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Summary

A final report is provided which describes the research program under the indicated
NASA support during the period March 3, 1992, to June 3, 1993. A summary of the
technical research questions that have been studied and of the main results that have been
obtained is given. The specific outcomes of the research program, including both
educational impacts as well as research publications, are listed.



The Research Accomplishments

Our research has been concerned with efficient reorientation maneuvers for
spacecraft with multiple articulated payloads. This work is closely related to control
problems for nonholonomic mechanical systems and involves, in a fundamental way, a
number of new ideas in nonlinear control theory. Hence, our research has emphasized
both the development of an underlying theory as well as specific spacecraft reorientation
maneuvers. During the indicated time period, the following issues have been studied.

Modeling of space multibody systems as nonholonomic dynamic systems: Many

examples of nonholonomic dynamic systems occur for mechanical systems which exhibit’
nonintegrable motion integrals; these include interconnections of rigid and flexible bodies in
space where the control inputs are consistent with conservation of angular momentum;
under certain assumptions even the attitude dynamics of a single rigid spacecraft is an
example of a nonholonomic dynamic system. The key common ingredient in all of these
examples is the existence of motion integrals which are nonholonomic or nonintegrable in a
precise mathematical sense [1,3]. This whole line of research is motivated by an interest in
carrying out reorientation maneuvers which avoid the use of gas jet thrusters or reaction
devices; consequently, these reorientation maneuvers are highly efficient in terms of energy
or fuel requirements.

Control of spacecraft with multiple articulated payloads systems: It is only within the last

several years that research on control of nonholonomic dynamic systems has been initiated.
There have been a number of important recent advances, both in the theory for control of
nonholonomic dynamic systems and in the applications of that theory to reorientation
problems of spacecraft with multiple articulated payloads. The results that we and others
have obtained indicate the inherent difficulty of such problems: we have shown that there is
no smooth (i.e. differentiable) feedback controller which can stabilize such dynamic
systems [1,3]. Consequently there is no linear controller which can stabilize such systems.
Until recently, there has been absolutely no stabilization theory which could be applied to
these difficult problems. We have introduced the correct mathematical formulation of such
control problems; we have demonstrated the fact that smooth stabilizing (time invariant)
controllers cannot exist, and we have begun to develop control design approaches for
obtaining (nonsmooth) stabilizing controllers [1,3].

ifi rientation maneuvers for with multiple articul 1 : A large
part of our research effort has been directed at the study of specific examples of spacecraft
reorientation maneuvers. These examples are of interest in their own, and they provide
much insight for us in our general studies. We have studied the following classes of
problems:

Plan 1ti ms [1,4,7). Planar spacecraft maneuvers illustrate the
fundamental maneuver characteristics and the associated mathematical framework is in
the simplest form to study these manevuers. There is a striking similarity with the
‘maneuvers carried out by "a falling cat which reorients itself."

Spacecraft attitude control [5,6,8,9,10]. Reorientation maneuvers of rigid spacecraft fit
within the general framework studied if control torques can be applied about only two
of the principal axes of the spacecraft. Our results provide an essentially complete
analysis of all possible situations under which attitude stabilization can be achieved
using two control torques.



Free-free flexibl in [11,12]. This is a simple beam model of a spacecraft
system with distributed flexibility which can be reoriented with respect to a fixed
inertial frame by appropriate excitation of the deformable shape of the beam.

ion atti rban ing from internal motions [13]. The effects of
internal periodic motions in a space station are demonstrated to lead to attitude
disturbances of the space station.

Redesign of the existing manned maneuvering unit. This research, not yet published,

uses only internal motions to accomplish reorientation of an astronaut manned

maneuvering unit; these results suggest that such a design are significantly more fuel
- efficient than the current design, allowing substantially increased mission duration.

Outcomes of the Research Program

Educational Impacts: - There have been several important educational outcomes as a
consequence of the research support.

Three Ph.D. students have received partial financial support.

1. Mr. M. Reyhanoglu was partially supported to complete his Ph.D. research. This
support resulted in completion of his Ph.D. degree in the Department of Aerospace
Engineering in June, 1992. Mr. Reyhanoglu was a coauthor on several research papers
as indicated below.

2. Mr. H. Krishnan was partially supported to complete his Ph.D. research. This
support resulted in completion of his Ph.D. degree in the Department of Aerospace
Engineering in September, 1992. Mr. Krishnan was a coauthor on several research
papers as indicated below.

3. Mr. L. Kolmanovsky was partially supported to complete his M.S. degree in the
Department of Aerospace Engineering; he is currently beginning his Ph.D. research.
This support resulted in the research papers indicated below.

An additonal Ph.D. student, Mr. P. McNally, has been involved in research that is closely
associated with the NASA project, but they has not directly received project support.
Research papers in which he has been involved are indicated below.

During the past year, the principal investigator and his graduate student colleagues gave
several presentatlons on subject matter related to this project; this includes presentations
both at university colloquiums as well as at special workshops:

M. Reyhanoglu, N. H. McClamroch and H. Krishnan, "Nonlinear Control of
Mechanical Systems with Nonholonomic Motion Invariants: Theory and Physical
Examples," Washington U. - NSF Workshop on Nonlinear Control, St. Louis, May,
1992.

N. H. McClamroch, "Nonlinear Attitude Control of Planar Structures in Space using
only Internal Controls," Problems in Sensing, Identification and Control of Flexible
Structures Workshop, The Fields Institute for Research in Mathematical Sciences,
Waterloo, Ont., June, 1992.



M. Reyhanoglu and N. H. McClamroch, "Geometric Phase Computations Arising in
Control Problems for Nonholonomic Caplygin Systems,” SIAM Conference on Control,
September, 1992. - '

M. Reyhanoglu, N. H. McClamroch and H. Krishnan, "Attitude Stabilization of a Rigid
Spacecraft using Gas Jet Actuators Operating in a Failure Mode," SIAM Conference on
Control, September, 1992.

N. H. McClamroch, "Attitude Stabilization of a Rigid Spacecraft Operating in an
Actuator Failure Mode," The University of Michigan, October, 1992.

N. H. McClamroch, "Nonlinear Attitude Control of Space Structures using only Internal
Controls," Stanford University, November, 1992.

N. H. McClamroch, "Control of Nonholonomic Dynamic Systems," University of
California, Berkeley, November, 1992.

H. Krishnan, M. Reyhanoglu and N. H. McClamroch, "Attitude Stabilization of a
Rigid Spacecraft using Gas Jet Actuators in a Failure Mode," IEEE Conference on
Decision and Control, December, 1992.

I. Kolmanovsky and N. H. McClamroch, "Planar Reorientation of a Free-Free Beam in
Space using Embedded Electromechanical Actuators," SPIE Conference on Smart
Structures and Materials '93, February, 1993.

I. Kolmanovsky, "Planar Reorientation of a Free-Free Beam in Space using Embedded
Electromechanical Actuators," The University of Michigan, February, 1993.

I. Kolmanovsky and N. H. McClamroch, "Planar Reorientation of a Free-Free Beam in
Space using Embedded Electromechanical Actuators,” 1993 American Control
Conference, June, 1993.

P. J. McNally and N. H. McClamroch, "Space Station Attitude Disturbances Arising
from Internal Motions,”" 1993 American Control Conference, June, 1993.

Consequently, the results of the supported research have been disseminated widely via
personal presentations as well as through written publications.

Research Publications: The results of our research have been documented in written form
and published in archival journals and in conference proceedings. A summary of these
outcomes is indicated:

Ph.D. Dissertations

[11 M. Reyhanoglu, "Control and Stabilization of Nonholonomic Dynamic Systems,"
. Department of Aerospace Engineering, June, 1992.

[2] H. Krishnan, "Control of Nonlinear Systems with Applications to Constrained Robots
and Spacecraft Attitude Stabilization," Department of Aerospace Engineering, September,
1992.



lications in Archiv

[3] A.M. Bloch, M. Reyhanoglu and N. H. McClamroch, "Control and Stabilization of
Nonholonomic Dynamic Systems," IEEE Transactions on Automatic Control, Vol. 37,
No. 11, 1992, 1746-1757. :

[4] M. Reyhanoglu and N. H. McClamroch, "Reorientation Maneuvers of Planar
Multibody Systems in Space using Internal Controls," AIAA Journal of Guidance, Control
and Dynamics, Vol. 15, No. 6, 1992, 1475-1480.

[5] H. Krishnan, N. H. McClamroch, and M. Reyhanoglu, "Attitude Stabilization of a
Rigid Spacecraft using Two Control Torques: A Nonlinear Control Approach Based on the
Spacecraft Attitude Dynamics,” submitted for publication.

[6] H. Krishnan, N. H. McClamroch, and M. Reyhanoglu, "Attitude Stabilization of a
Rigid Spacecraft using Two Momentum Wheel Actuators” submitted for publication.

lication in Edited B

[71 M. Reyhanoglu and N. H. McClamroch, "Nonlinear Attitude Control of Planar
Structures in Space using only Internal Controls," Proceedings of Workshop on Problems
in Sensing, Identification and Control of Flexible Structures, The Fields Institute for
Research in Mathematical Sciences, Waterloo, Ont., to appear.

Conference Pyblications

[8] H. Krishnan, N. H. McClamroch and M. Reyhanoglu, "On the Attitude Stabilization of
a Rigid Spacecraft using Two Control Torques," American Control Conference, 1992, 1990-
1995.

[9] H. Krishnan, N. H. McClamroch and M. Reyhanoglu, "Attitude Stabilization of a Rigid
Spacecraft using Momentum Wheel Actuators Operating in a Failure Mode," World Space
Congress, August, 1992, IAF-92-0035.

[10] H. Krishnan, M. Reyhanoglu and N. H. McClamroch, "Attitude Stabilization of a
Rigid Spacecraft using Gas Jet Actuators in a Failure Mode," Proceedings of IEEE
Conference on Decision and Control, December, 1992, Tucson, Az., 1612-1617.

[11] I Kolmanovsky and N. H. McClamroch, "Planar Reorientation of a Free-Free Beam
in Space using Embedded Electromechanical Actuators,” SPIE Conference on Smart
Structures and Materials '93.

' [12] I Kolmanovsky and N. H. McClamroch, "Efficient Reorientation of a Deformable
Body in Space: A Free-Free Beam Example," 1993 American Control Conference.

[13] P.J. McNally and N. H. McClamroch, "Space Station Attitude Disturbances Arising
from Internal Motions," 1993 American Control Conference.

Copies of the Ph.D. dissertation abstracts [1,2] are enclosed; copies of the above papers [3-
13] are enclosed. One complete copy of each of the Ph.D. dissertations [1,2] has been sent
to the NASA Technical Officer, S. Joshi.



Conclusion

Substantial progress has been made in our research on spacecraft with multiple
articulated payloads. We have plans to continue our research in this important area The
main areas of study will be: formal approaches to design of stabilizing (discontinuous)
feedback control laws , extension of our work on attitude control of spacecraft involving
flexible components, and extension of our work on non-planar spacecraft attitude control.

The support from NASA has been critical in providing us an opportunity to make
major advances in the development of the theory and applications of this new class of space
based control problems.

It should be noted that the published papers provide acknowledgement to NASA for
financial support of part of this research. In some cases, acknowledgement is also given
to the National Science Foundation for their support of our related research on control of
nonholonomic dynamic systems.
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ABSTRACT

CONTROL AND STABILIZATION OF NONHOLONOMIC DYNAMIC
' SYSTEMS

by

Mahmut Reyhanoglu
Chairberson: N.H. McClamroch

A theoretical framework is established for the control of nonholonomic dynamic
systems, i.e. dynamic systems with nonintegrable constraints. In particular, we
emphasize control properties for nonholonomic systems that have no counterpart in
holonomic systems. A model for nonholonomic dynamic systems is first presented
in terms of differential- algebraic equations defined on a phase space. A reduction
procedure is carried out to obtain reduced order state equations. Feedback is then
used to obtain a control system in a normal form. The assumptions guarantee that
the resulting normal form equations necessarily contain a nontrival drift vector field.
Conditions for smooth (C*) asymptotic stabilization to an m-dimensional equilib-
rium manifold are presented; we also demonstrate that a single equilibrium solution
cannot be asymptotically stabilized using continuous static or dynamic state feed-

back. However, any equilibrium is shown to be strongly accessible and small time



locally controllable. An approach using geometric phases is developed as a basis for
the control of Caplygin dynamical systéms, i.e. nonholonomic systems with certain
symmetry properties which can be expressed by the fact that the constraints are
cyclic in certain variables. The theoretical development is applied to physical ex-
amples of systems that we have studied in detail elsewhere: the control of a knife
edge moving on a plane surface and the control of a wheel rolling without slipping
ona plé.ne surface. The results are also applied to the reorientation of planar multi-
body systems using joint torque inputs and to the reorientation of a rigid spacecraft
using momentum wheel actuators, since in these examplés conservation of angular

momentum gives rise to nonintegrable motion invariants.
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ABSTRACT

e

CONTROL OF NONLINEAR SYSTEMS WITH APPLICATIONS
TO CONSTRAINED ROBOTS AND
SPACECRAFT ATTITUDE STABILIZATION

by

Hariharan Krishnan
Chairman: N. Harris McClamroch

This thesis is organized in two parts. In Part 1, control systems described by a

i class of nonlinear differential and algebraic equations are introduced. A procedure

for local stabilization based on a local state realization is developed. An alternative
approach to local stabilization is developed based on a classical linearization of the
nonlinear differential-algebraic equations. A theoretical framework is established for
solving a tracking problem associated with the differential-algebraic system. First, a
simple procedure is developed for the design of a feedback control law which
ensures, at least locally, that the tracking error in the closed loop system lies within
any given bound if the reference inputs are sufficiently slowly varying. Next, by
imposing additional assumptions, a procedure is developed for the design of a feed-
back control law which ensures that the tracking error in the closed loop system
approaches zero exponentially for reference inputs which are not necessarily slowly
varying. The control design methodologies are used for simultaneous force and posi-
tion control in constrained robot systems. The differential-algebraic equations are
shown to characterize the slow dynamics of a certain nonlinear control system in

nonstandard singularly perturbed form. ~——

2



In Part 2, the attitude stabilization (reorientation) of a rigid spacecraft using only
two control torques is considered. First, the case of momentum wheel actuators is
considered. The complete spacecraft dynamics are not controllable. However, the
spacecraft dynamics are small time locally controllable in a reduced sense. The
reduced spacecraft dynamics cannot be asymptotically stabilized using continuous
feedback, but a discontinuous feedback control strategy is constructed. Next, the case
of gas jet actuators is considered. If the uncontrolled principal axis is not an axis of
symmetry, the complete spacecraft dynamics are small time locally controllable.
However, the spacecraft attitude cannot be asymptotically stabilized using continuous
feedback, but a discontinuous stabilizing feedback control strategy is constructed. If
the uncontrolled principal axis is an axis of symmetry, the complete spacecraft
dynamics cannot be stabilized. However, the spacecraft dynamics are small time
locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be

asymptotically stabilized using continuous feedback, but again a discontinuous feed-

back control strategy is constructed.
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Control and Stabilization of Nonholonomic

Dynamic Systems
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Anthony M. Bloch Member. IEEE, Mahmut Reyhanoglu. Member, IEEE,
and N. Harris McClamroch, Fellow. [EEE

Abstract—A theoretical framework is established for the con-
trol of nonholonomic dynamic systems, i.e., dynamic systems
with nonintegrable constraints. In particular, we emphasize
control properties for nonholonomic systems that have no coun-
terpart in holonomic systems. A model for nonholonomic dy-
namic systems is first presented in terms of differential-alge-
braic equations defined on a phase space. A reduction procedure
is carried out to obtain reduced-order state equations. Feedback
is then used to obtain a nonlinear control system in a normal
form. The assumptions guarantee that the resulting normal
form equations necessarily contain a nontrival drift vector field.
Conditions for smooth (C™) asymptotic stabilization to an m-
dimensional equilibrium manifold are presented; we also
demonstrate that a single equilibrium solution cannot be asymp-
totically stabilized using continuous state feedback. However,
any equilibrium is shown to be strongly accessible and small
time locally controilable. Finally, an approach using geometric
phases is developed as a basis for the control of Caplygin
dynamical systems, i.e., nonholonomic systems with certain sym-
metry properties which can be expressed by the fact that the
constraints are cyclic in certain variables. The theoretical devel-
opment is applied to physical examples of systems that we have
studied in detail elsewhere: the control of a knife edge moving
on a plane surface and the control of a wheel rolling without
slipping on a plane surface. The results of the paper are aiso
applied to the control of a planar multibody system using
angular momentum preserving control inputs since the angular
momentum may be viewed as a nonholonomic constraint which
is an invariant of the motion.

