ification phase

It is clearly apparent how inefficient is such information management.
WARP avoids the above limitations. Having a limited number of possible truth values (15 excluding 0) coming from
the IF-part of a rule, it is possible to represent a membership function connected to the THEN-part utilizing 15
words of memory, each containing both the value (weight) of the area underlined by the M.F. and the point of
application (barycentre). In order to achieve a more efficient computation, for each memory word characterizing
a truth level WARP directly stores both the area multiplied with the barycentre and the area itself, as illustrated
in fig. 6.

MEMORY DEVOTED TO THE STORAGE OF M.F.s
RELATED TO THE THEN-PART OF THE RULES.

Pr*-computed *rea of the
10th truth level multiplied
by Us barycentre

Pr«-computed
arei of the
10th truth level

Figure 6

With such a method for storing information, the inferencing method adopted (Max-Min or Max-Dot) is perfectly
transparent with respect of the computational architecture, in fact the only difference between those methods lies
in the different value of the area of the resulting M.F. as clearly illustrated in fig. 2.
A great computational advantage of the approach is that a great part of the fuzzy computing can in effect be
performed off line. The particular data structure adopted in WARP for representing the M.F.S allows an assembling
methods of type (B) with reference to fig. 3.
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Section 4 WARP architecture.

WARP is a VLSI Megacell whose architecture has been designed in order to be employed b different environments.
The dedicated memories and the computing blocks have been defined with the purpose of efficiently operating with
a representation of the membership functions as previously illustrated.
The architectural data flow/block diagram of the Fuzzy megacell core is shown b Fig. 7.
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The Fuzzifier section is devoted to the calculus of the memory address corresponding to an input and the retrieving
of the stored information. The assumption of always expecting as input a crisp value combined with the particular
storage method has allowed the fuzzifier to be reduced to its simplest structure.
To obtain high performances the memory devoted to the storing of the membership functions of the IF-part of the
rules has been divided b 4 bdependent blocks. Each of these blocks contains all the a values of one or more fuzzy
variables, allowing the parallel retrieval of the a values. Inside the memory block, the data representing the
membership functions are stored according to the scheme of section 3.
This splitting of the memory has also induced the necessity of also having 4 fuzzifier sections (one for each memory
block). The a values found are memorized in a set of devoted register and then opportunely processed to calculate
the 8 value of each rule.
The adoption of the vectorial data representation for the M.F.S of the IF-part of the rules allows this operation to
be performed b an highly efficient and flexible way inside the Fuzzy Inference Engine via the Theta-operator, whose
block diagram is illustrated b fig. 8. This operator has been designed in order to carry out operations with an
unlimited number of terms connected by OR and/or AND connectives. This block is utilized mainly to augment
the performances of the device, in fact practically all the Fuzzy computing is performed here (the defuzzification
although computationally heavy cannot be properly classified as fuzzy computing).

The 6 values are used to calculate the address of the memory word in the memory block where the membership
functions bounded to fuzzy variables of the THEN-part of the rules are stored. Inside this memory block, the values
of the M.F.s are stored with the technique illustrated in fig. 6.
The memory block devoted to the fuzzy variables of the THEN-part of the rules has not been divided because the
computational requirements and the architectural simulations have clearly shown that the addition of dedicated
hardware is not balanced by a significant bcrease in performance.
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The assembling of all the membership functions comprising an output and the defuzzification process are carried
out in the Defuzzifier block. Thanks to the particular representation of the membership functions, this phase can
be performed with a limited number of operations. The studied architecture utilizes 15 memory words, each 38 bit
wide, to store the relevant information of each M.F. Having adopted the defuzzification algorithm previously
illustrated in section 2, a saving of 2 or 3 multiplying operations is obtained (actually those necessary to calculate
A-t' ancMjVXgj') with related hardware and, most of all, a great freedom in defining the M.F.s themselves is allowed.
In fact in this way a membership function doesn't need to be symmetrical as would be the case if it was described
giving only the whole weight and its barycentre. With the adopted method each truth level is characterized by the
actual weight and its point of application thus effectively overcoming any constraint related to symmetry.
The Fuzzy megacell can be employed in different environments. The ST9 microcontroller thanks to its flexible
architecture is well suited to being augmented as in the configuration illustrated in fig. 9.
In this way the microcontroller can perform normal control task while WARP will be responsible for all the fuzzy
related computing in independent mode.

MEMORY BUS

REGISTER BUS / I NTEPRUPT-DMA BUS

Figure 9

The Fuzzy megacell can also be configured as an embedded controller in a configuration as the one illustrated in
fig. 10.

WARP is currently in the advanced design phase. In order to guarantee high compatibility with customers needs
and assure maximum flexibility, a TOP-DOWN design methodology has been adopted for it and the VHDL
language to implement it. VHDL (VHSIC, or Very High Speed 1C, Hardware Description Language) is the IEEE
standard language for the description and simulation of electronics circuits. WARP hardware structures have been
synthesized utilizing SGS-THOMSON's own 0.8 \im technology. The subsequent structural simulations have
displayed performances in the order of 10 MFIPS.
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Section 5 Conclusions

In order to provide an answer to a wide number of application requests, WARP design relies on concepts of
flexibility and modularity. The innovative approach of WARP is represented by the adoption of different data
structures to represent the membership functions characterizing the fuzzy variables of the left and right sides of the
rules. Great emphasis has been put on granting the user maximum flexibility in defining the membership functions.
This has been carried out allowing the definition of Term Sets with no fixed numbers of fuzzy sets; moreover the
possibility of defining the single membership functions without any constraint like symmetry/shape proved very
useful in characterizing complex control applications. The careful analysis of the computational requirements during
the various stage of the fuzzy processing and the subsequent mapping in adequate hardware structures has lead to
the achievement of high level of computational efficiency permitting performance in the order of 10 MFIPS to be
obtained while reducing the number of parallel computational elements. Moreover the architecture is totally
transparent with respect of the types of memory utilized (EEPROM, Flash ...) and technology (Sub-n CMOS, ...)
so allowing the device to be used for a wide range of applications.
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