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The Effect of Clock, Media, and Station Location Errors

On Doppler Measurement Accuracy

J. K. Miller

NavigationSystemsSection

Doppler tracking by the DSN is the primary radio metric data type used by

navigation to determine the orbit of a spacecraft. The accuracy normally attributed
to orbits determined exclusively with Doppler data is about 0.5 microradians in

geocentric angle. Recently, the Doppler measurement system has evolved to a high
degree of precision primarily because of tracking at X-band frequencies (7.2 to

8.5 GHz). ttowever, the orbit determination system has not been able to fully
utilize this improved measurement accuracy because of calibration errors associated

with transmission media, the location of tracking stations on the Earth's surface,

the orientation of the Earth as an observing platform, and timekeeping. With

the introduction of Global Positioning System (GPS) data, it may be possible to

remove a significant error associated with the troposphere. In this article, the effect
of various calibration errors associated with transmission media, Earth platform

parameters, and clocks are examined. With the introduction of GPS calibrations,

it is predicted that a Doppler tracking accuracy of 0.05 microradians is achievable.

I. Introduction

The Doppler data type provides a measure of the line-

of-sight range rate between a tracking station and a space-
craft. This functional definition is useful for analyzing or-

bit determination errors that are spacecraft or trajectory

dependent, but is of little use for analyzing error sources
close to the actual measurement such as media or instru-

mentation errors. The actual measurement is a count of

a signal derived from the signal received from the space-

craft and a frequency standard maintained at the tracking

station that is related to the transmitted signal. Thus, a

precision model of the Doppler observable would include

a model of the signal path and hardware elements as well

as spacecraft dynamics. In practice, the instrumentation

errors are small compared to media, station location, and
spacecraft dynamics errors and, therefore, a simple func-
tional model of the hardware should suffice.

A model of the Doppler observable is developed below

that idealizes some of the instrumentation error sources yet
precisely models the external environment. This model is

sufficiently precise for computation of the observable and is

essentially the model contained in J PL's Orbit Determina-

tion Program (ODP) [1]. Of particular interest are models



that areexternalto theDSNtrackingstationhardware,
yetpertaindirectlyto thesignalpath.Mediaeffectsand
theeffectofgeneralrelativityoil thestationclocksareex-
amples.Othermodels,suchasstationlocationsandpolar
motion,thoughnotdirectlypartof tileDopplernleasure-
mentsystem,aretreatedasmeasurementcalibrationsfor
thepurposesof analysisandorbit determination.

II. Doppler Measurement Model

Tile Doppler measurement is simply all electronic count

of the number of cycles from a frequency standard (No) nil-

nus tile number of cycles of the spacecraft signal received

by the ground station (N_), scaled by the count t.ime in-

terval (ATe). Thus

Zm = (N_ - X_) + " (_)
AT_

where n is the measurement noise, which is typically about

1/10 of a cycle. The received frequency and standard fre-

quency need not be counted individually and differenced,

but are added together electronically and the beat fre-

quency counted. This is a detail that is dependent on the

hardware implementation. Tile numerical value of Z,_ is

the number that is recorded on the tracking data file and
is sent to the ODP for orbit determination; the units of

Zm are hertz.

In the ODP, one needs to obtain a computed value for

Zm as a function of parameters that are available to the

ODP. This function can be derived from the equations

of motion and the physical model of the system or can

be worked backwards from Eq. (1) for tbe measurement.

Working backwards from the measurement equation is cho-

sen because the starting point is an equation that repre-

sents the real physical measurement.

The frequency standard is obtained by scaling the refer-

ence oscillator frequency (fq) to equal the transmitted fre-
quency times the spacecraft tnrnaround ratio which would

nominally be the received frequency if there were no space-

craft Doppler shift or additional delay.