I. INTRODUCTION

UMEROUS papers have been published in recent

years on the control of systems with holonomic con-
straints. The work of the authors includes McClamroch
and Bloch in {17], McClamroch and Wang in {18]. The
earliest work on control of nonholonomic systems (that
we are aware of) is by Brockett in [6]. Bloch in (2] has
examined several control theoretic issues which pertain to
both holonomic and nonholonomic systems in a very
general form. Related work in robotics [14), [15], [20} and
. multibody systems [10), [11}, [12], [25], [29] has recently

Manuscript received April 15, 1991; revised November 15, 1991 and
March 27, 1992. Paper recommended by Past Associate Editor, J.
Baillieul. This work was supported in part by the NSF under Grants
" DMS-9002136, PYI DMS-9157556, MSM-8722266, and MSS-9114630, by
NASA under Grant NAG-1-1419, and by a seed grant from the Ohio
State University.

A. M. Bloch is with the Department of Mathematics, The Ohio State
University, Columbus, OH 43210.

M. Reyhanoglu and N. H. McClamroch are with the Department of
Aerospace Engmeenng. The University of Michigan, Ann Arbor, MI
48109.

IEEE Log Number 9203907.

appeared. Our recent work in (3], [4], [22], (23] has alsq
emphasized several classes of physical problems. All of
this work has demonstrated that there is a common theo.
retical framework for a large class of control problems for
mechanical systems with nonhoionomic constraints. In
this paper, we identify that common theoretical frame-
work. Our development is based on the formulation of
nonholonomic dynamics by Neimark and Fufaev [21] and
the modern formulation of nonlinear geometric control.

II. MODELS OF NONHOLONOMIC SYSTEMS

We consider the class of nonholonomic systems de-
scribed by the equations

M(q)d + F(q,9) =J'(q)A + B(q)u (H
J(q9)q = 0. )

Note that a “prime” denotes transpose. We refer to g as
an n-vector of generalized configuration variables, ¢ as an
n-vector of generalized velocity variables, and § as an
n-vector of generalized acceleration variables; in addition,
A is an m-vector of constraint multipliers and u is an
r-vector of control input variables, where r = n — m. The
n X n matrix function M(q) is assumed to be symmetric
and positive definite, F(q, ¢) is an n-vector function, J(q)}
denotes an m X n matrix function which is assumed to
have full rank and B(g) is a full rank n X r matrix
function. All of these functions are assumed to be smooth
(C™) and defined on an appropriate open subset of the
(q,q) phase space. The formulation could be given in
terms of a system defined on the tangent bundle of a C”
manifold; we have not made such a generalization since it
is direct. Various assumptions about the control input
variables are indicated subsequently.

Differential-algebraic equations of the above fonn are
known to arise for (uncontrolled) nonholonomic systems:
see (1] and (21} for many examples. Here, we note that the
classical approach for the formulation of constrained dy-
namics as described in [21] is used. This is in contrast tc
the variational approach, or “vakonomic” theory (see e.g.
{1]). We also note that a-Hamiltonian formulation can be
developed.

We have assumed that the m X n matrix J(q) has ful
rank; hence, there is no loss of generality in assuming tha
the configuration variables are ordered so that the last »
columns of the matrix J(q) constitute an m X m localt
invertible matrix function‘ ie., the matrix J(g) can b

0018-9286,/92803.00 © 1992 IEEE
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expressed as [J,(¢)J:(g)), where J,(q) isanm X (n —m)
matrix function and J,(g) is an m X m locally nonsingu-
lar matrix function. The columns of the n X (n — m)

matrix function

C(q) =[ (3)

!
~I(q)
where [ is the (n — m) X (n — m) identity matrix and
Hq) = J7'(g)J(q) is a locally smooth m X (n ~ m) ma-
trix function, span the null space of J(q). Formally, the
rows of J(g) constitute m linearly independent smooth
covector fields defined on the configuration space: these
covector fields span a codistribution () and the annihila-
tor of the codistribution (). denoted Q* . is spanned by
n — m linearly independent smooth vector fields

SC()—, =1 @)
T = (q)—, j=1Llrn-m.
Y 29,

We present the following definition.
Definition 1 [30]: Consider the following nondecreasing
sequence of locally defined distributions

N, =Q*
N, =N, +span{[X,Y]IXe N, YEN_}.
There exists an integer k* such that
Ny = N

for all k> k*. If dimN,. =n and k* > 1, then the
constraints (2) are called completely nonholonomic and
the smallest (finite) number k* is called the degree on
nonholonomy.

In this paper, it is assumed that constraint equations (2)
are completely nonholonomic with nonholonomy degree
k*. Note that for this to hold n —m must be strictly
greater than one. Note also that since the constraints are
nonholonomic, there is in fact no explicit restriction on
the values of the configuration variables.

We also assume that the matrix product C'(g)B(q) is
full rank. As will be seen in Section IV, this assumption
guarantees that all n — m degrees of freedom can be
(independently) actuated.

The constraints (2) define a (2n — m)-dimensional
smooth submanifold

M ={(q.9)/(q)q = 0} (5)

of the phase space. This manifold M plays a critical role
in the concept of solutions and the formulation of control
and stabilization problems associated with (1) and (2).
We begin by making it clear that (1) and (2) do repre-
sent well-posed models in the sense that the associated
initial value problem has a unique solution, at least lo-
cally. A
Definition 2: A pair of vector functions (g(t), A(t)) de-
fined on an interval [0, T) is a solution of the initial value
problem defined by (1) and (2) and the initial data (g,, o)
“if g(¢) is at least twice differentiable, A(¢) is integrable,

g

the vector functions (q(1), A(t)) satisfy the differential-
algebraic equations (1) and (2) almost everywhere on their
domain of definition. and the initial conditions satisfy .
(q(0), §(0)) = (q,, 4y)-

The following existence and uniqueness result has been
obtained.

Theorem | {3]: Assume that the control input function
u:[0,T) = R" is a given bounded and measurable func-
tion for some T > 0. If the initial data satisfy (g, ¢,) = M.
then there exists a unique solution (at least locally de-
fined) of the initial value problem corresponding to (1)
and (2) which satisfies (g(t),4(t)) € M for each ¢ for
which the solution is defined. :

Since the differential-algebraic equations (1) and (2)
define a smooth vector field on M, a number of other
results could be stated, including conditions for continu-
ous dependence of the solution on initial conditions and
parameters, conditions for nonexistence of finite escape
times, etc. Such results are important, but they are not
given here since they are easily obtained. We subse-
quently use the notation (Q(t, gy, 4y), A(2, 44, 4¢)) to de-
note the solution of (1) and (2) at time ¢ > 0 correspond-
ing to the initial conditions (g,, §,). Thus, for each initial
condition (g, 4,) € M and each bounded. measurable
input function u:[0, T) = R", (Q(¢, g¢, §o), Q(t, 99, 4y)) €
M holds for all ¢ > 0 where the solution is defined.

A particularly important class of solutions are the equi-
librium solutions of (1) and (2). A solution is an equilib-
rium solution if it is a constant solution; note that if
(g%, X°) is an equilibrium solution, we refer to q° as an
equilibrium configuration. The following result should be
clear.

Theorem 2: Suppose that u(¢) =0, ¢t > 0. The set of
equilibrium configurations of (1) and (2) is given by

{q|F(q,0) —J'(q)A = 0forsome A € R™}.

An equivalent expression for the set of equilibrium con-
figurations is

(4lC’'(q)F(q.0) = 0}.

[11. CLOSED-LoopP MODELS OF NONHOLONOMIC SYSTEMS

We are interested in feedback control of the form
u = U(q, q) where U: M — R'; the corresponding closed
loop is described by

M(q)§ + F(q.4) =J'(q9)A + B(q)U(q.4) (6)
J(q)§ =0. (7)

We point out the obvious fact that the closed loop is still
defined in terms of the nonholonomic constraint equa-
tions. :

Suppose Ul(q,q) is a smooth function; if the initial
conditions satisfy (q,, §,) € M, then there exists a unique
solution (g(t), A(t)) (at least locally defined) of the initial
value problem corresponding to (6) and (7) which satisties
(q(1),4()) € M for each ¢ for which the solution is
defined.
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The set of equilibrium conﬁgi!fations of (6) and (7) is
given by '

{q|F(q,0) —J'(q)A = B(q)U(q,0) for some A € R™}

which is a smooth submanifold of the configuration space.
An equivalent expression for the equilibrium submanifold
of the configuration space is

{(qIC'(9)[F(q,0) — B(q)U(q,0)] = 0}.

We remark that generically the equilibrium manifold
has dimension at least m. On the other hand, for certain
cases, there may not be even a single equilibrium config-
uration (e.g., the uncontrolled dynamics of a ball on an
inclined plane). However, since we have assumed that
C'(q)B(q) is full rank, we can aiways introduce an equi-
librium manifold of dimension at least m by appropriate
choice of input.

We now formulate a stabilization problem for nonholo-
nomic systems described by (1) and (2). A suitable stability
definition for the closed-loop system described by (6) and
(7) is first introduced.

Definition 3: Assume that u = U(q,q). Let M, =
{(g, ¢)lg = 0} be an embedded submanifold of M. Then
M, is locally stable if for any neighborhood U O M, there
is a neighborhood ¥ of M, with U O ¥ O M, such that if
(9o, §o) € V N M then the solution of (6) and (7) satisfies
(Q(t, g0, 4o), Q(t, @5, gD € UNM for all t20. If, in
addition, (Q(t, g4, 4¢)» Q(t, 4o, 4o)) — (4,,0) as t — = for
some (g,,0) € M, then we say that M, is a locally asymp-
totically stable equilibrium manifold of (6) and (7).

Note that if (Q(¢, q,,4), @, 4o, §o)) = (g, ast - =
for some (q,,0) € M,, it follows that there is A, € R™
such that A(t,gg,4g) = A, as ¢t = ®,

The usual definition of local stability corresponds to the
case that M, is a single equilibrium solution; the more
general case is required in the present paper.

The existence of a feedback function so that a certain
equilibrium manifold is asymptotically stable is of particu-
lar interest; hence, we introduce the following.

Definition 4: The system defined by (1) and (2) is said to
be locally asymptotically stabilizable to a smooth equilib-
rium manifold M, in M if there exists a feedback func-
tion U: M — R’ such that, for the associated closed-loop
equations (6) and (7), M, is locally asymptotically stable.

If there exists such a feedback function which is smooth

on M then we say that (1) and (2) are smoothly asymptoti-
cally stabilizable to M,; of course it is possible (and we
subsequently show that it is generic in certain cases) that
(1) and (2) might be asymptotically stabilizable to M, but
not smoothly (even not continuously) asymptotically stabi-
lizable to M,. '

IV. NORMAL FORM EQUATIONS FOR NONHOLONOMIC
CONTROL SYSTEMS

A number of approaches have been suggested for elimi-
nating the constraint multipliers so that a minimum set of
differential equations is obtained: the reduced differential

[EEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. 37. NO. 11, NOVEMBER 1992

equations_characterize the control dependent motion on
the constraint manifold.

We first emphasize that the reduced state space is
2n — m dimensional. The state of the system can be
specified by the n-vector of configuration variables and an
(n — m)-vector of kinematic variables. Let g = (g,, ¢,) be
a partition of the configuration variables corresponding to

“the partitioning of the matrix function J(q) introduced

previously. Then consider the following relation
9 =C(9)q,
where C(q) is defined by (3). Taking time derivatives
yields
4 =C(@)d + C(9)4y

where C(q) denotes the time derivative of C(q). Substi-
tuting this into (1) and muitiplying both sides of the
resulting equation by C'(q) gives ‘

C'(9)M(9)C(9)4, N
= C'(q)| B(q)u - F(4,C(q)dy) — M(9)C(9)d\].

(8)

Note that C'(q)M(q)C(q) is an (n — m) X (n — m) sym-
metric positive definite matrix function.

We also assume that 7 = n — m (for simplicity). Then
the matrix product C'(q)B(q) is locally invertible. Conse-
quently for any u € R’ there is unique v € R"™™ which
satisfies

C'(q)| B(q)u - F(4,C(2)d) - M(9)C(9)d]
= C(M(9)C(g)v. (9)

(Note that if » > n — m then v can be chosen to depend
smoothly on the variables (q,q,,«)). This assumption
guarantees that the reduced configuration variables satisfy
the linear equations

4 = .
Define the following state variables
=4y
X2 = 42
Xy = 4.
Then the normal form equations are given by
X, =X, (10)
gy = =J(xy, %3) % (11)
Xy =v. (12)

Equations (10)-(12) define a drift vector field f(x) =
(x4, =J(x,, x,)x5,0) and control vector fields g(x) =
(0,0,¢;), where ¢; is the ith standard basis vector in
R*"™ i =1,+,n — m, according to the standard control
system form

$=f(x)+ L (2.

i=1

(13)
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We consider local properties of (10)-(12), near an equilib-
rium solution (x{, x3, 0).

Note that the normal form equations (10)~(12) are a
special case of the normal form equations in [8}. In
particular, the zero dynamics equation of (10) and (12),
corresponding to the output x,, is given by

£ =0

and it is not locally asymptotically stable. The fact that the
zero dynamics is a linear system with all zero eigenvalues,
means that (10)—(12) are critically minimum phase at the
equilibrium; this has important implications in terms of

local asymptotic stabilizability of the original equations (1)

and (2).

V. STABILIZATION TO AN EQUILIBRIUM MANIFOLD
UsING SMOOTH FEEDBACK

In this section, we study the problem of stabilization of
(1) and (2) to a smooth equilibrium submanifold of M
defined by

N, =1{(4.9)l4 =0,s(q) =0}

where s(q) is a smooth n — m vector function. We show
that with appropriate assumptions, there exists a smooth
feedback such that the closed loop is locally asymptoti-
cally stable to N,.

The smooth stabilization problem is the problem of
giving conditions so that there exists a smooth feedback
function U: M — R’ such that N, is locally asymptotically
stable. Of course, we are interested not only in demon-
strating that such a smooth feedback exists but also in
indicating how such an asymptotically stabilizing smooth
feedback can be constructed.

Note that in this section, we consider nonholonomic
control systems whose normal form equations satisfy the
property that if ¢,(¢+) and 4,(t) are exponentially decaying
functions, then the solution to

4, = _j(‘h(')qu)ql(‘)

is bounded (all the physical examples of nonholonomic
systems, of which we are aware, satisfy this assumption).

Note also that the first and second time derivatives of
s(q) are given by

a
s- 28,
. 9 [o5ta) | s(a)
s=a—q( - C(q)ql)C(q)qw —Cla.

Theorem 3: Assume that the above solution property
holds. Then the nonholonomic control system, defined by
(1) and (2) is locally asymptotically stabilizable to

N. = {(4.9)lg = 0,5(q) =0} (14)

\,.'u’
using smooth feedback, if the transversality condition
5(q) ) ( 95(q)
det det C #0
( 5 57 €@ (15)

is satisfied.

Proof: 1t is sufficient to analyze the system in the
normal form (10)-(12). By the transversality condition,
the change of variables from (q,,4,,4,) to (5s.4,.5) is a
diffeomorphism. '

Let

__[9s() '[9 [as(q) . .
v = ( 70 C(q)) [a—q(—aq—C(q)q.)C(q)ql

- 95(q) .
+K1—aq—c(‘1)‘h + KzS(Q)]

where K, and K, are symmetric positive definite (n — m)
X (n — m) constant matrices. Then, obviously

§+ K5+ Kys =0

is asymptotically stable so that (s,§) = 0 as t = . The
remaining system variables satisfy (11) of the normal form
equations (with x, = ¢,), and, by our assumption on the
constraint matrix J, these variables remain bounded for
all time. Thus (g(1),4(¢)) > N, as t - =.

Equations (1) and (2) can be smoothly asymptotically
stabilized to the m dimensional equilibrium manifold
specified by (14). Condition (15) depends on the specific
partitioning of the configuration variables corresponding
to the constraint equations (2).

V1. STABILIZATION TO AN EQUILIBRIUM SOLUTION
USING PIECEWISE ANALYTIC FEEDBACK

The results in the previous section demonstrate that
smooth feedback can be used to asymptotically stabilize
certain smooth manifolds N, in M, where the dimension
of N, is equal to the number m of independent con-
straints. Consequently, those results do not guarantee
smooth asymptotic stabilization to a single equilibrium
solution if m = 1.

In fact, there is no C' feedback which can asymptoti-
cally stabilize the closed-loop system to a single equilib-
rium solution. Suppose that there is a C' feedback which
asymptotically stabilizes, for example, the origin. Then it
follows that there is an equilibrium manifold of dimension
m containing the origin; that is, the origin is not isolated,
which contradicts the assumption that it is asymptotically
stable. We state this formally.

Theorem 4: Let m = 1 and let (¢¢, 0) denote an equilib-
rium solution in M. The nonholonomic control system,
defined by (1) and (2), is not asymptotically stabilizable
using C'! state feedback to (q*,0).

Proof: A necessary condition for the existence of a
C! asymptotically stabilizing state feedback law for system -
(10)-(12) is that the image of the mapping

(X1 %20 %3,0) ~ (x3, ~J(xy, %)%, 0)
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contains some neighborhood of zero (see Brockett [7]). No
points of the form

0 o
(e), € # 0and a € R"™" arbitrary

a

are in its image: it follows that Brockett's necessary condi-
tion is not satisfied. Hence, system (10)-({2) cannot be
asymptotically stabilized to (g, g%,0) by a C' state feed-
back law. Consequently, the nonholonomic control sys-
tem, defined by (1) and (2), is not asymptotically stabiliz-
able to (g%,0) using a C' state feedback.

We remark that even C° (continuous) state feedback
(which results in existence of unique trajectories) is ruled
out since Brockett’s necessary condition is not satisfied
(31).

A corollary of Theorem 4 is that a single equilibrium
solution of (1) and (2) cannot by asymptotically stabilized
using linear feedback nor can it be asymptotically stabi-
lized using feedback linearization or any other control
design approach that uses smooth feedback. Of course, it
may be that a single equilibrium solution simply cannot be
asymptotically stabilized or it may be that any asymptoti-
cally stabilizing state feedback is necessarily not C°. How-
ever, in the subsequent sections, we show that a single
equilibrium can be asymptotically stabilized by use of
piecewise analytic state feedback. )

We first demonstrate that the system of normal form
equations (10)—(12), and hence the nonholonomic control
system defined by (1) and (2), does indeed satisfy certain
strong local controllability properties. In particular, we
show that the system is strongly accessible and that the
system is small time locally controllable at any equilib-
rium. These results not only provide a theoretical basis for
the use of inherently nonlinear control strategies but they
also suggest constructive procedures for the desired con-
trol strategies.

Theorem 5: Let m > 1 and let (g%, 0) denote an equilib-
rium solution in M. The nonholonomic control system
defined by (1) and (2) is strongly accessible at (g*, 0).

Proof: It suffices to prove that system (10)-(12) is
strongly accessible at the origin. Let / denote the set
{1,-,n — m}. The drift and control vector fields can be
expressed as

n—m
= Z X3.iTj»
j=1

f ey
= iel,
8 axJ.l
where
a n-m,
T, = - .’,-~x,x-, A 'e[
ooxy i=Zl L x2) X3 ; !

are considered as vector fields on the (x,, x,, x;) state

IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. 37. NO. 11, NOVEMBER 1492

space. It can be verified that
(g, fl=m,
[8.:[f 12 f]]]

el

ryT] i‘,i:El;

: [g,- Af [g.—, f]]] =]
= [l nd ]
hold, where k* denotes the nonholonomy degree. Let
% =span{g;, i €l},

# = span {[gi,vf]""i [gi,‘n[f’“'v [gizv[fv[gipf]” ”,
L1 sksky.

Note that dim £(0) = n — m and dim #(0) = n since the
distribution defined by the constraints is completely non-
holonomic; moreover dim{Z(0) N #H0)} = 0. It follows
that the strong accessibility distribution

Zy=span{X: X e g u#

has dimension 2n — m at the origin. Hence, the strong
accessibility rank condition {28] is satisfied at the origin.
Thus system (10)-(12) is strongly accessible at the origin.
Consequently, the nonholonomic control system, defined
by (1) and (2), is strongly accessible at (¢°,0).

Theorem 6: Let m > 1 and let (¢°,0) denote an equilib-
rium solution in M. The nonholonomic control system,
defined by (1) and (2), is small time locally controilable at
(g%,0).

Proof: It suffices to prove that system (10)-(12) is
small time locally controllable at the origin.

The proof involves the notion of the degree of a bracket.
To make this notion well defined we consider, as in [27], a
Lie algebra of indeterminates and an associated evalua-
tion map (on vector fields) as follows. :

Let X = (X,,, X,_,,) be a finite sequence of indeter-
minates. Let A(X) denote the free associative algebra
over R generated by the X, let L(X) denote the Lie
subalgebra of A(X) generated by Xy, X,_,, and let
Br(X) be the smallest subset of L(X) that contains
Xy, '+, X, and is closed under bracketing.

Now consider the vector fields f,g,,-",8,.. On the
manifold M. Each f, g, 8,- is @ member of D(M),
the algebra of all partial differential operators on C*(M),
the space of C” real-valued functions on M. Now let
go =/, and let g =(go,**,8,_,) and define the evalua-
tion map

[git.v[f
€l l<k<k*

Ev(g): A(X) — D(M)
obtained by substituting the g; for the X, ie.,

Ev(g)(za,x,) - Lag

where g, =g, g; &, (:l, - ,zk) Note that the ker-
nel of Ev(g) A(X) —»A(g) is the set of all algebraic
identities satisfied by the g; while the kemel of
Ev(g): L(X) — L(g) is the set of Lie algebraic identities
satisfied by g;.

e o ——— 1
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Now, let B be a bracket in Br(X). We define the
degree of a bracket to be &(B) = L "6'(B), where
5%(B). 8'(B).+-, 8" ™(B) denote the number of times
Xy X, _,,., respectively, occur in B. The bracket B is
called “bad™ if °(B) is odd and §‘(B) is even for each ¢,
i =1.,.n — m. The theorem of Sussmann tells us the
system is STLC at the origin if it satisfies the accessibility
rank condition: and if B is “bad” there exist brackets
C,.++.C, of lower degree in Br( X) such that

k-
Ecy(8)(B(B)) = L &Ery(g)(C)
i=1

where Ev, denotes the evaluation map at the origin and
(&, &) E R*. Here, B(B) is the symmetrization opera-
tor, B(B) = L, _7(B), where 7€ §,_,. the group
of permutations of {I,.n —m} and for 7 €S, _, ., 7 is
the automorphism of L(X) which fixes X|, and sends X,
o X, )

By Theorem 3, the system is accessible at the origin.

The brackets in & are obviously “good” (not of the type
defined as “bad”) and 8°(h) = L} ["6/(h) Vh €% thus
8(h) is even for all- h in #, ie., # contains “‘good”
brackets only. It follows that the tangent space TyM to M
at the origin is spanned by the brackets that are all
“good.” Next we show that the brackets that might be
“bad” vanish at the origin. First note that f vanishes at
the origin. Let B denote a bracket satisfying 6(B) > 1. If
B is a *“bad” bracket then, necessarily, 8°(B) #

727"8%(B), i.e., 8(B) must be odd. It can be verified that
if 6°%(B) < L72"8'(B) then B is identically zero and if
8°(B) > L";m6/(B) the B is of the form

;‘;,”'r,.(xj)Y,(xl, x,), for some vector fields Y{(x,, x,), i €
I, where r(x,), i € I, are homogeneous functions of de-
gree (8°(B) — L7."8(B)) in x,; thus B vanishes at the
origin. Consequently, the Sussmann condition is satisfied.
Hence, system (10)-(12) is small time locally controllable
at the origin. It follows that, the nonholonomic control

_system, defined by (1) and (2), is small time locally control-

lable at (g°,0).

VII. CONSTRUCTION OF PIECEWISE ANALYTIC STABILIZING
CONTROLLERS FOR CAPLYGIN SYSTEMS

Our recent work on control of nonholonomic systems in
[4], (22}, [23] has identified a large class of physical sys-
tems, which are referred to as “controlled Caplygin sys-
tems.” Our subsequent results are developed for this class
of systems. .

We first describe the class of controlled Caplygin sys-
tems. We use the notation introduced previously. If the
functions used in defining (1) and (2) do not depend
explicitly on the configuration variables q,, so that the
system is locally described by

M(q,)§ + F(q,.4) =J'(q.)A + B(g)u  (16)
J(q,)4, + 4. =0 (17)

where J(q,) is an mx(n — m) matrix function, then the
uncontrolled system is called a “Caplygin system” {21}. In

S

terms of the Lagrangian formalism for the problem this
corresponds to the Lagrangian of the free problem being
cyclic in (i.e., independent of) the variables g, while the
const'raints are also independent of g.. The Eyclic prop-
erty is an expression of symmetries in the problem. such
symmetries occurring naturally in many physical exam-
ples. More generally. if a system can be expressed in the
form (16) and (17) using teedback, then we refer to it as a
“controlled Caplygin system.”

For the Caplygin system described by (16) and (17). (8)
becomes

C'(q)M(q,)C(q,)4,
=C'(q,)[B(q)u - F(4,,C(q0)d,) - M(4,)C(q,)4,]
(18)

which is an equation in the phase variables (g,.q,) only.
As a consequence. q, constitutes a reduced configuration
space for the system (16) and (17). This reduced configu-
ration space is also referred to as the “base space” (or
“shape space”) of the system. The term shape space (see
(10}, [11], [12], [14], [15)) arises from the theory of coupled
mechanical systems, where it refers to the internal de-
grees of freedom of the system. It is possible to consider
control theoretic problems which can be expressed solely
in the base space, which can be solved using classical
methods. However, in our work, we are interested in the
more general control problems associated with the com-
plete dynamics defined by (16) and (17), which are re-
flected in (17) and (18). We remark that the dimension of
the base space is unique, equal to the number of degrees
of freedom; however the identity of the base space vari-
ables is not unique.

As in Section [V, we assume that r =n — m and that
the matrix product C'(q,)B(q,) is locally invertible; this
assumption is not restrictive. Consequently, it can be
shown that the normal form equations for the system (16)
and (17). following the development in Section IV, are
given by

X, =X (19)
Xy = =J(x,)x, (20)
£y =0 (21)

where x, = q,, X, = 4, X3 = ¢, and v satisfies

C'(g0)| B(g)u - F(4,,C(a1)d)) ~ M(9,)C(q)4,]
= C'(q)M(q)C(q))v. (D)

Our basic approach is to make use of the normal form
equations (19)-(21) to control the Caplygin system (16)
and (17). Note that the theoretical resuits obtained in
previous sections certainly apply to the system (16) and
(7).

Clearly, there is no continuous state feedback which
asymptotically stabilizes a single equilibrium. However.
the controllability properties possessed by the system
guarantee the existence of a piecewise analytic state feed-
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back in the analytic case [26]. We now describe the ideas
that are employed to construct such a feedback which
does achieve the desired local asymptotic stabilization of a
single equilibrium solution. These ideas are based on the
use of geometric phase (holonomy) which has proved
useful in a variety of kinematics and dynamics problems
(see e.g., [10], [11), and [19)). More information concerning
geometric phases can be found in the recent book [24] of
Shapere and Wilczek, and a review article {16] of Mars-
den, Montgomery and Ratiu. Our use of geometric phase
is, to the best of our knowledge. its first application to
nonlinear control systems of the form (19)-{21) which
contain nontrivial drift vector fields (5], [22]. [23]. The key
observation is that the geometric phase. the extent to
which a closed path in the base space fails to be closed in
the configuration space, depends only on the path tra-
versed in the base space and not on the time history of
traversal of the path. Related ideas have been used for a
class of path planning problems, based on kinematic rela-
tions, in [14], [15], and [12).

For simplicity, we consider control strategies which
transfer any initial configuration and velocity (sufficiently
close to the origin) to the zero configuration with zero
velocity. The proposed control strategy initially transfers
the given initial configuration and velocity to the origin of
the (q,,4,) base phase space. The main point then is to
determine a closed path in the g, base space that achieves
the desired geometric phase. We show that, in the analytic
case, the indicated assumptions guarantee that this geo-
metric phase construction can be made and that (neces-
sarily piecewise analytic) feedback can be determined
which accomplishes the desired control objective.

Let x° = (x?, x3, x}) denote an initial state. We now
describe two steps involved in construction of a control
strategy which transfers the initial state to the origin.

Step 1: Bring the system to the origin of the (x,, x;)
base phase space, i.e., find a control which transfers the
initial state (x?, x, x?) to (0, x3,0) in a finite time, form
some x}. -

Step 2: Traverse a closed path (or a series of closed
paths) in the x, base space to produce a desired geomet-
ric phase in the (x,, x,) configuration space, i.e., find a
control which transfers (0,x3,0) to (0,0, 0).

The desired geometric phase condition is given by

x} = ¢j(xl)d"'|
Yy .

where y denotes a closed path traversed in the base

. space. The geometric phase is reflected in the fact that
traversing a closed path in the base space yields a non-
closed path in the full configuration space. Note that here,
for notational simplicity in presenting the main idea, we
assume that the desired geometric phase can be obtained
by a single closed path. In general, more than one loop
may be required to produce the desired geometric phase;
for such cases y can be viewed as concatenation of a
series of closed paths.

(23
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Under the assumptions mentioned previously, explicit
prqged_uyes can be given for each of the above two steps
Step’ L 'is classical; it is Step 2, involving the geometric
phase. that requires special consideration. Explicit charac
terization of a closed path y which satisfies the desirec
geometric phase condition (23) can be given for severa
specific examples. In the next section, we present thre:
such examples. However, some problems may require :
general computational approach. An algorithm based o1
Lie algebraic methods as in [13] can be emploved «
approximately characterize the required closed path. Sup
pose the closed path y which satisfies the desired geomet
ric phase condition is chosen. Then.a feedback algorithn
which realizes the closed path in the base space can b
constructed since the base space equations (19), (21) con
stitute decoupled n — m double integrators on the bas
space.

This general construction procedure provides a strateg
for transferring an arbitrary initial state of (19)-(21) t
the origin. Implementation of this control strategy in
(necessarily piecewise analytic) feedback form can be a
complished as follows.

Let a =(a,,,a,.,) and b = (b, -, b,_,) deno
displacement vectors in the x, base space and let y(a.:
denote the closed path (in the base space) formed by tt
line segments from x, =0 to x, =a, from x, =a
x, =a+b, from x, =a + b to x, = b, and from x, =
to x, = 0. Then the geometric phase of the parameteriz:
family

{v(a.b)la,b € R""")

is determined by the geometric phase function y(a, b) -
a(a, b) given as

a(a,b) = = P J(x))dx,.
v(a,b)

Now let 7, denote the projection map =,: (x,.x,,.
~ (x,, x). In order to construct a feedback control alg
rithm to accomplish the above two steps, we first definc
feedback function V*' (m, x) which satisfies: for any =, x(
there is ¢, > ¢, such that the unique solution of

,\'71 = X3,
‘il = er(‘ﬂ’,;t),_

satisfies m,x(t,) = (x*,0). Note that the feedback fu
tion is parameterized by the vector xi. Moreover.

each x}, there exists such a feedback function. One st
feedback function V*1(mx) = (V (mx), -, V5 ()
given as .

—k‘- Sign(xl“' - xf',- + xl‘l.th|2k,).

(%15 %3.5) # (x7,,,0),

Ve (mo = o
(%100 %3.) = (x7.,,0).
where k;, i =1,--,n —m, are arbitrary positive «
stants.
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We specify the control algorithm. with values denoted
by U*. according to the following construction, where x
denotes the “‘current state’:

Control Algorithm for v*:

Step 0: Choose (a*, b*) to achieve the desired geomet-
ric phase.

Step I: Set ¢* =V (mx), until = x = (a*.0) then go
to Step 2; L.

Step 2: Set v* =V " (mx), until mx = (a* + b*.0);
then go to Step 3;

Step 3: Set v* = V® (m,x), until m,x = (b*.0); then go
to Step 4;

Step 4: Set v* = V%, x), until m,x = (0,0): then go to
Step 0.

We assumed here that the desired geometric phase can

be obtained by a single closed path. Clearly. the above-

algorithm can be modified to account for more complex
cases.

Note that the control algorithm is constructed by ap-
propriate switchings between members of the parameter-
ized family of feedback functions. On each cycle of the
algorithm the particular functions selected depend on the
closed path parameters a*,b*, computed in Step 0, to
correct for errors in x,.

The control algorithm can be initialized in different
ways. The most natural is to begin with Step 4 since v* in
that step does not depend on the closed path parameters;
however, many other initializations of the control aigo-
rithm are possible. The original control u4* is computed
using (22).

Justification that the constructed control algorithm
asymptotically stabilizes the origin follows as a conse-
quence of the construction procedure: switching between
feedback functions guarantees that the proper closed path
(or a sequence of closed paths) is traversed in the base
space so that the origin (0,0, 0) is necessarily reached in a
finite time. This construction of a stabilizing feedback
algorithm represents an alternative to the approach by
Hermes [9], which is based on Lie algebraic properties.

It is important to emphasize that the above construc-

tion is based on the a prioni selection of simply paramet- -

rized closed paths in the base space. The above selection
simplifies the tracking problem in the base space, but
other path selections could be made and they would, of
course, lead to a different feedback strategy from that
proposed above.

We remark that the technique presented in this section
can be generalized to some systems which are not Caply-
gin. For instance, this generalization is tractible to systems
for which (20) takes the form

i = p(x2)I(x))

where p(x,) denotes a certain Lie group representation
(see e.g., [16]). The geometric phase of a closed path for
such systems is given as a path ordered exponential rather
than a path integral.