N_ = Ca f, AT_ (2)

where for S-band (2.I to 2.3 GHz) Doppler,

240
C3=_

221

f_ =96fq

AT_ = Td_ - Tz,

The count time (ATe) is defined as the difference between
the reception time at the start of the count-time inter-

val (Tds) and the reception time at the end of the inter-

val (Tz,). For a schematic representation of these times,

see Fig. 1. In Eq. (2), all the parameters are constant or
arbitrarily specified, including the reception times. The
real information content of the measurement is contained

within the count Nr. Thus, to obtain a complete equa-

tion for the computed measurement, one needs an equa-

tion for N_. It is tempting to differentiate and work in
the frequency domain; however, the actual observable is

accumulated phase change, and this is a sufficient reason

to keep this representation. Therefore, it is necessary to
formulate the data type in terms of phase thus bypass-

ing an explicit equation for the received frequency. The

equation that relates the measurement to the observable

parameters is simply

N_ = c3 N, (3)

where

N, =/, (TI_ -T_,)

Equation (3) for N_ states that the number of cycles

counted at the receiver is equal to the number of cycles

transmitted (N,) times the spacecraft turnaround ratio.

This equation is true because the transmitted cycles are

effectively the same as the received cycles. Thus, the in-
formation content of the measurement is now contained in

the transmit times TI_ and Tl,. Since both of these times
are unknown, some additional equations are needed to tie

into the observable quantities. At this point in the devel-

opment, the following equation for the computed measure-
ment is introduced:

C3f,
Zc : (Tae - Ta, - TIe -t-T1,) At c (4)

Equations are needed for the times in Eq. (4) and these
will be developed as functions of ephemeris time t. The

equation for the atomic clock at the station is

T = t + F(t,x,y) (5)



wherex refers to state variables and y refers to various

constant parameters.

The station time (T) is equal to the eplmmeris time t
modified by a small correction because of relativity and

any other parameter that may affect, the running of the
clock. The calibration fimction (F) is a fimction of time,

the solar system gravitational potential, and other con-

stant parameters. The relevant times relating to the

Doppler measurement are

T1, = tl, + F(t_,,x,y)

Tie = tie + F(tle,X,Y)

T3s : t3s + F(t3s, x, y)

If t3s
P23s = p dtdt (10)

dt2$

f t2ePi2_ = fi dtdt (11)
dtl e

J f t3e
fll2e = ,o dtdt (12)

Jt_ e

are obtained by integrating the equations of motion for

the spacecraft. These equations are referred to as the light

time equations and are solved iteratively for the arguments

of integration. The media delay is included in the measure-

ment equation by evaluating the calibration fimction (G)

at the appropriate times:

T3e = t3e + F(t3e, x, !/)

Making the above substitutions, the equation for the com-

puted observable becomes
and

At"' = G(t,x,y) (13)

Zc = (t3e -t3s -tie + tl_) --
C3 ft

A%

-4-[F(t3e, x, y) - F(13s,x, y) - F(tle, x, y)

Ca ft
+F(ta_,x,y)] A% (6)

Since the speed of light is constant in any reference fralne,

one obtains, by integrating along the light path,

t3e -- tle -- Pl2e + P23e + At._le + At"_3e (7)
C

t3s -- tl, -- f112s + f123s + Arm + ArmIs 3s (8)
C

where the p terms represent the integrated distance along

the light path and the t m terms represent the additional

delay caused by transmission media. The distances along

the light path,

/t2t
P1% = fi dtdt (9)
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At Z = G(ll,, x, y)

_.xtZ= o(t3,, _, v)

At m = G(t3e x,y)3 e

The final equation [Eq. (14)] for Zc (the computed mea-

surement) includes the observable equations as well as
clock and media calibration fimctions:

Zc = Pl2e + P23e -- Pi2s -- P23s C3ft

c AT_

+ [F(t3_, _, y) - F(tz,, x, y) - F(h_, x, y)

C3It
+F(t,, ,_,v)] _ + [C(t_, _,v) - a(t_,,_,v)

C3It

+G(t,_,x,y)-G(tt,,x,y)] AT_ (14)



III. Analytic Doppler Error Model

Equation (14) for the computed measurement, while

useful for actual orbit determination operations, is some-

what cumbersome for error analysis. An error analysis

could be performed by combining the sensitivities of each

term in Eq. (14). An alternative method would be to de-

velop an approximate analytic representation of the com-

puted measurement which will be pursued below. The

range from the tracking station to the spacecraft may be
described by the following function obtained by integrat-

ing the equations of motion:

p = R(t,x,v) (15)