VI, ExXAMPLES

Control of Knife Edge Using Steering and Pushing Ihputs'
Wg first consider the control of a knife edge movin ir;
pomnt contact on a plane surface (3]-{5). Let ani
denote the coordinates of the point of contact of 'the knif:
edge on the plane and let & denote the heading angle of -
the knife edge. measured from the x-axis. Then the equa-
tions of motion, with all numerical constants set to unity,

are given by

X =Asind + u,cos ¢ (24)
j = —Acos @ + u,sin ¢ (2%)
(ﬁ =vu: (26)

where u, denotes the control force in the direction de-
fined by the heading angle, u. denotes the control torque
about the vertical axis through the point of contact; the
components of the force of constraint arise from the

scalar nonholonomic constraint
xsing ~ycosd =20 27

which has nonholonomy degree two at any configuration.
It is clear that the constraint manifold is a five-dimen-
sional manifold and is defined by

M= {(¢,x,y,$,x,y')|xsin¢-y'cos¢=0}

and any configuration is an equilibrium if the controls are
zero.
Define the variables

X, =xcos ¢ +ysin ¢,
x2=¢y
Xy = —xsin ¢ + ycos ¢,
X, =%cos ¢+ ysing — ¢(xsind ~ycos d),
.‘.5 = ¢2,

so that the reduced differential equations are given by

X, =x,,
X; = Xs,
X3 = ~—X X,

Xy = U+ upxy = X3,
Xg = U;.

Consequently, (24)-(27) represent a controlled Caplygin
system with base space equations which are feedback
linearizable. The following conclusions are based on the
analysis of the above reduced equations.

Proposition 1: Let x° = (x{, x§, x5,0,0) denote an equi-
librium solution of the reduced differential equations

corresponding to « = 0. The knife edge dynamics de- -

scribed by (24)-(27) have the following properties:
1) There is a smooth feedback which asymptoticaily
stabilizes the closed loop to any smooth one dimensional -
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equilibrium manifold in M which satisfies the transversal-
ity condition.

2) There is no continuous state feedback which asymp-
totically stabilizes x°. :

3) The system is strongly accessible at x* since the
space spanned by the vectors

8,818, f1.18.. f1. Lg2n [f L. 1N

has dimension 5 at x°.

4) The system is small time locally controliable at x°
. since the brackets satisfy sufficient conditions for small
time local controllability.

Note that the base variables are (x,, x,). Consider a
parameterized rectangular closed path y in the base
space with four corner points '

(0,0, (x,,0), (xy, x2), (0, x5)

i, a=(x,,0) and b = (0, x,) following the notation
introduced in the general development. By evaluating the
integral in (23) in closed form for this case, the desired
. geometric phase condition is

1 —

This equation can be explicitly solved to determine a
closed path y* = y(a*,b*) which achieves the desired
geometric phase. One solution can be given as follows:

(0, yix1).

Note that the previously described feedback algorithm can
be used to asymptotically stabilize the knife edge to the
origin. A different feedback algorithm for this example is
given in [4]. '

Control of Rolling Wheel Using Steering and Driving In-
puts: As a second example, we consider the control of a
vertical wheel rolling without slipping on a plane surface
[3), [5]. Let x and y denote the coordinates of the point of
contact of the wheel on the plane, let ¢ denote the
heading angle of the wheel, measured from the x-axis and
let @ denote the rotation angle of the wheel due to
rolling, measured from a fixed reference. Then the equa-
tions of motion, with all numerical constants set to unity,
are given by

a* = ( lxslsignxg,O), b* =

F=21 (28)
y=AX ' (29
§=—Acosd— A, sind +u (30)
¢ = u, (3D

where u, denotes the control torque about the rolling axis
of the wheel and u, denotes the control torque about the
vertical axis through the point of contact; the components
of the force of constraint arise from the two nonholo-
nomic constraints

(32)
(33)

X = écos¢>

y = fsin ¢
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which-have nonholonomy degree three at any configura-
tion. The constraint manifold is a six-dimensional mani-
fold and is given by

M= {(B,dxx,y,é.é,i.)‘)li =fcos ¢,y = §sin d>}

and any configuration is an equilibrium if the controls are
zero.

Define the variables
x:=¢‘ Xy =), Xg =d;

so that the reduced differential equations are given by

x|=09 x3=I, x5=8.‘
xl =x5,
' x'z =x6,
X3 = XgCOS X5,

X, = xssin x,,

. 1
xs = Eul,
x.ﬁ = uz.

Consequently, (28)—(33) represent a controlled Caplygin
system with base space equations which are feedback
linearizable. The following conclusions are based on anal-
ysis of the above reduced equations.

Proposition 2: Let x° = (x{, x3, x5, x§,0.0) denote an
equilibrium solution of the reduced differential equations
corresponding to « = 0. The rolling wheel dynamics de-
scribed by (28)-(33) have the following properties:

1) There is a smooth* feedback which asymptotically
stabilizes the closed loop to any smooth two-dimensional
equilibrium manifold in M which satisfies the transversal-
ity condition.

2) There is no continuous state feedback which asymp-
totically stabilizes x°.

3) The system is strongly accessible at x¢ since the
space spanned by the vectors

81,82:(8, f1.[82. F1. 82, (£ {80, F 111,
(g2, [f.[g,[f.[5.. F1NN]]

has dimension 6 at x°.

4) The system is small time locally controliable at x*
since the brackets satisfy sufficient conditions for small
time local controllability.

Note that the base variables are (x,, x,). Consider a
parameterized rectangular closed path y in the base
space with four corner points

(O’O)v(xl’o)v(xl’xZ)'(vaz)‘

By evaluating the integral in (23) in closed form for this
case, the desired geometric phase conditions are

x} =x,(cos x, = 1),
X} =x, sin x,.

These equations can be explicitly solved to determine a
closed path (or a concatenation of closed paths) y* which
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achieves the desired geometnc phase One solution can
be given as follows: if x3 # 0 then y* is the closed path
specified by

= () + (xy)7255,0),
b* = (0. —sin™ 2abel/ () + (1Y)

and if x} = 0 then ¥* is a concatenation of two closed
paths specified by

= (OSX}‘,O), * = (0.0.571’),
a** = (-05x},0), b** =(0.-0.3m).

Note that the previously described feedback algorithm can
be used (with the modification indicated in the general
development) to asymptotically stabilize the roiling wheel
to the origin.

Control of Planar Multibody Systems Using Angular Mo-
mentum Preserving Inputs: Another interesting class of
physical examples is given by the control of a planar
multibody system with angular momentum preserving
control torques. For more details on the origin of this
problem, and references to previous work, see (10] and
{25]. Related papers are in [22], [23). It is assumed that a
system of N planar rigid bodies are interconnected by
frictionless one degree of freedom joints in the form of an
open kinematic chain. The configuration space of the
N-body system is TV, the N-dimensional torus. Define the
vector of absolute angles of the N bodies

=16, 6y)

and the vector of relative angles (or joint angles) corre-
sponding to the (N — 1) joints

Y= (b, ¥n-1)-
The relationship between the vectors 6 and ¢ is given by
g =Pl

where P is a constant ( vV — 1) X N matrix. In the ab-
sence of potential energy, the equations of motion are
given by

J(8)6 + F(6,6) =Pu (34)
where the N X N matrix function J(8) is invertible, and

14
F(6,6) = —[J(o)]o— 7358 'J(8)6)

in an N-vector function, and the control input u is the
N — 1 vector of joint torques. Assuming that the angular
momentum is zero, it follows that

17(0)6 =0

holds, where 1 = (1,-++,1). It can be shown that (35) is
nqnholonomic for N > 3. Define the variables

xl = ‘1’,
Xy =6,
x] = 'llls
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so that the reduced differential equations are given by
X, =Xy,
By = —J(x)x;,
£, = F(x,.xs) + B(x,)u.

The indicated assumptions guarantee that (34) and (35)
take the form of a controlled Caplygin system with shape
space equations that are feedback linearizable.

The following conclusions are based on analysis of the
above reduced equations.

Proposition 3: Let x° = (x{,x5,0) denote a regular
equilibrium of the reduced differential equations corre-
sponding to u =0, ie., (dJ, (x9)/9x5 ) = (3] (x0)/
axy,; ) * 0 for some (iy, jo). The dynamlcs of the planar
multibody system described by (34) and (35) have the
following properties if N = 3:

1) There is a smooth feedback which asymptotically
stabilizes the closed loop to any smooth one dimensional
equilibrium manifold in M which satisfies the transversal-
ity condition.

2) There is no continuous state feedback which asymp-
totically stabilizes x°.

3) The system is strongly accessible at x° since the
space spanned by the vectors

sur 8 (80 F1oo 8o 1 (81 [ L8101

has dimension 2N - 1 at x°.

4) The system is small time locally controllable at x*
since the brackets satisfy sufficient conditions for small -
time local controllability.

If N =1 or 2, then the system (34) and (35) is neither
strongly accessible nor small time locally controllable. If
the equilibrium solution x¢ is not regular, higher order
brackets are required to obtain the same conclusions.

Note that the shape variables are the N — 1 joint
angles x,. Following the development in [22), the N
bodies can be treated as three interconnected bodies by
locking all the joints except the ones labelled (i, j,).
Consider a parameterized rectangular closed path y in
the x, ;, =X plane with four corner points

(0’0)9(x1,io’0)1(xl.io’xl.jo)’(o’xl.io)'

In this case, the desired geometric phase condition can be
written as

1 — - -
X = ¢si0(xl.io’ xy ) dxy i)+ 5% X,) dxy
y

where 5 (x;,, x, ;) and §;(x,;,x, ;) are obtained by
evaluatmg J(x) and J, (x ) at x,; =0, for i =1,

N-1i# ’o’ i #j, In thxs case, the path integral can be
computed numerically as a function of the loop parame-
ters X1ig X1 as in {23). Further, loop parameters
Xt X1.j, can be computed numerically, thereby deter~
mining a closed path y* which achieves the desired
geometric phase. Note that the previously described feed-
back algorithm can be used (with the modification indi-
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cated in the general development) to asymptotically stabi-

lize the planar multibody to the origin.

IX. CONCLUSIONS

A class of inherently nonlinear control problems has
been identified, the nonlinear features arising directly
from physical assumptions about constraints on the mo-
tion of a mechanical system. In this paper, we have
presented models for mechanical systems with nonholo-
nomic constraints represented both by differential-alge-
braic equations and by reduced state equations. We have
studied control issues for this class of systems and we have
derived a number of fundamental results. Although a
single equilibrium solution cannot be asymptotically stabi-
lized using continuous state feedback, a general proce-
dure for constructing a piecewise analytic state feedback
which achieves the desired result has been suggested. The
theoretical issues addressed in the paper have been illus-
trated through several classes of example problems.

The general approach described in this paper makes
substantial use of the geometric approach to nonlinear
control. However, the specific nonlinear control strategy
suggested is substantially different, both conceptually and
in detail, from the smooth nonlinear control strategies
most commonly studied in the literature. It is hoped that
this paper provides a foundation for future research on
this important and challenging class of nonlinear control
problems.
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Planar Reorientation Maneuvers of Space Multibody

Systems Using Internal Controls Doy

Mahmut Reyhanoglu® and N. Harris McClamrocht
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In this paper a reorientation maneuvering strategy for an interconnection of planar rigid bodies in space is
! developed. It is assumed that there are no exogeneous torques, and torques generated by joint motors are used
as meaus of control so that the total anguiar momentum of the multibody system is a constant, assumed to be

1. [Introduction

N this paper we develop a reorientation strategy for a sys-
tem of N planar rigid bodies in space that are intercon-
nected by ideal frictionless pin joints in the form of an open
kinematic chain. Angular momentum preserving controls,
e.g., torques generated by joint motors, are considered. The
N-body system is assumed to have zero initial angular momen-
tumn..Our earlier work'-? demonstrated that reorientation of a
. planar multibody system with three or more interconnected
bodies using only joint torque inputs is an inherently nonlinear
control problem that is not amenable to classical methods of
nonlinear control. The goal of this study is to indicate how
control strategies can be explicitly constructed to achieve the

desired absolute reorientation of the N-body system,

There are many physical advantages in using internal con-
trols, e.g., joint torque controls, to carry out the desired multi-
body reorientation maneuvers. First of all, this control ap-
proach does not modify the total angular momentum of the
multibody system. In addition, internal controls have obvious
advantages in terms of energy conservation. Moreover, they
can be implemented using standard electrical servo motors, a
simple and reliable control actuator technology.

The formal development in this paper is concerned with
control of a muitibody interconnection in space that has zero
angular momentum. Although these results are formulated in
a general setting, we have been motivated by several classes of
specific problems. Several potential applications of our gen-
eral results are now described.

Manipulators mounted on space vehicles and space robots
have been envisioned to carry out construction, maintenance,
and repair tasks in an external space environment. These space
systems are essentially multibody systems satisfying the as-
sumptions of this paper. To carry out the desired tasks, they
must be capable of performing a variety of reorientation ma-
neuvers. Previous research on maneuvering of such space
multibody systems has mainly focused on maneuvers that
achieve desired orientation of some of the bodies, e.g., an end
effector, whereas the orientation of some of: the remaining
bodies cannot be specified, at least using the methodologies
employed.’-® Using the approach suggested in this paper, ma-
neuvers that achieve any desired reorientation for all of the

Received June 25, 1991; revision received Feb. 4, 1992; accepted for
publication Feb. 28, 1992. Copyright © 1992 by the American Insti-
tute of Aeronautics and Astronautics, Inc. All rights reserved.

*Professor, Department of Aerospace Engineering.
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zero in this paper. The maneuver strategy uses the nonintegrability of the expression for the angular momentum.
‘We demonstrate that large-angie maneuvers can be designed to achieve an arbitrary reorientation of the multi-
body system with respect to an inertial frame. The theoretical background for carrying out the required
maneuvers is briefly summarized. Specifications and computer simulations of a specific reorientation maneuver,

links of the system can be accomplished. Such additional flex-
ibility in performing reorientation maneuvers shouid have
great practical significance for completion of robotic tasks in
space.

Another related application is the performance by astro-
nauts of reorientation maneuvers in space. Although it is well
known that astronauts in space can perform a variety of com-
plicated reorientation maneuvers, without the use of thrusters,
the theoretical basis for such maneuvers is incomplete. Again
we note that an astronaut in space can be considered as a
multibody system that satisfies all of the assumptions of this
paper (except that motion is not restricted to be planar). Con-
sequently, the theory in this paper is applicable in principle to
the study of the maneuvering capability of astronauts in space.
Previous research in this area’ has emphasized dynamics is-
sues. Other closely related research has focused on describing
the reorientation maneuvers of a falling cat.?

Finally, we mention another area of potential application of
the resuits of this paper, namely, the development of deploy-
ment maneuvers for multibody antennas connected to a space-
craft. If deployment maneuvers for an antenna, or other de-
ployable structures, are performed using only torque motors
at the joints of the antenna segments, then the spacecraft-
antenna system is a multibody system that satisfies the assump-
tions of this paper. Consequently, our results can be used to
develop efficient antenna deployment maneuvers. The impor-
tance of such deployment maneuvers is that they do not change
the final orientation of the spacecraft or the total angular
momentum of the spacecraft-antenna system, thereby reduc-
ing the requirements of the spacecraft momentum manage-
ment system. To our knowledge, such control approaches to
antenna deployment have not yet been exploited. It is expected
that such an approach would have many advantages over the
use of existing passive antenna deployment mechanisms.'!

This paper is organized as follows. In Sec. II, a mathemati-
cal model for a planar multibody system in space is derived.
We then formulate a controi problem associated with planar
multibody reorientation. In Sec. III, we first summarize sev-
eral relevant theoretical resuits. We then introduce a control
strategy to solve this reorientation problem. In Sec. IV, we
apply the theoretical results 1o a three-link system. We present
computer simulations illustrating the control strategy. Section
V consists of a summary of the main results and concluding
remarks about future research. Although a complete treatment
of the topics in the paper requires use of differential geometric
tools, our presentation avoids these tools and uses only ele-
mentary mathematical methods. However, references to rele-
vant literature are provided throughout. :
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II. Problem Formulation

We consider a system of N planar rigid bodies intercon-
nected by frictionless one-degree-of-freedom joints in the form
of an open kinematic chain. The configuration space, for an
observer at the center of mass of the system of rigid bodies, is
N dimensional. Since we assume an open kinematic chain,
there are exactly N -1 joints. We consider controlling the
rotational motion of the system using torques at the joints;
each joint is assumed to be actuated so as to permit free adjust-
ment of the joint angle. It is assumed that there are no external
torques acting on the system. It is clear that the configuration
of the N bodies can be described by the absolute angle of any
one of the bodies (say body 1) and & - | joint angles. Denote
by 8, the absolute angle of body 1 and by the (N - I) vector
¥ =(¥,,...,.¥~-) the joint angle vector. Clearly, (6,,¢) is a
generalized coordinate vector for the rotational motion. It can
be shown that the Lagrangian (which is equal to the rotational
kinetic energy under the preceding assumptions), written in

- terms of these coordinates and their time derivatives, does not

contain 8, explicitly, i.e., 8, is a cyclic or ignorable coordinate.
Consequently, the generalized momentum associated with the
cyclic coordinate 8, is conserved. This conserved quantity is the
first integral of the motion corresponding to conservation of
angular momentum of the system. In this paper we assume
zero initial angular momentum so that angular momentum
remains zero throughout a maneuver.

It is clear that Lagrange’s equations describe the motion on
the joint angle space, and the evolution of 6, can be obtained
from the expression for conservation of angular momentum.
Thus, the motion of a planar multibody system, under the
preceding assumptions, can be described by the following re-
duced-order equations:

LW+ F(bd) =1 m
Bi+s WY =0 ¥3)
where r=(7,,...,Ty-;) denotes the (N —1) vector of joint

torques, J,(¢¥) is a symmetric positive definite (N ~ 1) x (N - 1)
matrix function, and s(y) and F,(y,¥) are (N - 1) vector func-
tions. Note that in this paper a prime denotes transpose. The
explicit specifications of these functions can be found in the
literature.!-212

State-space equations for Egs. (1) and (2) are

b= -s(¥)'w 3)
y=u @
b= =JT WFw) + I )T %))

Note that Eqs. (4) and (5) are expressed in terms of the joint
phase variables (y,¥) only. Hence the joint angle space con-
stitutes a reduced configuration space for the system. This
reduced configuration space is also referred to as the ‘‘shape
space’’ of the system.'?-16 It is possible to consider control
problems expressed solely in terms of the shape space; such
problems can be solved using classical methods. However, in
our work we are interested in the more general control prob-
lems associated with the complete dynamics of the multibody
system defined by Eqgs. (1) and (2) [or Eqs. (3-5)].

Note that Eqs. (4) and (5) only, which represent the projec-
tion of the motion onto the shape phase space, are feedback
linearizable using the feedback transformation

u=-J WG+ ) (6)

where u € RV-!, The previous feedback transformation yields
the following normal form equations: '

b= -s(W)'w M

Vy=w @

w=u )

We remark here that it is impossible to completely linearize th 1
system defined by Eqs. (3~5) using static or dynamic feedbac:
combined with any coordinate transformation.

Note that an equilibrium solution of Egs. (3-5) correspong. !
ing to =0 [or equivalently an equilibrium solution of Eqsh
(7-9) for u =0} is given by (67,y°.0), where (8¢,°) is referreq
to as an equilibrium configuration. Hence, an equilibriyp
solution corresponds to a trivial motion of the system for
which all of the configuration space variables remain constan,

Note also that Eq. (3) represents conservation of angula}
momentum. This equation is nonholonomic for N =3 (i.e
if the muitibody system consists of three or more links), siné
the differential expression (3) is not integrable for N = 3. This
fact has important implications in terms of controliabilipy
properties of the system as will be shown in the subsequen
development. As a consequence of the symmetry possessed by
the system, 8; does not apear explicitly in Eq. (3). Mechanica
systems with such symmetry properties are referred to as non
holonomic Caplygin systems.!”-2! As a consequence of th
nonintegrability for N =3, the scalar analytic functions

asiy) 35,9
N, o

where 7 ={1,...,N -1}, do not all vanish, except possibly o
a set that has measured zero with respect to the shape spac

H,() = (i) el? (1t

HI. Reorientation Maneuvering Problem

In this section, we address the following control ﬁroblez
associated with planar multibody systems described by Eqs. (
and (2):

Problem: Given an initial state (8},4°w% and a-desir
equilibrium solution (47,¢*,0), determine a motion

B () w(1)), O0stst,
such that )
wmmm@mq%ww.(mm
W) wlt))=(67.44.0)
and
(6:(0), ¥(8), (1))

satisfies Eqs. (1) and (2) for some control function ¢ —r(¢

Note that, in particular, if w%=0, then this problem co
sponds to a rest-to-rest maneuver.

The existence of solutions to this control problem
demonstrated in our earlier work."? In particular, we stuc
the nonlinear control system described by Egs. (7-9) and
ployed certain results from nonlinear control theory to cha
terize controllability properties of planar multibody syst
described by Egs. (1) and (2). These results not only prove
existence of solutions of the preceding problem but also
vide a theoretical basis for construction of nonlinear cor
strategies required to achieve the desired maneuver. We
summarize those results,'?

Under the stated assumptions, a planar muitibody sv
has the following properties if NV 2 3, i.e., if it consists of
or more links: -

1) The system is strongly accessible.

2) The system is small time locally controllable from
equilibrium. .

3) The system can be transferred from any initial cond
to any desired equilibrium in arbitrarily smail time.
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1f N =1 or 2, then the system is not even accessible and is not
small time locally controllable, and there exist initial condi-
rions that cannot be transferred tq a desired equilibrium.

The proofs!-!? of the first two results-dépend on showing
(hat certain Lie algebraic conditions are satisfied if ¥ = 3. The
third result is proved''® constructively.

It should be emphasized that the subsequent development is
assumed to be carried out for multibody systems consisting of
three or more links (N = 3); this should be understood even if
it is not always explicitly stated. Note that the reorientation
problem generally has many solutions. In this paper, we de-
scribe one solution approach, outline the theory behind it, and
present some data from simulations. The key observation is
the following.

Consider Eq. (3). Assume that joint angles are controlled in
such a way that y(t), 0st,<t st,, describes a closed path v
in the shape space. Integrating both sides of Eq. (3) from ¢ =1,
to £ =t and using the fact that dy =y d¢, we obtain "

0

91('2)—91(1|)=¢)5'(¢/)d\0 - an

vy

Thus, by proper selection of a path y in shape space, any
desired geometric phase (which is a rotation of link 1) can be
obtained. By the nonintegrability property just mentioned, the
preceding integral is in fact path dependent, thereby guaran-
teeing the existence of (many) such paths.

Note that in differential geometry the quantity

aly) = <§9 s'(¥)dy
A

is referred to as the geometric phase (or holonomy) of the
closed path v. This quantity depends only on the geometry of
the closed path and is independent of the speed at which the
path is traversed. -

Note that Stokes’ formula can be applied to obtain an equiv-
alent formula for a(y) as a surface integral. For simplicity,
assume that N =3, i.e., the shape space is the (¢,,¥1) plane.
Also, let v be traversed counterclockwise. Then by Stokes’
theorem the preceding formula can be written as

a(ﬂ—js<3¢| ay dy, dy,

where S is the surface within the boundary v. In the case that
the path is traversed clockwise, the surface integral is equal to
—afy).

More information concerning geometric phases can be
found in the literature.!’ Geometric phase ideas have proved
useful in a variety of inherently nonlinear control prob-
lems.!*2! These ideas have aiso been used for a class of path
planning problems based solely on kinematic relations.!3.14.16

Fig. 1 Three-link example.

0.6

0.4

0.2
H{v, ¥}
0.0

Fig. 2 Function 4 (¢1,¢1).

We now describe a control strategy, using the preceding
geometric phase relation (11), which solves the reorientation
problem.

Let (8¢,¢*,0) denote the desired equilibrium solution. We
refer to (6¢,y#) and ¢* as the desired equilibrium configura-
tion and the desired equilibrium shape, respectively. We de-
scribe four steps involved in construction of an open-ioop
control function u, ,,,=(u., ... 4n-1)’ that transfers any ini-
tial state (67 ,y°,«°) to (8¢, ¢#,0) in time exactly ¢,, where t,>0
is arbitrary.

Let 0<t,<t;<ty<¢, denote an arbitrary partition of the
time interval (0, ¢/).

Step 1 Transfer the system to the desired equilibrium
shape, i.e., find a control that transfers the initiai state
0%,¢%,w% 1o (8},¢*,0) at time ¢, for some 6}.

Since the dynamics on the shape phase space are so simple,
namely, decoupled double integrators, step 1 has many soiu-
tions that are easily obtained using classical methods. One such
control function is

t€10,0.5¢)

U, = 81&[/'-\l/°—w°n(0.5—1r“')1Sin 21(2:—(,)]
I L
t€(0.56.¢)
(12)

Next, we select a closed path y (or a series of closed paths,
see remark 1 following) in the shape space that achieves the
desired geometric phase. There are many ways to accomplish
such a construction; in our work we have found it convenient
to use only two joint motions, keeping the other joints locked,
and to use a square path in the restricted two-dimensional
shape space. It is convenient to select the center of the square
path in a region of the shape space that corresponds to a
‘‘large’’ geometric phase change (see remark 2 following).

To make the earlier ideas more concrete, we present a spe-
cific construction. Let (i,j) € I3, i #/, denote a pair of joints.
Assume that for ¢ =t only this pair of joints are actuated
while all of the other joints are kept fixed. This is equivalent
to locking all of the joints except the ones labeled i and j
and treating the N bodies as three interconnected bodies, for
t =t,. In this case the desired geometric phase formula can be
written as

0(¢) - 8} = zalv)
where +(-) corresponds to counterclockwise (clockwise)
traversal of the closed path y. Since we desire to make
0,(17)= 0%, the closed path v should be selected to satisfy

8 -9 = xaly)
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Fig.4 Time responses for 6y, ¥, and 3.

The path -y lies in the two-dimensional (¢,,y;) plane, so that

a

aly) = (? S5iWi ¥ dés + 554y Ay
Y

where the scalar functions 5;(¢;,¥;) and §;(¢;,¥;) are obtained
by evaluating s,(y) and s;(§) at ¥, =%, vk € [ where k #i,/.

As mentioned earlier, we choose v to be a square path in the
(¥:,¥;) plane that is centered at the shape defined by ¢* and
that has side of length z*, where z* satisfies

xalys) + 0~ 6f=0

Here v, indicates the dependence of the square path on the size
parameter z. In most cases, this equation is easily solved using
standard numerical procedures.

Thus the four corner points of this square path are defined
by shape vectors

pt=y*-0.52%e; +e))
pz‘ = ¢' + 0.52'(8,’ -e,-)
p=y* +0.5z%e; +¢))

pe=¥* - 0.52%e; -¢))

where ¢; and e; are the ith and jth standard basis vectors in
RN-1. Thus the specific square path selected depends on the
N — 1 vector y* that is the center of the square and the size of
the square z°.

Remark.1: Note that here, for notational simplicity in pre-
senting the main idea, we assume that the desired geometric
phase can be obtained by a single closed path. In general, more
than one closed path may be required to produce the desired
geometric phase; for such cases v can be viewed as a concate-
nation of a series of closed paths.

Remark 2: Selection of the center point ¥* of the path is
rather arbitrary, e.g., one selection is y* = y*. However, other
choices may provide a greater change in the geometric phase
for a given size path. In this regard, the use of Stokes’ theo-

rem, as indicated previously, suggests that y* should be cho,
where e

Is;(¥) _ 3s.(y) ’

is 2 maximum.

We now describe the remaining three steps as follows, .

Step 2: Transfer the system from state (8;,y°.0) to a state
corresponding to the corner of vy closest to y*, along an arb;.
trary path in the shape space, in ¢y —¢; units of time.

As an example, if pi* is the corner of y closest to V¢, we
propose the following control function for step 2:

2n(p! - v9) Sin[Zﬂ’([ —rl)}
(£z—1)2 (f2—1ty)

Ui =

(13

Step 3: Traverse the selected square path (counterclockwise
or clockwise, depending on the sign of the desired geometric
phase value), in ¢y - £ units of time; the resulting change in
the angle 6, is necessarily 65 -8} .

Without loss of generality, we assume that the desired geo-
metric phase value is obtained by counterclockwise traversal
of the closed path starting and ending at p{. Then, the follow.
ing control functions guarantee traversal of the closed path,
thereby accomplishing step 3:

2(pt-pP . [2x(e-1ta)
Upeyigem = e sin p

L

(19

20(pt-pP . [2x(t -t2-h)
Uiy rhaye2m = (P’;'z Pz sin hz ] (15

2r(pt-ph . [2x(t —1t3-2h) -
Ulryo2h,eyv3m) = (p;’z £ sin hz } (16)

L

Uleygedhap =

2e(pt~p8 . | 2x(t -1;-3h) .
Wi sm[ A ] (N

where A =(t;-1;)/4.

Step 4: Transfer the system back to the desired equilibrium
shape ¢ following the path used in step 2, in ¢, —¢; units of
time, thereby guaranteeing that the desired final state (87,¥*,0)
is reached at time ¢,.

The following control function

2r(y -p) .n[21r(1 - 13)]

18
(ty—13)? (ty=1t3) ()

u(').l/) =

accomplishes step 4.

The corresponding control torque r can be computed using
Eq. (6). It is clear that the constructed control torque transfers
the initial condition of the system (1) and (2) to the desired
equilibrium configuration at time ¢,. It is important to empha-
size that the preceding construction is based on a priori selec-
tion of a square as the closed path in the shape space. Selection
of square paths simplifies computation of the controls; how-
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Fig.5 Motiou in shape space.




Table 1 System characteristics

Body i a,m b.m m, kg I, kg-m?
1 0.5 05 120 10
2 0.5 0.5 12 1
3 0.5 0.8 12 l

ever, other path sefections could be made. There are infinitely
many choices for control functions that accomplish the pre-
ceding four steps, and the total time required is arbitrary.

1V. Example of Maneuvering a Three-Body System

In this section, the theory developed in Sec. 11l is used to
illustrate a specific maneuver for interconnected muitibodies
using only torque inputs at the joint connections. As discussed,
general planar maneuvers cannot be achieved using two or
fewer interconnected links. An interconnection of three links
provides complete maneuvering capability; consequently, that
is the case considered here. Maneuvers of an interconnection
of more than three links can always be reduced to a sequence
of submaneuvers, each submaneuver involving the motion of
only three links.

For illustration purposes we consider a planar three-link
system modeled as in Fig. 1. The first link represents a space-
craft, whereas the other two links represent antenna segments;
the reorientation maneuver that is studied represents a deploy-
ment of the antenna that is to be accomplished while achieving
a specified orientation of the spacecraft. The system character-
istics are given in Table 1.

Using the notation already introduced with N =3, the fol-
lowing are the reduced-order equations of motion

By = si¥i b + 5261, ¥ a9
' b= w (20)
Y2 = w2 @n
@) = Wy (22)
@y = Uy (23)

The functions s,(¥;,¥2) and sx(¥,¥,), determined from the
angular momentum expression, are given as

si¥) = ~N:(yDW),  i=1.2
where
Ni¥) = 17.5 + 7.5 cos ¥, + 10.5 cos ¥, + 2.5 cos(y + ¥2)
Ny(§) = 3.75 + 5.25 cos Yz + 2.5 cos(y + ¥2)
D(Y) = 32.5 + 15cos §, + 10.5 cos ¥ + 5 cos(¥ + ¥2)

and the transformed input u is related to the control torque r
by

u=-J WFW.w)+ @)

where J,(¥) is a 2x 2 matrix with entries

Ji, () = 17.5 + 10.5 cos y; = N}(¥)/D(¥)
Jy, ($) = 3.75 + 5.25 cos Y, ~ N7 (¥)/D(¥)
J;, (§) = 3.75 + 5.25 cos Y2 ~ N}(¥)/D(y)
Jo () = 3.75 - Nj($)/D(¥)
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and the vector function F,(J,w) can be expressed as

dJs(¥) 14
Fyw) = —7— w= 3% (w2 a]

where ¢ = (y,,¥,) and w ={w,w;). We first compute the func-
tion

_sd) _ asy)

HE)
M v
on [~ 7, x] x [~ =, x}. This function is shown gfaphically in
Fig. 2. The joint angles (¥,.¥2), where H takes the largest
absolute value, are approximately

[@7/3, 5%/6) , (= 5%/6, - 2x/3)]

Consequently, geometric phases for the square paths centered’
at y*=(2n/3, 5x/6) are computed numerically. Figure 3
shows the geometric phase as a function of the size of the
square path.

We present a representative rest-to-rest maneuver that de-
ploys the antenna segments from a folded configuration to a
deployed configuration while achieving a desired orientation
of the spacecraft link. The maneuver is defined by an initial
rest configuration (0, r, — ) and a final rest configuration

-18 - e
.20 : L N " .
0 s 13 0 28
¢ (voe)
Fig. 6 Coantrol torques r; snd ;.
[nitial Configuration Step 1 Step 2
Step 3 Step 4 Final Configuration

Fig. 7 Configuration of links.
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(0.57,0,0). The specific control functions indicated previ-
ously were used in the simulation; the times for each of the
indicated steps are £, =8, £,=12, t;=20, and ¢, = 24. In this
particular case, the required geometric phase change 65 -6!
was computed to be 0.39 rad, which defined the square path
used in the simulation.

The time responses for 8,, ¥,, and ¥, are shown in Fig. 4.
Figure § illustrates the motion in the shape space. The control
torques 7, and 7, are shown in Fig. 6. In Fig. 7 the maneuver
is demonstrated by showing the configuration of the links for
a sequence of uniformly spaced time instants.