The velocity of the spacecraft projected along the Earth

line of sight is obtained by differentiating the range and is

given by

OR
=--_- (16)

which may be approximated by

R(t,, _, v) - n(t,,_,, ,j)
p_ • (17)

ATe

From the geometry shown on Fig. 1, then

1

R(te, x, y)- R(t,, x, y) = _ (Pl2_ +P'.'3e -;q2, -P_3, ) (18)

Substituting Eq. (18) into the equation for the measure-
ment, the following expression is obtained for the geomet-

ric part of the computed measurement:

2 C3Y, OR
Z, _ (19)

c Ot

Consider the following generic function for the clock
and media calibration fimctions:

Z = F(t) (20)

For small at, the second derivative may be approximated

by

O_Z F(t + 2At)- 2F(t + At) + F(t)
-_- = At _ (21)

In the limit as At approaches zero, this is the definition

of the second derivative. Without loss of generality, one

can evaluate the second derivative using two separate At's

(one for the first derivative and the other for the second

derivative)

02Z F(t + At2 + Ate) - F(t + At2)

--_ = AtlAt_

F(t + At1)- F(t)

AtlAt_
(22)

Solving for the values of the function at the indicated times

and rearranging the terms gives

F(t + At1 + At2) - F(t + At2) - F(t + Atl)

02Z

+ Y(t) = --_ At, :,t_ (23)

If one makes Atl equal to the count time (ATe) and

At2 equal to the round-trip light time (Atrttt), the above
calibrations can be approximated by the second derivative

of the calibration function, provided this function has fre-

quency components with periods that are long compared
to the delta times. Thus, for the clock calibration function

evaluations,

O2F(t)
F(tz,)- F(t3,) - r(tl,) + F(tl,) -_ _ AT_At_m

(24)

For the media calibration function, one may perform a
similar approximation. However, because of the reversal

ofsigns in Eq. (14), the dominant term is given by the first
derivative and then

oa(t,_)
G(t3e)-G(ta,)+G(t,_)-G(t_)_2 Ot

Substituting into the exact equation for the measurement

gives the following approximation:

°2F(t)At 0c(t, ) ] (26)Zm ,_ C3ft + _ rtt, + 2 O--""--i"'--

10



However, if the round-trip light time is too long relative to

the count time, as would be the case for the outer planets,
then

f2b OF(t3,x,y) 0F(tl,z,V)
Zm "_ Czf, l--'c + Ot cgt

cOG(t3, x, y) cOG(t l, x, y)]
+ Ot + Ot J (27)

The evaluation of the partial derivatives is greatly fa-

cilitated by breaking up the calibration fimctions into in-
dividual terms and approximating with simple functions

(preferably sines, cosines, or exponentials). The sensitiv-

ity of the measurement to various y parameters that are
used to describe the calibration fimctions is given by

O_R(t,_,,y ) 02G(t,z,_./)AZ m ,_ C3f t 2 OyOl + 2 tg_tO t

cgaF(t, z, y) Atrtlt ]
+ OyOt _ J Ay (28)

The y parameters in Eq. (28) can be formed into a co-
variance matrix which, when pre- and post-multiplied by

the measurement sensitivities, gives the me_urement vari-

ance.

For example, consider the case where the only g param-

eter is the amplitude of the daily special relativity term

that is part of the atomic clock calibration fimction. This

term is defined by

Fe =- o& rs sin(we/ + As + ¢) (29)

where a, is the subject y parameter, r, is the station spin

radius, we is the Earth rotation rate, A, is the tracking

station longitude, and ¢ is a phase angle needed to bring

UT1 into agreement with ephemeris time. Typical nominal

values of these parameters are given by

ae = 3.17679 x 10 -1° sec/km

r, = 5,204 kin

w, = 7.292 x 10 -5 rad/sec

Taking the required first and second partial derivatives,

one obtains the following equation for the measurenaent
error as a fimction of time:

2 sin(wet + A, + ¢)1 a_, (30)a_ ._ IC3Yt Ate,t, r, we

where, at X-band and for a typical round-trip light time,

T_tlt = 1,512 sec

880
C3 =-

749

ft = 32fq + 0.65 x 1010 Hz

fq = 20.98 x 106 Hz

a_ = 3.17679 x 10 -1° sec/km

This equation gives a peak amplitude of 70 mtIz for a 100-

percent error in the amplitude (a_). Thus, to obtain a
1-mHz accuracy in the measurement, the calibration error

must be less than 2 percent.

IV. Data Noise Evaluation

Approximately two orbits of Magellan data were pro-
cessed from February 7, 1991, 19:29:02 (ET) to February

8, 1991, 00:i0:33 (ET). The postfit residuals are shown

on Fig. 2, which involved solving for the spacecraft state,

a constant nongravitational acceleration, and a fourth-

degree and -order spherical harmonic gravity field. The
first 10,000 sec of data shown on Fig. 2 are from Deep

Space Station (DSS) 15. The gap around 6,000 sec is data
unavailable near periapsis. Data after 12,000 sec are from
DSS 45.

Recall from Eq. (1) that the measurement noise is

-- 7/
Zm - N¢ N,. +_ (31)

AT_ AT_

The data noise is approximately 1/10 of a cycle count, and

is independent of frequency. For a 60-see count time, the

Doppler data noise is therefore about 1.66 mHz. This value

agrees with Fig. 2, which shows noise of this magnitude
fi'om DSS 15 and appears to be uniformly distributed but
with some structure. The data from DSS 45 are a bit more

noisy and appear more Gaussian.

Doppler data are scaled by the count time to make the
recorded measurement proportional to range rate. The

11



Doppler measurement sensitivity to line-of-sight velocity

is given by Eq. (19):

2C3f,
zp _ -- p (32)

C

At S-band, typical values for the constants in the above
equation are:

240
C3-
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A =96fq

fq =22x 106 Hz

c = 299792.458 km/sec

and solving Eq. (32) for _5 gives 0.108 mm/sec for Zp =

1.66 mHz data noise. One can also obtain from Eq. (32)
the well-known result that for fl = 1 mm/sec the measure-

ment noise is Z b = 15.3 mHz. At X-band, the measure-
ment noise Z b = 1.66 mHz corrrespouds to 0.03 mm/sec

velocity.

V. Troposphere Calibration

A radio signal passing through the Earth's troposphere

will be delayed depending on the dielectric constant of the

media and path length. A flmctional formula for this delay
has been defined above.

At' = G,(t, x, y) (33)

The sensitivity of the Doppler measurenaent to media

is functionally given by Eq. (28) and one may extract the
part that pertains to the troposphere.

O='G,(t, x, v)
AZ,,_ _ 2Cart OyOt Ay (34)

The troposphere delay has been separated into wet and

dry components that are flmctions of delay at. zenith (z)
and elevation angle (7):

Ra = fa(zn, 3") (36)

za = L, (t, y) (37)

t_ = fd(z_,7) (38)

zu, = f_ (t, y) (39)

3' = fv(t) (40)

In taking the required partial derivatives with respect to

time, one assumes Rw and Rd are linear in z_ and Zd and
7 is a function of only time:

OGt ORd . ORal Ozd 0t_ OR_ Ozw (41)
Ot - 03" 7+ Oz,_ Ot +--_--_ ++ Oz,,, Ot

The expression for the measurement sensitivity becomes

[ 02 Ra
AZ,n _ 2Gaff 1.0---_ ";[

ORa 02za
+

OZd OyOt

O=R¢o . OP_ O_'Zw]
+_ v+ Oz_ avot J AV (42)

The first term in the above equation represents the non-

linearity of the dry troposphere mapping function, and

the second term represents the variation in the dry tropo-
sphere z height due to local weather. The next two terms

are the same quantities for the wet troposphere. The tro-

posphere wet and dry mapping functions are tabulated as

delay as a flmction of spacecraft elevation angle. Empirical

formulas for these mapping flmctions are given by [2,3]

1 za

Rd = _ Ad (43)
sin 7 +

Bd + tan 3'

1 Z w

R_ = _ A_, (44)
sin 3' +

Bw + tan 3'

where

G,(t, x, y) = Rd + t_ (35) sin 7=cos6cosAcos¢+sinAcos¢ +sinCsin5 (45)