V. Conclusions

In this paper we have developed a reorientation maneuver-
ing strategy for planar rigid bodies interconnected by ideal pin
joints in the form of an open kinematic chain. The maneuver
strategy uses the nonintegrability of the expression for angular
momentum conservation. We have demonstrated that large
angle maneuvers can be designed to achieve an arbitrary reori-
entation of the muitibody system with respect to an inertial
frame; the maneuvers are performed using internal controls,
e.g., servo torque motors located at the joints of the body
segments. The theoretical background for carrying out the
required maneuvers has been briefly summarized. The results
have been applied to a specific space maneuver of a three-body
interconnection. We mention two nontrivial extensions of the
approach in this paper that are currently being developed. The
first extension is to nonplanar reorientation maneuvers of
multibody systems; in this case the dynamics issues are much
more complicated, but in principle the approach is viable.?
Another extension is the development of feedback implemen-
tations of the controls presented in this paper; some results
have been obtained!? using a (necessarily) discontinuous feed-
back strategy. These important extensions generally require
the use of differential geometric methods for a complete treat-
ment. One motivation of the present paper has been to present
the key ideas, in the case of planar reorientation maneuvers,
using only elementary methods of analysis. .
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Attitude Stabilization of a Rigid Spacecraft Using Two Control Torques:

A Nonlinear Control Approach Based on the Spacecraft Attitude Dynamics
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Abstract

The attitude stabilization problem of a rigid spacecraft using control torques supplied by
gas jet actuators about only two of its principal axes is considered. We first consider the case
where the uncontrolled principal axis of the spacecraft is not an axis of symmetry. In this
case, the complete spacecraft dynamics are small time locally controllable. However, the
spacecraft cannot be asymptotically stabilized to an equilibrium attitude using time-invariant
continuous feedback. A discontinuous stabilizing feedback control strategy is constructed
which stabilizes the spacecraft to an equilibrium attitude. We next consider the case where
the uncontrolled principal axis of the spacecraft is an axis of symmetry. In this case, the
complete spacecraft dynamics are not even accessible. However, the spacecraft dynamics are
strongly accessible and small time locally controllable in a reduced sense. The reduced space-
craft dynamics cannot be asymptotically stabilized to an equilibrium attitude using time-
invariant continuous feedback, but again a discontinuous stabilizing feedback control strategy
is constructed. In both cases, the discontinuous feedback controllers are constructed by
switching between several feedback functions which are selected to accomplish a sequence of
spacecraft maneuvers. The results of the paper show that although standard nonlinear control
techniqucs are not applicable, it is possible to construct a nonlinear discontinuous control law
based on the dynamics of the particular physical system.

* Author to whom all correspondence should be addressed.
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1. Introduction

The attitude stabilization problem of a rigid spacecraft using control torques supplied by
gas jet actuators about only two of its principal axes is revisited. Although a rigid spacecraft
in general is controlled by three independent actuators about its principal axes, the situation
considered in this paper may arise due to the failure of one of the actuators of the spacecraft.
Since we are considering a space-based system, the problem considered here, namely, the atti-
tude stabilization of a spacecraft operating in an actuator failure mode, is an important control
problem. The linearization of the complete spacecraft dynamic equations at any equilibrium
attitude has an uncontrollable eigenvalue at the origin. Consequently, controllability and stabil-
izability properties of the spacecraft cannot be inferred using classical linearization ideas and
requires inherently nonlinear analysis. Moreover, a linear feedback control law cannot be used
to asymptotically stabilize the spacecraft to an equilibrium attitude. An analysis of the con-
trollability properties of a spacecraft with two independent control torques is made in (Crouch,
1984). Crouch (1984) showed that a necessary and sufficient condition for complete control-
lability of a spacecraft with control torques supplied by gas jet actuators about only two of its
principal axes is that the uncontrolled principal axis must not be an axis of symmetry of the
spacecraft. In (Bymnes and Isidori, 1991), it is shown that a rigid spacecraft controlled by two
pairs of gas jet actuators about its principal axes cannot be asymptotically stabilized to an
equilibrium attitude using a time-invariant continuously differentiable, i.e. C!, feedback con-
trol law. Moreover, using some of the theoretical results in (Sontag, 1989) and (Zabczyk,
1989), it also follows that there does not exist any time-invariant continuous feedback control
law which asymbtotically stabilizes the spacecraft to an equilibrium attitude. However a
smooth C! feedback control law is derived in (Bymes and Isidori, 1991) which locally
asymptotically stabilizes the spacecraft to a circular attractor, rather than an isolated equili-
brium,

We first consider the case where the uncontrolled principal axis of the spacecraft is not
an axis of symmetry. In this case, the complete spacecraft dynamics are small time locally
controllable at any equilibrium attitude. However, as stated earlier, the spacecraft cannot be
asymptbtically stabilized to any equilibrium attitude using a time-invariant continuous feed-
back control law. Using local controllability results, an algorithm which locally asymptot-
cally stabilizes the spacecraft to an isolated equilibrium is proposed in (Crouch, 1984). That
algorithm is extremely complicated and is based on Lie algebraic methods in (Hermes, 1980).
The algorithm yields a piecewise constant discontinuous control. Although very complicated,
the algorithm is the only one proposed in the literature thus far which locally asymptotically
stabilizes the spacecraft attitude to an equilibrium. In this paper a new discontinuous
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stabilizing feedback control -$trategy is constructed which stabilizes the spacecraft to an equili-
brium attitude. The control strategy is simple and is based on physical considerations of the
problem. A '

We next consider the case where the uncontrolled principal axis of the spacecraft is an
axis of symmetry. In this case, the complete spacecraft dynamics are not even accessible.
Under some rather weak assumptions, the spacecraft dynamic equations are strongly accessi-
ble and small time locally controllable at any equilibrium attitude in a reduced sense. The
reduced spacecraft dynamics cannot be asymptotically stabilized to an equilibrium attitude
using time-invariant continuous feedback. Nevertheless, a discontinuous feedback control stra-
tegy is constructed which achieves attitude stabilization of the spacecraft.

We conclude this section with a summary of some of the important results on the stabili-
zation of the angular velocity equations (i.e. without considering the attitude equations) of a
spacecraft using fewer than three independent control torques. Asymptotic stabilization of the
angular velocity equations of a spacecraft using only control torques about two of its principal
axes is considered in (Aeyels, 1984) and (Brockett, 1983). It is shown that the angular velo-
city is asymptotically stabilizable to the origin using smooth C! feedback if the uncontrolled
principal axis is not an axis of symmetry of the spacecraft. Explicit control laws are derived
in (Brockett, 1983) and in (Aeyels, 1984) using center manifold theory. For a spacecraft with
no axis of symmetry, asymptotic stabilization using a linear control law is possible using just
one control torque about an axis having nonzero components along each principal axis
(Aeyels, 1988). The control law, however, is not robust. In the case of an axially symmetric
spacecraft controlled using a single control torque about an axis having nonzero components
along each principal axis, there exists no linear control law which asymptotically stabilizes the
origin; however there exists a nonlinear asymptotically stabilizing control law (Sontag and
Sussman, 1988). If there is only one control torque applied about an axis which is a principal
axis of the spacecraft, then asymptotic stabilization is not possible (Aeyels, 1985). However,
there exist smooth C! feedback control laws which make the origin stable in the sense of
Lyapunov (Aeyels, 1985). A point to notice is that the resulting closed loop system is robust
if the moment of inertia about the control axis is either the maximum or minimum principal
- moment of inertia. Otherwise, the control law is not robust.
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2. Kinematic and Dynamic Equations

Kinematic Equations

‘The orientation of a rigid spacecraft can be specified using various parametrizations of
the special orthogonal group SO (3). Here we use the following Euler angle convention. Con-
sider an inertial X; X, X coordinate frame; let x; x5 x3 be a coordinate frame aligned with
the principal axes of the spacecraft with origin at the center of mass of the spacecraft. If the
two frames are initially coincident, a series of three rotations about the body axes, performcd
in the proper sequence, is sufficient to allow the spacecraft to reach any orientation. The three
rotations are:

a positive rotation of frame X, X, X; by an angle y about the X3 axis; let x; x, x4
denote the resulting coordinate frame;

a positive rotation of frame x; x; x3 by an angle © about the x, axis; let x; x5 x5
denote the resulting frame;

a positive rotation of frame x; x, x3 by an angle ¢ about the x, axis; let x; x5 x4
denote the final coordinate frame.

A rotation matrix R relates components of a vector in the inertial frame to components of the
same vector in the body frame; in terms of the Euler angles a rotation matrix is of the form

cycH sycO -50
RyB,0)=|-sycd+cysOsd¢ cyco+sysbso cOsd| , (2.1)
SYsO +cysOcd —cysd+sysBcd cOcd
where ¢y = cos(y), s = sin(y). We assume that the Euler angles are limited to the ranges
—-T<Y<® -T2<O<R2, —-T<P<n Suppose W, W, W3 are the principal axis com-
ponents of the absolute angular velocity vector @ of the spacecraft. Then expressions for
@y, 0y, W5 are given by

@ = ¢ - ysind , 22)
Wy = écos¢ + \ilcose sing , | (2.3)
6)3 = - ésinq) + \ifcose cosd . 2.4)

By excluding the case where 8 = + 7/2, these equations are invertible. Thus we can solve for
¢, 6, v in terms of ®;, ®,, ®; obtaining
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¢ = @, + Wysind tand + W4cosd tand , 2.5)
0= W,cos) — w3sind , (2.6)
V= W,sind secO® + w;cosd sech . 2.7)

Next we consider the dynamic equations which describe the evolution of the angular
velocity components of the spacecraft.

Dynamic Equations

Let J =diag (J1, J5, J3), J; >0, i = 1,2, 3, be the inertia matrix of the spacecraft in a
coordinate frame defined by its principal axes. Let H be the angular momentum vector of the
spacecraft relative to the inertial frame. Then we have '

Jo=RWO,0H . . - (2.8)

Differentiating (2.8) we obtain

Ji = SR W8.0OH +RYO0OH , (2.9)
where |
0 w3 -
Sw={-w; 0 o). (2.10)
® -0 0

We assume that the control torques #’, and u’, are applied about axes represented by unit
vectors b and b, respectively. This implies that '

R(W.O.0)H =bu’ +byu’s. 2.11)

Without loss of generality, we assume that bl'= (1, 0, 0)T and b,=(0, 1, 0)T. Thus the equa-
tions describing the evolution of the angular velocity of the spacecraft are given by

Ji0y = Uy =Ty +u'y, ' 2.12)
J26)2=(.]3"11)Cl)3(01 +u’2 ’ (2.13)

J3d)3 = (Jl - .’2)(010)2 . (2.14)
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3. Controllability and Stabilizability Properties of Complete Spacecraft
Dynamics with Two Control Torques

As background for our subsequent development, we consider the controllability and sta-
bilizability properties for the complete dynamics of the spacecraft with control torques only
about two of its principal axes. Define '

’

U
Uy —JT
[uz] = u'2
Ty

From Section 2 the state equations can be rewritten as

O = a0 + Uy , ' 3.1D)
0y = 003 + Uy, (3.2)
iy = a3, , (3.3)
q’> = 0 + 0ysind tand + w;cosd tand , 3.9
= W,cosd ~ W;sind , (3.5)
\il = (,sind secB + w;cosd secd ., (3.6)
where |
J2=J3 J3 =74 J1=J,
a; = 7, ,ay = 7 ,a3 = 5

This is of the form
X=f(x)+gu;+gus, 3.7)

where x = (0)1,0)2,0>3,¢,9,\4/)T and f, gy, g, are vector fields defined appropriately on the
open set

M=(x:o;eR,i=12239¢vye (-x,n),0e (-05r,0.5n)} .

It is easily verified that the linearization of the equations about an equilibrium has an uncon-
trollable eigenvalue at the origin. This implies that an inherently nonlinear analysis is neces-
sary in order to characterize the controllability and stabilizability properties of the complete
spacecraft dynamics. Moreover, a linear feedback control law cannot be used to
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asymptotically stabilize the spacecraft to an equilibrium attitude.

We now present fundamental results on the controllability and stabilizability properties
of the complete spacecraft dynamics described by equations (3.1)-(3.6).

Theorem 3.1: The complete spacecraft dynamics described by state equations (3.1)-(3.6) are
strongly accessible ¥ xeM if and only if J, # J,, i.e. the uncontrolled principal axis is not an
axis of symmetry.

Proof: If J # J,, the vector fields g1, g5, [81/ 1, [g2/ ], [82.(81/ 1), [[82.[81/ 1]/ ] span a
six dimensional space at every xe M. Thus the strong accessibility Lie algebraic rank condi-
tion is satisfied and hence the complete spacecraft dynamics are strongly accessible. If J, = J,
the complete spacecraft dynamics fails to be accessible since wj is necessarily constant.

Theorem 32: The complete spacecraft dynamics described by state equations (3.1)-(3.6) are
small time locally controllable at any equilibrium if and only if J; # J,.

Proof: Suppose J, # J,. Then the complete spacecraft dynamics are strongly accessible. Fol-
lowing Sussman (1987), let Br(x) denote the smallest Lie algebra of vector fields containing
f.81 82 Let B be any bracket in Br(x). Now denote 8%(B), 8!(B), 8%B) as the number of
occurrences of the vector fields f, g, g, respectively in the bracket B. The degree of B is
equal to the value of 22:5;' (B). The Sussman condition for small time local controllability at
i=0 .

an equilibrium is that the so-called bad brackets, the brackets with 8° odd, and &', 82 even,
must be a linear combination of brackets of lower degree at that equilibrium. From the proof
of Theorem 3.1 it is clear that any bracket of degree greater than four can be expressed as a
linear combination of lower order brackets at any equilibrium. Moreover the degree of a bad
bracket must necessarily be odd. The bad bracket of degree one is f which vanishes at any
equilibrium. The bad brackets of degree three are [g,,[g,.f ]] and [g,.[g,./ 1] and both are
identically zero vector fields. Thus the complete spacecraft dynamics are small time locally
controllable. If J; = J,, the complete spacecraft dynamics fails to be accessible at any equili-
brium; hence it cannot be small time locally controllable at any equilibrium.

Theorem 3.3: The complete spacecraft dynamics described by state equations (3.1)-(3.6) can-
not be locally asymptotically stabilized to an equilibrium by any time-invariant continuous .
state feedback control law.

This result holds if J; # /5 and also if J; =J,. A weaker version of the above theorem
(with "continuous” replaced by "C1") was proved in (Byrnes and Isidori, 1991). However,
Theorem 3.3 follows from (Bymes and Isidor, 1991) using results in (Sontag, 1989) and
(Zabczyk, 1989). This negative result also implies that feedback control approaches based on
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linearization, Lyapunov methods, center manifold theory, or zero dynamics cannot be used to
asymptotically stabilize the spacecraft to an equilibrium attitude.

Although the full set of equations (3.1)-(3.6) cannot be asymptotically stabilized to an
equilibrium via continuous feedback, one may still wish to design a smooth control law which
stabilizes at least a particular subset of state variables. Consider the state equations for
0y, 0, 03, ¢ and O given by equations (3.1)-(3.5). These equations are not affected by the
Euler angle y. Asymptotic stabilization of this subset of the original equations corresponds to
stabilization of the motion of the spacecraft about an attractor, which is not an isolated equili-
brium. A result from (Byrnes and Isidori, 1991) shows that the closed loop trajectories can be
asymptotically stabilized to the manifold

Q = {(01,0,,03,0.0,) : 0 =y =3 =¢=0=0}, (3.8)
using smooth C! feedback.

We mention that although the complete spacecraft dynamics described by equations
(3.1)-(3.6) cannot be asymptotically stabilized to an equilibrium by continuous feedback, an
algorithm generating a piecewise constant discontinuous control has been developed in
(Crouch, 1984) which locally asymptotically stabilizes the complete spacecraft dynamics to an
equilibrium. The algorithm requires that J, # J,, i.e. the uncontrolled principal axis must not
be an axis of symmetry. The algorithm is based on Lie algebraic methods in (Hermes, 1980).
The algorithm is extremely complicated and is not an easily implementable control strategy.
However, stabilization of the complete spacecraft dynamic equations (3.1)-(3.6) is an
inherently difficult problem and the algbrithm in (Crouch, 1984) is the only control strategy
proposed in the literature thus far.

4. Attitude Stabilization of a Non-Axially Symmetric Spacecraft
with Two Control Torques

In this section, we consider the equations (3.1)-(3.6) describing the motion of a space-
craft controlled by input torques only about two of its principal axes. It is assumed that the
uncontrolled principal axis is not an axis of symmetry of the spacecraft; i.e. J;#J,. As a
consequence of the negative result of Theorem 3.3, we restrict our study to the class of
discontinuous feedback controllers in order to asymptotically stabilize the complete spacecraft
dynamics. However, as shown in the previous section, the complete spacecraft dynamics are
small time locally controllable at any equilibrium attitude. This suggests that a piecewise ana-
lytic feedback control law can be constructed which asymptotically stabilizes the complete
spacecraft dynamics to an equilibrium attitude. Here we present a particular discontinuous
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feedback strategy, which is obtained by requiring that the spacecraft undergo a sequence of
specified maneuvers. Without loss of generality, we assume that the equilibrium attitude to be
stabilized is the origin. We first present a physical inferpretation of the sequence of
maneuvers that transfers any initial state to the origin.