12



A= wet + A_ - a (46)

The dry component of the troposphere (Ra) is a function

of the delay at zenith (Zd), the elevation angle (7), and

constants Ad and Bd that are provided to model the bend-

ing at low-elevation angles. The wet component (/_) is
similarly defined. The elevation angle (7) is computed as

a function of the latitude of the tracking station (¢), the

declination of the spacecraft (6), and the local hour angle

with respect to the spacecraft (A). The local hour angle
is zero when the spacecraft is at zenith and is a function

of the Greenwich hour angle (wet), the station longitude
(As), and the right ascension of the spacecraft (a).

The dry component of the troposphere is assumed to

be stable and most of the variability is associated with
the wet component. The variation in the wet component

may be modeled as a periodic variation in the z height
(z_). The actual variation obtained by tracking the GPS

satellites in early 1991 is shown on Fig. 3. The hourly

variation in the wet component of the troposphere appears

as a random walk that would require a high-order Fourier
series to represent analytically. For the purpose of error

analysis, the variation may be modeled as a simple sinusoid

with amplitude and frequency selected to be representative
of Fig. 3.

z_ = z_ 0 + zw 1sin(w_lt ) (47)

For the troposphere, the y parameters that are of inter-

est are the constant coefficient of the wet z height function

(zw0) and the periodic coefficient (z,o 1). In order to obtain
these sensitivities, it is necessary to evaluate the partial
derivatives contained in the above measurement sensitiv-

ity function [Eq. (59)] that pertain to the wet troposphere

component. For elevation angles above the horizon by a

few degrees, one can approximate the mapping function
by

1 Z w

R.w _. - -- (48)
c sin 7

and

OR_ 1 - z_ cos7

07 c sins 7
(49)

0R.u, 1 1

Oz,o c sin 3'
(50)

The partial derivatives of 7 and Zw with respect to time
are given by

._ = cos¢(cosX - cos6sinX) i (51)
cos T

i = _ (52)

ZW = Zwl _')w I COS(_dwlt ) (53)

One is interested in the sensitivity of the Doppler measure-

ment to the constant and periodic terms of the expression

for the wet troposphere z height:

2C3ft 02 R_
AZm _ - -_ Ay (54)

c Oy07

Substituting the above partial derivatives into this equa-
tion yields

2C3ft cos7 "?
AZ_o _ - Az_o0 (55)

c sins 7

and so

2C3f,
A_I _ k

C

X
I si_ c°s7 _ sinwwlt I AzwlWwl c°Swwxt - sins 7

(56)

An example of the effect of the troposphere on X-band

Doppler is the application of GPS troposphere calibration
data to the Magellan spacecraft. The GPS data were ob-

tained at a time when the spacecraft was in orbit about

Venus. It would be preferable to have cruise data, where

the effect of the troposphere is more pronounced, rather

than orbiting data where separation of the tropospheric
effect from the gravity field modelling effects is difficult.

Recall the two orbits of Magellan Doppler residuals shown

on Fig. 2. At the time of the first data point, the param-
eters in the above Doppler sensitivity equations had the

following values:

880
C3 = --

749
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7 = 37.49 deg

ft = 32fq +0.65x 101° Hz

_/= 3.818 x 10 -5 rad/sec

fq = 20.98 x 106 Hz

Zw 0

Zw 1

= 5 x 10 -5 km

- 5 x 10 -5 km

wt_ 1 -- 1.454 x 10 -4 rad/sec

An empirical formula for the effect of the ionosphere on
the Doppler measurement is given by [4]

Gi = ---1 _ k G xj (59)
c

j=o

(t-ta_
x = 2 \t_-t_] - 1 (60)

where the Cj's are coefficients of a polynomial in time (_)
from ta to t,b normalized over the interval of -1 to +1 and

k is a proportionality factor introduced for the purpose of
computing error sensitivity. The first partial derivative of

(7/ with respect to t is needed:

The above analytic Doppler sensitivity equations re-
veal a Doppler measurement error sensitivity of 0.044 mHz

per centimeter of constant wet troposphere z height (zw 0)
error and a periodic Doppler measurement sensitivity of
0.044 mHz in quadrature with 0.134 mHz per centimeter

of variable wet troposphere z height amplitude (Zw 1). Fig-
ure 4 shows the prefit residuals for the periodic wet tro-

posphere z height calibration defined above. A Doppler
shift of about 0.67 mHz is apparent early on for the data

from DSS 15; at the end of Fig. 4, the Doppler shift is
about 2 mttz for the low elevation data from DSS 45. The

data in Fig. 4 indicate that the error contribution of the

troposphere, which may amount to several mHz, could be
reduced or eliminated with GPS calibration data.

VI. Ionosphere Calibration

A radio signal passing through the ionosphere experi-

ences a reduction in group velocity and an equal increase

in phase velocity that is a function of the frequency and
the number of charged particles along the signal path. The

Doppler measurement is dependent on the phase velocity

and the advance of the signal is functionally defined by

At _= G_(t, x, y) (57)

The sensitivity of the Doppler measurement to media is
functionally given by Eq. (28) and may be adapted to the

ionosphere:

02Gi(t, x, y) Ay
AZm _ 2C3ft OyOt

(58)

OGi 2kOt- - tb- ta j Cj X j-1 (61)
j=l

The sensitivity of the Doppler measurement to the con-

stant of proportionality k is given by

AZk _-,
4C3f, 1 "

c tb-- a_j.= Cj X j-1 Ak (62)

For the first data point shown on Fig. 2, the following val-
ues for the constant parameters are needed to compute the

Doppler sensitivity in addition to some of the parameters

given above for the troposphere:

t = -280,772,197 sec

ta = -280,785,442 sec

tb = -280,745,040 sec

C 1 --5.8432, -1.2655, 5.8368, -1.0912,

- 0.6015, 0.5551 m

Assuming a 10-percent error in the ionosph,_re model

(&k = 0.1), the error in the Doppler measurement at-

tributable to the ionosphere is 0.143 mHz.

14



VII. Station Location Errors

The Doppler measurement of the distance fl'om a track-

ing station antenna to a spacecraft enables the orbit deter-

mination system to estimate spacecraft state, station loca-

tions, planetary ephemerides, and many other parameters

that are of interest for navigation. If the primary pur-

pose of the estimation process is determining the orbit of

a spacecraft, then the station locations and the orientation

of the Earth's crust in inertial space are often regarded as
part of the measurement system. Station locations, timing

and polar motion, continental drift, and solid Earth tides,

to name a few quantities, are calibrated out of tile data.

Regarding the station locations as part of the measure-

ment system, the following fimction may be used for error

analysis and approximates the effect of the tracking station

when the spacecraft is a great distance from the Earth:

1
Re = - 7"_cos6 sin(_o_t + A,) (63)

C

This function can be regarded as a calibration of the data

and the Doppler measurement sensitivity is functionally

the same as for the troposphere and ionosphere. The range

is premu[tiplied by one over c to give this function the units
of time consistent with the other calibration flmctions.

AZm _ 2C3ftO2Rs(t'x'Y) Ay (64)
OyOt where

The sensitivity of the Doppler measurement to the dis-

tance of the tracking station from the Earth's spin axis

(r,) is:

AZr,
C

-- w_ cos 6 cos(._d + _) -_r, (65)

For the first data point shown on Fig. 2, the following

values for the constant parameters are needed to compute

the Doppler sensitivity in addition to the pal'anmters given

above for the troposphere and ionosphere:

rs =5,204 km

At present, the DSN station locations have been deter-

mined in the terrestrial (Earth-fixed) frame with an ac-
curacy of about 0.1 m. Assuming a 0.1-m error in the

tracking station spin radius (r,), the error in the Doppler
measurement attributable to station locations is about

0.4 mHz.

VIII. Clock Calibration

According to the theory of relativity, a clock running

in a frame of reference that is moving with respect to an

observer's frame of reference or in a gravitational potential

field will appear to run slower by an observer that is as-

sumed stationary and is removed from the potential field.