Maneuvers 1-3. Transfer the initial state of the spacecraft to an equilibrium state in finite
time; i.e. bring the spacecraft to rest.

There are control laws based on center manifold theory (Aeyels, 1984) and zero dynam-
ics theory (Byrnes and Isidori, 1991) which accomplish this in an asymptotic sense. Here we
use a sequence of three maneuvers, and corresponding feedback control laws, which bring the
spacecraft to rest in finite time.

Maneuver 4. Transfer the resulting state to an equilibrium state where ¢ =0 in finite time;
i.e. so that the spacecraft is at rest with ¢ = 0. This maneuver is accomplished using the con-
trol torque u; only.

Maneuver 5. Transfer the resulting state to an equilibrium state where ¢ =0, 6 = 0 in finite
time; i.e. so that the spacecraft is at rest with ¢ =0, 8 = 0. This maneuver is accomplished
using the control torque u, only.

In order to complete specification of the sequence of maneuvers, the Euler angle y must
be brought to zero. This cannot be accomplished directly since a control torque cannot be
applied about the third principal axis of the spacecraft. However, the resulting state can be
transferred to the origin indirectly using three maneuvers. The three maneuvers correspond to
three consecutive rotations about the two controlled principal axes of the spacecraft, the first
and the third being around the first principal axis. This produces a net change in the orienta-
tion of the spacecraft (see Figure 9 in Marsden et. al, 1991) so that the state of the spacecraft
is transferred to the origin in finite time. The three maneuvers are described as follows.

. oy T . .
Maneuver 6. Transfer the resulting state to an equilibrium state where ¢ = > 0 = 0 in finite

time; i.e. so that the spacecraft is at rest with ¢ = > 0 = 0. This maneuver is accomplished

using the control torque u, only.

, : T
Maneuver 7. Transfer the resulting state to the equilibrium state (O,O,O,—T;—,O,O) in finite time.

This maneuver is accomplished using the control torque u, only.

T
Maneuver 8. Transfer the equilibrium state (0,0,0,-1—;-,0,0) to the equilibrium state

(0,0,0,0,0,07 in finite time. This maneuver is accomplished using the control torque u only.
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Note that, excluding the first three maneuvers where the spacecraft is brought to rest, ail
subsequent maneuvers are such that the angular velocity component @3 is maintained ide'nti;
cally zero. This is accomplished by carrying out maneuvers which require use of only a single
control torque at a time. It is convenient to introduce some notation. Throughout, assume
k > 0, and define

,

. x5l x, X,l x4l
k if {x;+ T >0} or {x; + T =0 and x, > 0}
< . x2|X2| x2|x2I
Gxpxy = |-k if {x;+ 7 <0} or {x; + % =0 and x,<0}

0 if {x;=0 and x,=0)

\

We use the well-known property that the feedback control
u=-Gx,-x,x3)

for the system
X=X,
X,=U

transfers any initial state to the final state (¥,,0) in a finite time. We also use the standard
notation that

1 ifx1>0
sign(x;) =4-1 if x;<0.
0 if x1=0

Our mathematical construction of a control strategy which transfers an arbitrary initial state of
the spacecraft to the origin is based on a sequence of equilibrium subsets and a sequence of
control functions which transfers a state in one subset to another. Consider the following
* equilibrium subsets of M ‘

Ml = [x = (0’0’0t¢’ea\V)T | ¢,e,w arbltrary) ,
M, = {x =(0,0,0,008,y)f | 8,y arbitrary},

M= {x = (0,0,000y) | y arbitrary} ,
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T
My={x =<o,o,o,§,o,w> | y arbitrary} .

We now present the feedback control laws that accomplish the sequential maneuvers described
above; for each case we show that a desired terminal state which defines the maneuver is
reached.

Transferring any initial state to a state in M

In order to transfer the arbitrary initial state to a final state which satisfies
©; = 0, = 3 = 0 three sequential maneuvers are required. The first maneuver results in
®, = @, = 0 while @3 # 0 in general; the second maneuver results in ®; = ©; and ®, = ©,,

. » x ¥ . :
where ®;, ®, are chosen to guarantee that at the end of the third maneuver
®; = 0, = 03 = 0. These three maneuvers are described in detail as follows.

Maneuver 1. Let (m{),m{’,mf,q)o,eo,wo)T € M denote an initial state for the complete space-
craft dynamics described by equations (3.1)-(3.6). Define

Vl = alm2m3 + ul R
Vo= (120)30.)1 + Uy .
Equations (3.1)-(3.3) can now be rewritten as

@ =V, ' (4.1)

d)z =Vv,, “4.2)
W3 = a3\, . (4.3)

Apply the feedback control functions
" vy, = - ksignoy ,

vy = — ksignw, .

lofl 1w
p ,—-—k—), W, =y = 0; at this

instant let w3 = ®3 where the constant value @3 can be evaluated.

It is easy to see that after a finite time given by max(

Maneuver 2. Apply the feedback control functions

v, = - ksign(o; - ©;) ,
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vy = — ksign(w, - @),

where

1

. [ximl)s .

Wy = & , 0y =— @ sign®; signas .
2la3|

*

0]

. . _ . 1
It is again easy to see that after a finite time given by —, w; =

k

tion it can be shown that , = 923—

Maneuver 3. Apply the feedback control functions
v, = — ksignw, ,

vy = — ksignw, .

*

s, @, = @7, and in addi-

®
It can be seen that after a finite time given by —kL’ ®; =0, w, =0 and it can be shown that

oy =0.
Consequently, the resulting state after these three
(0,0,0,01,81,y1)T e M, for some ¢!, 6!, y'.

Transferring a state in M, to a state in M, (Maneuver 4)

sequential maneuvers is

Let (0,0,0,01,81,y!)] € M denote a state of the spacecraft. Apply the feedback control

functions
up=-G(, o),
u,=0.
It follows that
| w=0,0=0,
0=0',y=y!,

satisfy equations (3.2), (3.3), (3.5), (3.6) while equations (3.1), (3.4) become

d)l =—G(¢’ 0)1) ’
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¢ = 0)1 .
Consequently, after a finite time ®, =0, ¢ =0; and thus the maneuver transfers a state

0,0,0,65,8L,y)T € M, to the state (0,0,0,0,6,y")7 e M in finite time.

Transferring a state in M, to a state in M5 (Maneuver 5)

Let (O,O,O,O,BI,WI)T € M, denote a state of the spacecraft. Apply the feedback control
functions

It follows that
0 =0,0;=0,
0=0y=y,
satisfy equations (3.1), (3.3), 3.4), (3.6) while equations (3.2), (3.5) become
B, =-G®, »),
b=,
Consequently, after a finite time w, =0, 8 =0; and thus the maneuver transfers a state

(0,0,0,0,0L,y)T € M, to the state (0,0,0,0,0,y") € M3 in finite time.
2 3

Transferring a state in M5 to a state in M, (Maneuver 6)

Let (O,O,O,O,O,WI)T € M; denote a state of the spacecraft. Apply the feedback control
functions

u1=—G(¢--’25, ®),
u2 = 0 .
It follows that

@, =0,0;=0,
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8=0,y=y!,
satisfy equations (3.2), (3:3), (3.5), (3.6) while equations (3.1), (3.4) become

¢=m1.

Consequently, after a finite time w; =0, ¢ = %; d thus the maneuver transfers a state

. T
0,0,0,0,0,y))T € M to the state (0,0,0,~.0,y') e M, in finite time.

2

T
Transferring a state in M, to (0,0,0,— O ,0) (Maneuver 7)

T .
Let (0,0,0,1;—,0,“11) € M, denote a state of the spacecraft. Apply the feedback control

functions
U= 0 ,
Ug=~— G(\I/, 0.)2) .

It follows that

0=0,0=0,

0= -’25 0=0,

satisfy equations (3.1), (3.3), (3.4), (3.5) while equations (3.2), (3.6) become
W =- Gy, &),
V=0

Consequently, after a finite time w; =0, Yy = O and thus the maneuver transfers a state

(0,0,0, ,\vl) € M, to the state (0,0,0,— 0 O) in finite time.
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' T
Transferring (0,0,0,—’2‘-,0,0) to (0,0,0,0,0,0)7 (Maneuver 8)

T

Let (0,0,0,%,0,0) denote the state of the spacecraft. Apply the feedback control func-

tions

uy=-G(, 0,

u,=0.
It follows that

w,=0,0;=0,

0=0,y=0,
satisfy equations (3.2), (3.3), (3.5), (3.6) while equations (3.1), (3.4‘) bécome‘ '

@y ==G@ o),

0=0 .
Consequently, after a finite time «; =0, ¢=0; and ihﬁs the maneuver transfers
(o,o,o,g,o,of to the state (0,0,0,0,0,0)7 in finite time.

In summary, the feedback control strategy outlined above can be implemented by

sequential switching between the following feedback functions.
Maneuver 1. Apply

ui (x) = — a;0,m3 - ksigno, ,

ud (x) = — a0, — ksignw, ,
until (©;,0,,04) = (0,0,8;) for some value @s; then go to Manuever 2.

Maneuver 2. Compute

1 1
RN i@yl |3 _
0y = | , Wy =— sign®; signas ;

2|a3| 2|a3|

apply
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ul(x) =~ a,w,05 — ksign(o, — @7),

uf (x) = - a w30 - ksign(w, - 07) ,

until (0;,0,,03) = (@ ,m{,iﬁ;—); then go to Maneuver 3.
Maneuver 3. Apply |
uf(x) = - a,w,03 - ksigno, ,
U3 (x) = ~ a0, — ksignw, ,
until (©;,0,043) = (0,0,0), i.e. (©1,0,,03,0.8,4)7 € My; then go to Maneuver 4.
Maneuver 4: Apply |

uf@x)=-G©, o),

uj(x)=0,
until (@,0,,4,9) = (0,0,0,0), i.e. (ml,coz,co3,¢,6,w)T € M,; then go to Maneuver 3.
Maneuver 5: Apply

uf (x)=0,

up(®)=-G@® ),
until (@,0,,0,0,8) = (0,0,0,0,0), i.e. (0,00,003,6,8,¥)T & My; then go to Maneuver 6.
Maﬁeuver 6: Apply

uf()=-GO- 2 o,

udx)=0,
until (©;,0,,04,0,0) = (0,0,0,-72£,0), i.e. (0,09,05,0,8,y)7 € M,; then go to Maneuver 7.
Maneuver 7: Apply

| u/x)=0,
uj (1) = -G\, o),

until (®;,0,,03,0,8,y) = (0,0,0,%,0,0); then go to Maneuver 8.
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Maneuver 8: Apply

uf@x)=-G@©, o),
udx)=0,

until (©;,0,,03,9,0,y) = (0,0,0,0,0,0).

This feedback control strategy achieves attitude stabilization of the spacecraft by execut-
ing a sequence of maneuvers. This strategy is discontinuous and nonclassical in nature.
Justification that it stabilizes the complete spacecraft dynamics to an equilibrium attitude in
finite time, under the ideal model assumptions, follows as a consequence of the construction
procedure. A computer implementation of the feedback control strategy can be easily carried
out.

5. Attitude Stabilization of an Axially Symmetric Spacecraft
with Two Control Torques

From the analysis made in Section. 3, we find that the complete dynamics of a spacecraft
controlled by two control torques supplied by gas jet actuators, as described by equations
(3.1)-(3.6), fail to be controllable or even accessible if the uncontrolled principal axis is an
axis of symmetry of the spacecraft, i.e. if J, =J,. Due to the lack of controllability, the con-
trol algorithm proposed in (Crouch, 1984) is not applicable to this case. In this section we
concentrate on the case where the uncontrolled principal axis of the spacecraft is an axis of
symmetry, i.e. J, = J,. In particular we ask the question: what restricted control and stabiliza-
tion properties of the spacecraft can be demonstrated in this case? Our analysis begins by
demonstrating that, under appropriate restrictions of interest, the spacecraft equations can be
expressed in a reduced form. Controllability and stabilizability properties for this case follow
from an analysis of the reduced equations.

Consider the equations (3.1)-(3.6) describing the motion of a spacecraft controlled by
input torques supplied by gas jet actuators about only two of its principal axes. It is assumed
that the uncontrolled principal axis is an axis of symmetry of the spacecraft. From equations
(3.1)-(3.6) and J; = J, we have

W) = a 1003 + Uy, 3.1

d)z = 4,0 +U,, (52)



- 18 -

=0, (5.3)
q'> = + a)zsin¢ tan® + ;cos¢ tand ,‘ | (5.4)
8 = (3,050 — ,sind , (5.5)
\if = Wysind secO + w3cosd sech . (5.6)

If ©3(0) # 0 then w; cannot be transferred to zero using any control function. If we
assume that @3(0) = 0, then w; =0. Under the restriction 4(0) = 0, the reduced spacecraft
dynamics for this case are described by '

@ =uyp, . (5.7)
Wy=uz, (5.8)
¢ = ©; + &,sing tand , ' | (5.9)
8 = w,cos0 , ‘ (5.10)
\jl = W,sind secH . (5.11)

The following results can now be easily shown. The proofs of Theorem 5.1 and Theorem 5.2
are similar to the proofs of Theorem 3.1 and Theorem 3.2 respectively. Theorem 5.3 follows
from the results in (Brockett, 1983), (Sontag, 1989) and (Zabczyk, 1989).

Theorem 5.1: The reduced dynamics of an axially symmetric spacecraft controlled by two
pairs of gas jet actuators as described by equations (5.7)-(5.11) are strongly accessible.

Theorem 5.2: The reduced dynamics of an axially symmetric spacecraft controlled by two
pairs of gas jet actuators as described by equations (5.7)-(5.11) are small time locally controll-
able at any equilibrium.

Theorem 5.3: The reduced dynamics of an axially symmetric spacecraft controlled by two
pairs of gas jet actuators as described by equations (5.7)-(5.11) cannot be asymptotically sta-
bilized to an equilibrium using a time-invariant continuous feedback control law.

The implications of the properties stated above are as follows. For all initial conditions
that satisfy ®4(0) =0, the axially symmetric spacecraft controlled by two pairs of gas jet
actuators as described by equations (5.1)-(5.6) can be controlled to any equilibrium attitude.
However, any time-invariant feedback control law that asymptotically stabilizes the spacecraft
to an isolated equilibrium attitude must necessarily be discontinuous. Thus arbitrary reorienta-
tion of the spacecraft can be achieved if ®4(0) = 0; if @3(0) # O, reorientation of the space-
craft to an equilibrium attitude cannot be achieved.
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Conveniently, it turns out that sequential execution of the maneuvers defined as Manuev-
ers 3 through 8 in the previous section transfers any initial state of the reduced spacecraft
dynamics (5.7)-(5.11) to the origin in finite time. The physical interpretation of the manuevers
is the same as described previously; the overall feedback control strategy is as follows.

Maneuver 1. Apply

ull (x) = — ksignw, ,

uj(x)= - ksigno, ,
until (®;,®,) = (0,0); then go to Maneuver 2.
Maneuver 2: Apply

utx)=-G(@, o),

uf(x)=0,
until (©;,0,,9) = (0,0,0); then go to Maneuver 3.
Manuever 3: Apply

uf(x)=0,

ui ®x)=-G@®, o,
until (©,,0,,6,8) = (0,0,0,0); then go to Maneuver 4.
Maneuver 4: Apply .

uﬂﬂ=—G@—§uML

uz(x)=0,

until (©,0,,0,0) = (0,0,—;—,0), then go to Maneuver 5.
Maneuver §: Apply
| up (x)=0,

Ui (@) = -Gy, 0y,

until (0;,04,9,6,¥) = (0,0,lzt-,0,0); then go to Maneuver 6.
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Maneuver 3, the control torques u; and u4 are both applied to bring the spacecraft to rest. But
. once the spacecraft is brought to rest, the subsequent maneuvers are such that only one of. the
control torques is nonzero in any interval of time. Thus w; remains zero at all time beyond
1.73 seconds, and @ and ®, vary so that only one is nonzero at any time interval beyond
1.73 seconds. Three dimensional visualization schemes have been developed using a Silicon
Graphics Iris work station in order to display the reorientation maneuvers of the spacecraft.

7. Conclusion

The attitude stabilization problem of a spacecraft using control torques supplied by gas
jet actuators about only two of its principal axes has been considered. If the uncontrolled prin-
cipal axis is not an axis of symmetry of the spacecraft, the complete spacecraft dynamics can-
not be asymptotically stabilized to an equilibrium attitude using continuous feedback. A
discontinuous feedback control strategy was constructed which stabilizes the spacecraft to an
equilbrium attitude in finite time. If the uncontrolled principal axis is an axis of symmetry of
the spacecraft, the complete spacecraft dynamics cannot be stabilized. The reduced spacecraft
dynamics cannot be asymptotically stabilized using continuous feedback, but again a discon-
tinuous feedback control strategy was constructed which stabilizes the spacecraft (in the
reduced sense) to an equilibrium attitude in finite time. The results of the paper show that
although standard nonlinear control techniques do not apply, it is possible to construct a sta-
bilizing control law by performing a sequence of maneuvers.