Therefore, a distant observer who is stationary with re-

spect to the solar system will see the atomic clocks at the

DSN stations running slower than his or her hypothetical
clock. The observer's clock records coordinate time, which

is called post-Newtonian time (PNT) [5,6].

The relationship between PNT and the proper time

measured by an atomic clock is given by the metric. For
a particle moving in an orbit around the Sun, the metric

in isotopic Schwarzschild coordinates is given by

2\ d t ,I + 7[[ + -_ (66)

Solving for proper time (ds 2 = ca dr 2) yields

dr ¢ 2U v

which can be further approximated by

dr Its 1 v 2 t_

dt c2r 2 c 2 C2re

(67)

(68)

w_ = 7.292 x 10 -s rad/sec

6 = 8.39 deg

where the Earth's gravitational potential is separated from

the Sun. The atomic clock time (r) is obtained as a fimc-

tion of t by integrating the metric in conjunction with the
equations of motion:

15



where

t

r--Jr (1-L)dt (69)
0

L = p_ + 1 v 2 #_ (70)

The function L can be separated into a constant term (L0),

secular terms that grow with time (Ls), and periodic terms

(Lv). Thus

L = L0 + L, + Lp (71)

The constant term (Lo) is obtained by averaging L over

all time and can be represented by

1 (tt__ 1 02) ge (72)L0 = _ + _ v + c_ re

which can be evaluated directly by numerical integration,

giving

it 1 (_ Ps lv2 102 )r = t + -Lo- -- + - v dt (77)
Jto _ r0 _

This equation will be referred to as Fi.

Moyer [1] provides an approximate analytic formula for

the periodic terms, attributing much of the original work
to Brooks Thomas:

2 ._ 1 .c
T_ t - L0 (t - to) - _(r_. ri) - _(rb rb)

1 1 o _ (_.r;)c_(_; r_) - _(_s'";) _(_ + _,)

_$a *$ $

e_(_,o+ _,)(_'°' rsa) (78)

where r0 and v0 are constants that give the correct value of

L0 in the above equation. For the Earth's orbit about the

Sun, r0 is approximately the semimajor axis of the orbit
and v0 is approximately the mean orbital velocity. Since

the orbit is nearly an ellipse,

p_ _ 2_, _ v2 (73)
a r

and forr=a,

3#, p_....L..e (74)
L0_ 2c2-----_+ c_ re

The secular terms L, are assumed to be zero because of

conservation of energy and momentum. This leaves the

periodic terms and these are given by

(75)

Recall that the station clock calibration function is defined

by

r = t + F(t, x, y) (76)

In the notation used above, the position of the body identi-

fied by the subscript is with respect to the body identified

by the superscript, where c is the solar system barycen-

ter, s is the Sun, b is the Earth-Moon barycenter, e is the
Earth, j is Jupiter, and sa is Saturn. This equation will

be referred to as the vector function and is designated by

F,.

Another formula is provided in part 2 of [1] that de-

scribes the periodic terms as functions of sines and cosines.

The dominant terms are given by

r _-,t - Lo (t - to) - 1.658 x 10 -3 sin E

- 1.548 x 10 -6 sin D

- 3.17679 x 10-1°r, sin(UT1 + _) - ... (79)

where E, D, and UTI are the angles describing the Earth's

orbit about the Sun, the Moon's orbit about the Earth,

and the rotation of the Earth about its spin axis, respec-

tively, and A is the ground longitude. If one replaces the
sines and cosines in the complete expression for v by a

power series and truncates, there is a polynomial in t. The

above equation will be referred to as the polynomial func-

tion and is designated by Fp.
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Since there are three functions that purportedly give

the same result, it may be instructive to tabulate the dif-

ferences as a function of time. One can then apply the

error sensitivity given by Eq. (28) to determine the error
in the Doppler measurement. This procedure will yield
the error in the differences between the functions but will

not reveal which function is correct. Indeed, the correct
function may be some unknown fourth function.

As a basis for this comparison, the function (Fi) ob-
tained by numerical integration is selected. Figure 5 shows

a plot of UTC minus ephemeris time (ET) as a function
of ET. The ET is defined as PNT time with the constant

rate term L0 removed. A detailed discussion of this sub-

ject is provided by Heilings [6]. Dropping the L0 term
from the definition of ET results in the length of the ET

second being shortened. Therefore, in order to compen-

sate, the masses of all the bodies in the solar system are

scaled. UTC is simply an atomic clock time 7- adjusted by
a constant that includes accumulated leap seconds. The
1991 value of this constant is -58.184 sec.

In order to perform the integration to obtain Fi, a

value for L0 and the constant of integration must be ob-

tained. An initial guess for L0 is obtained from Eq. (41)
and the constant term is obtained from the vector func-

tion F_ [Eq. (46)]. The equations of motion are integrated
for 1 year and a mean value of L0 is obtained which con-

strains the function Fi to equal the vector function F. at
the end points of the interval. The linear term L0 obtained

in this manner has a value of 1.55035 × 10 -s, which com-

pares quite favorably with the linear term, given in [2],
of 1.55052 × 10 -8. The difference may be attributed to

the averaging interval or the effect of Jupiter and Saturn

on the solar system barycenter. Next, the integrated vec-
tor and polynomial clock functions over the same 1-year

time interval are evaluated, and the differences Fv - Fi

and Fp - Fi are plotted on Fig. 6. Inspection of Fig. 6
reveals an annual error term with an amplitude of about

1.5 × 10 -6 sec in both the vector and polynomial func-

tions, a biweekly term of about 1.0 × 10 -7 sec in only the
polynomial function, and a daily term that is less than
1.0 x 10 -12 sec.

The error functions shown on Fig. 6 are quite small
compared to the actual clock calibration function shown

on Fig. 5. As previously noted, the error functions arise

from differences in the methods for computing the func-

tion and as a result provide very little insight into the

error source. The error source may be high-order terms

that have been neglected, approximations that have been

made, or simple programming errors in implementation of

the comparisons. However, the biweekly oscillation in the

polynomial function is highly suspect because this term

has been omitted from the expansion. Without judging
the quality of the approximations, one proceeds to com-

pute the effect of these error terms on the Doppler mea-
surement.

An error function can be defined that includes all of the

suspect terms and this is given by

F, = r_ + Le(t - to) + AdSin(wdt)

+ Ab_ sin(2wb_0t) + Ay sin(wyt) (80)

where Ad, Abw, and Ay are the amplitudes of the daily,
biweekly, and annual terms identified above, respectively.

The clock offset error is r_ and the clock rate error is L_.

Recall from Eq. (27) that the sensitivity of the Doppler

measurement to errors in the amplitude (A) is given by

AZm _ C3Yt OaF_(t' x, y)
OAOt _ At_tttAA

and the resulting error is given by

o'_ _ IC3ft At,.t,t _2 sin(_t)l _rA (81)

Observe that the constant and linear terms do not con-
tribute to the measurement error. Numerical values for

daily, biweekly, and annual terms are given in Table 1.

The Doppler measurement errors associated with the daily

and annual terms are negligible. The biweekly error of

0.0345 mHz, though small for Doppler measurements, may
present a problem for VLBI measurements.

IX. Summary

A survey of tile X-band Doppler measurement system

has supported the generally accepted notion that tropo-

sphere calibrations are the dominant error source. Using
only a seasonal troposphere model, calibration errors in
the troposphere contribute 1 or 2 mHz to the measurement

error. With the GPS calibration of the troposphere, one
may be able to obtain a factor of five reduction in the tro-

posphere error. With station location errors at about the

10-cm level, the inherent Doppler measurement accuracy

of 1 to 2 mHz may be fully utilized. A 1-mHz Doppler mea-

surement error would translate into about a 0.02 nml/sec

error in the line-of-sight velocity and, according to recent
studies [7], perhaps 50 nrad in angular measurement accu-

racy.
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Table 1. Doppler error sensitivities to clock error terms.

Error term Amplitude, Frequency, Doppler error,
sec rad/sec Hz

Daily 1.0 x 10 -]2 7.292 x 10 -5 6.77 x 10 -8

Biweekly 1.0 x 10 -7 5.209 x 10 -6 3.45 x I0 -g

Annual 1.5 x 10 -6 1.991 x 10 -7 7.57 x 10 -7
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