One of the advantages of the development in this paper is that feedback control stra-
tegies are constructed which guarantee attitude stabilization in a finite time. The total time
required to complete the spacecraft reorientation is the sum of the times required to complete
the sequence of maneuvers described. From the analysis provided, it should be clear that the
time required to complete each maneuver depends on the single positive parameter k¥ in the
corresponding control law. There is a trade off between the required control levels, determined
by the selection of k, and the resulting times to complete each of the maneuvers and hence
- the total time required to reorient the spacecraft. In particular, the time to reorient the space-
craft from a given initial state to the origin can be expressed as a function of the value of the
parameter £ and of the initial state.

For each of the two attitude stabilization problems considered, we have presented one
example of a sequence of maneuvers which achieves the desired spacecraft attitude stabiliza-
tion. There are many other maneuver sequences, and corresponding feedback control stra-
tegies, which will also achieve the desired attitude stabilization of the spacecraft. But each
such strategy is necessarily discontinuous.
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We have demonstrated the closed loop properties for the special feedback control stra-
tegies presented. Our analysis was based on a number of assumptions which are required to
justify the mathematical models studied. Further robustness analysis is required to determine
effects of model uncertainities and external disturbances. Unfortunately, such robustness
analysis is quite difficult since the closed loop vector fields are necessarily discontinuous.
Perhaps, feedback control strategies which stabilize the spacecraft attitude, different from ones
presented in this paper, would provide improved closed loop robustness.
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ATTITUDE STABILIZATIQN OF A RIGID SPACECRAFT USING
TWO MOMENTUM WHEEL ACTUATORS

Hariharan Krishnan, N. Harris McClamroch®, Mahmut Reyhanoglu
‘Départment of Aeréspace Engineering
University of Michigan
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Abstract

It is well known that three momentum wheel actuators can be used to control the attitude
of a rigid spacecraft and that arbitrary reorientation maneuvefs of the spacecraft can be
accomplished using smooth feedback. If failure of one of the momentum wheel actuators
occurs, we demonstrate that two momentum wheel actuators can be used to control the atti-
‘tude of a rigid spacecraft and that arbitrary reorientation maneuvers of the spacecraft can be
accomplished. Although the complete spacecraft equations are not controllable, the spacecraft
equations are small time locally controllable in a reduced nonlinear sense. The reduced
spacecraft dynamics cannot be asymptotically stabilized to any equilibrium attitude using a
timé-invariant continuous feedback control law, but discontinuous feedback control strategies
are constructed which stabilize any equilibrium attitude of the spacécraft in finite time. Cons;e-
quently, reorientation of the spacecraft can be accomplished using discontinuous feedback
control.

* Please send all correspondence to Professor N. Harris McClamroch, Department of
Aecrospace Engineering, University of Michigan, Ann Arbor, MI 48109-2140.
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1. Introduction

We consider the attitude control of a spacecraft modeled as a rigid body. It is well
known that three actuators, either gas jets or momentumn wheels, can be used to control the
attitude of a rigid spacecraft and that arbitrary reorientation maneuvers of the spacecraft can
be accomplished using smooth feedback!~". If failure of one of the actuators occurs, then one
is left with only two actuators. In this paper, the attitude stabilization problem 4of a rigid
spacecraft using only two control torques supplied by momentum wheel actuators is con-
sidered. Since we are considering a space-based system, the problem considered here, namely,
the attitude stabilization of a spacecraft‘ operating in an actuator failure mode, is an important
control problem. It is assumed that the center of mass of the system consisting of the space-

craft and the momentum wheel actuators is fixed in space.

Attitude stabilization of a rigid spacecraft using two momentum wheel actuators is not a
mature subject in the literature. Controllability results for a rigid spacecraft controlled by
momentum wheel actuators are presented in Ref. 8. We mention that most of the previous
researchers have considered the problem of controlling a rigid spacecraft using two gas jet
actuators®22, Attitude stabilization of a rigid spacecraft using two gas jet actuators is con-
sidered in Refs. 8-13. Refs. 14-22 consider only the stabilization of the angular velocity

equations of a rigid spacecraft using two gas jet actuators.

We consider the attitude stabilization of a spacccraft. using control torques supplied by
two momentum wheel actuators about axes spanning a two dimensional plane orthogonal to a
principal axis of the spacecraft. The linearization of the complete spacecraft dynamic equa-
' tions at any equilibrium attitude has an uncontrollable eigenvalue at the origin. Consequently,
controllability and stabilizability properties of the spacecraft cannot be inferred using classical
 linearization ideas. The complete spacecraft dynamics is, in fact, not controllable. Under a
rather weak assumption, the spacecraft dynamics is small time locally controllable at any
_equilibrium attitude in a reduced nonlinear sense. The reduced spacecraft dynamics cannot be
asymptotically stabilized to any equilibrium attitude using time-invariant continuous feedback.
Nevertheless, two different discontinuous feedback control strategies are constructed which
achieves reorientation of the spacecraft in finite time. Using the concept of geometric phase®,
a discontinuous feedback control strategy is presented based on the nonholonomic control
theory in Ref. 24. An alternate discontinuous feedback control strategy, based on the fact that

rigid body rotations do not commute, is also presented.
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This paper is based on our ealier work presented in Ref. 10 and is a companion to Ref.
11 and Ref. 12, which treat the attitude stabilization of a rigid spacecraft using two gas jet

actuators.

2. Kinematic and Dynamic Equations
The orientation of a rigid spacecraft can be specified using various paramctr:izations of
the special orthogonal group SO (3). Here we use the Z-Y-X Euler angle convention for
parametrizing the orientation 6f the rigid spacecraft®®. The corresponding rotation matrix is
denoted as R (y, 6,¢), where v, 0, ¢ are the Euler angles. We assume that the Euler angles
are limited to the ranges -T < Y < &, —7/2 <0 < W2, -t < ¢ <. Suppose W, @,, W5 are

the principal axis components of the absolute angular velocity vector @ of the spacecraft.

Then we have®
6 = ; + 0,sind tanO + wscosd tanb, .1
6= w,cosd — w3sind, . N (2.2)
\i! = ,sin secO + w;cosd sech. (2.3)

Next we consider the dynamic equations which describe the evolution of the angular
velocity components of the spacecraft. Consider two momentum wheel actuators spinning
about axes defined by unit vectors by, b, fixed in the spacecraft such that the center of mass
of the i-th wheel lies on the axis defined by &;, and a control torque — &; is supplied to the
i-th wheel about the axis defined by b; by a motor fixed in the spacecraft. Consequently, an
equal and opposite torque i; is exerted by the wheel on the spacecraft. We assume that b;
defines a principal axis for the i-th wheel which is symmetric about b;. Further b; and b,
span a two dimensional plane which is orthogonal to a principal axis of the spacecraft and,
without loss of gencré.lity, b; are assumed to be of the form |

b; = (b;1, bip O, i =1, 2. 2.4)

The mass of spacecraft, wheel 1 and wheel 2 are denoted as m, m, and m 1 respectively,
and p,, P2, P3 denote the position vectors of the center of mass of the spacecraft, wheel 1 and
wheel 2 respectively with respect to the center of mass of the whole system. Thus from the

location of the wheels

pr=py+diby, 2.5)



P3=p{ + dab, (2.6)
where d, d, are constants. Since, by the definition of center of mass,
3
Zm,- P = 0, : (27)
i=1
further manipulation of equations (2.5)-(2.7) gives expressions for p;, p, and p; which we

denote as p; = (c;y, Ci2s 0),i =1,2,3. The total angular momentum vector of the system is

given, in the spacecraft body frame, by

R(y,0,)H =Jo +v, ‘ - 2.8)
where

3_ 3 '
J=U+ XL+ XU - 1)), ' (2.9)
: i=1 i=2

¢s -tz O .
L =m|—cicy i 0 [,i=123, (2.10)

0 0 c+c
13=bb1jy, - Q.11)
I3 = by, (2.12)
v = [5(0 + b,8)) + [3(@ + b,8)), (2.13)

where 1, I,, and I3 denote the inertia tensors of the spacecraft, wheel 1 and wheel 2 respec-
tively, j; is the moment of inertia of wheel 1 about the axis defined by b,, j, is the mbment
of inertia of wheel 2 about the axis defined by b,, and 0,, 6, are the angles of rotation of
wheel 1 and wheel 2 about the axes defined by b; and b, respectively. Here H denotes the
angular momentum vector of the system expressed in the inertial coordinate frame. The angu-
lar momentum vector H is a constant since there is no external moment about the center of

mass of the system. Suppose &; and it are the control torques; then

V== (bylly + boily). (2.14)
Differentiaﬁng (2.8)- with respect to time we obtain

Jo=S@R W, 6, O)H + biz; + b,yit,, | (2.15)

where



0 w3 -
SW=|-w; 0 oy
w - 0

Note that
Iy =diag(lyy, I3, I'13),
I, = block diag(l,;, / 22)

I3 = block diag(l3;, 13y,

4

where 15y, I5; are invertible 2 x 2 matrices, Iy, 115, 13, I3, [37 are nonzero real numbers

and therefore J is a positive definite matrix of the form

J = block diag (/ 1, J5),

where J is an invertible 2 X 2 matrix and J, is a nonzero real number.

3. Controllability and Stabilizability Properties

(2.16)

In this section we consider the controllability and stabilizablity properties of the space-

craft dynamics controlled by two momentum wheel actuators. Define

Uy ja b bm] iy
ug] "7 b1z by |,

From Section 2 the complete spacecraft dynamics can be rewritten as

. It Opay
QO = _
Oy J3°

S(O))R (w, 91 ¢)H + u2 s

<i> = ; + 0,sin tan® + wscos¢ tanb,

6= W,cosd — Wysing,

\il.= ®,sin¢ secO + w;cos¢ sech,

where H is a constant vector.

3.1

(3.2)
(3.3)
(3.4)

The linearization of the complete spacecraft dynamic equations (3.1)-(3.4) at any equili-

brium attitude has an uncontrollable eigenvalue at the origin. Consequently, the controllability
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and stabilizability properties of the complete spacecraft dynamics cannot be inferred using
classical linearization ideas. However, from equations (2.4), (2.11)-(2.13) and the definition

c =(0,0, T, ' (3.5)
we have cTv = 0. Therefore from equation (2.8) we have
TRy, 8, HH =cTJw. . (36)

Since H is a constant vector, this equation represents a constraint on the motion of the space-
craft irrespective of the controls applied. Thus the complete spacecraft dynamics is not com-
pletely controllable: Therefore we ask the following question: what restricted control and sta-
bilization properties of the spacecraft can be demonstrated in this case? Our analysis begins
by demonstrating that, under an appropriate restriction of interest, the spacecraft equations
have restricted controllability and stabilizability properties.

Consider equations (3.1)-(3.4) and suppose the angular momentum vector H of the sys-
tem is zero. From equations (2.16), (3.5) and (3.6) it follows that the angular velocity com-
ponent of the spacecraft about the uncontrolled principal axis is identically zero, i.e., @3 = 0.

Under such a restriction, the reduced lspacccraft dynamics are described by

@ = uy, (3.7
W, = Uy, (3.8)
¢ = , + 0,sing tand, (3.9)
8 = w,cosd, | (3.10)
\il = @,sin¢ secH. (3.11)

Notice that the linearization of the equations (3.7)-(3.11) at any equilibrium has an uncontroll-
able eigenvalue at the origin. Therefore analysis of the controllability and stabilizability pro-
perties of the reduced spacecraft dynamics requires inherently nonlinear techniques. The fol-

lowing results follow directly based on an analysis similar to that in Ref. 24.

Theorem 3.1: The reduced dynamics of a spacecraft controlled by two momentum wheel
actuators as described by equations (3.7)-(3.11) are small time locally controllable at any
equilibrium.

Theorem 3.2: The reduced dynamics of a spacecraft controlled by two momentum wheel
actuators as described by equations (3.7)-(3.11) cannot be asymptotically stabilized to any
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equilibrium using a time-invariant continuous feedback control law, but the reduced dynamics
can be asymptotically stabilized to any equilibrium using a piecewise continuous feedback

control law.

Theorem 3.1 follows from the fact that a sufficient condition for small time local control-
lability given in Ref. 26 is satisfied by ic equations (3.7)-(3.11). The first part Qf Theorem
3.2 follows from the fact that a necessary condition for the existence of a time-invén'ant con-
tinuous feedback control law given in Ref. 17 is not satisfied by equations (3.7)-(3.11); the
second part is a conscqucnce’ of small time local controllability?®. The implications of the
properties stated above are as follows. Suppose the angular momentum vector H is zero.
Then the spacecraft controlled by two momentum wheel actuators can be controlled to any
equilibrium attitude but the feedback control law must necessarily be discontinuous. Thus
arbitrary reorientation of the spacecraft can be achieved under the restriction H = 0; If H # 0,
equation (3.6) implies that reorientation of the spacecraft to an equilibrium attitude cannot be
achieved.

4. Feedback Stabilization Algorithms

We restrict our study to the class of discontinuous feedback controllers in order to asymptoti-
cally stabilize the reduced spacecraft dynamics described by state equations (3.7)-(3.11).
Clearly, traditional nonlinear control design methods are of no use since there is no general
procedure for the design of a discontinuous feedback control. However, an algorithm generat-
ing a discontinuous feedback control which asymptotically stabilizes an equilibrium can be
constructed, as suggested by the controllability properties of the system. Without loss of gen-
erality, we assume that the equilibrium to be stabilized is the origin. We present two different
discontinuous control strategies which stabilize the origin of equations (3.7)-(3.11) in finite
time.

'4.1. Feedback stabilization based on nonholonomic control theory

Consider a diffeomorphism defined by |
Y1 =.<;os¢ In(secO® + tanB) + ysing, 4.1)
Y2 = @psecd — yys, (4.2)
y3 =46, | (43)



Ya=0 + 0)2$m¢ tan0, ’ (44)
ys = sind In(secO® + tanB) — ycosd, (4.5)

If we now define the feedback relations

u, cosO yscosO 0

[ulJ : [— sindsin6 (1 —y5sin¢sin6)] [vl] [cos¢yssin¢scc26m22]
= +

Vo

— y2y, + cosd(secOtanfw? — y sy 4tanfw,)

- cos(y 4tanfw, + singsec?0ws) ’ (4.6)

then the reduced spacecraft dynamics (3.7)-(3.11) are described in the new variables by the

normal form equations

Y1=Y2 @7
Y2=Vi ‘ (4.8)
Y3=Ya : 4.9)
Y4=Vo, (4.10)
Ys=Yay1- (4.11)

From equations (4.1)-(4.5), notice that ®; = ®, = ¢ = 0 =y = 0 implies that y; =y, =y3 =
ya = ¥s = 0. Hence asymptotic stabilization of equations (3.7)-(3.11) to the origin is
equivalent to asymptotic stabilization of the normal form equations (4.7)-(4.11) to the origin;
hence we consider asymptotic stabilization of the normal form equations. The normal form
equations (4.7)-(4.11) are in a familiar form which has been studied in Ref. 24 and therefore
can be stabilized by the following discontinuous control strategy.

e  First, transfer the initial state of the normal form equations (4.7)-(4.11) to the equilibrium

state (0, 0, 0, 0, yJ), for some y4, in finite time.

e Next, traverse a closed path v in the (y;, y3) space in finite time, where the path Y is
selected to satisfy

-ys = [y yidys; . (4.12)

this transfers the state (0, 0, 0, 0, yJ) to the origin in finite time.
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Here we consider a rectangular path v in the (yy, y3) space formed by line segments from
©,0) to (1, 0), from (y1,0) to (¥}, y3), from (], y3) to (0, y3), and from (0, y3) to
(0, 0). For such a path, the line integral in equation (4.12) can be explicitly evaluated as y;y;
so that equation (4.12) becomes '

l s %
-¥Ys =Y1Y3, (4.13)

and the parameters y; and y3 specifying the particular rectangular path are chosen to satisfy

the above equation.

Throughout, assume & > 0, and define

. lele
k if {x;+ % > 0} or
X2|X2l
{Xl+ 2k =0aﬂde>0}
: ) X2l x5l
Gy xp)=|—k if {x;+ T <0} or
x4l x,51
x1+ 22k2 =0 and XZ<0)
| 0 if {x;=0 and x,=0}

We use the well-known property that any initial state of the system
X| =Xy
X=—G(x); =Xy, Xp),

is transferred to the ﬁnal state (X1, 0) in a finite time.

We now present a specific feedback control algorithm which stabilizes the spacecraft to
the origin in finite time; this feedback control algorithm implements the approach just
described. |

Maneuver 1: Apply
vi==-G0OnYd),

vy=-G¥3, ¥4,

until (¥4, ¥2, ¥3, ¥4, ¥5) = (0, 0, 0, 0, yd) where y{ is arbitrary; then go to Maneuver 2.
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Maneuver 2: If yd >0, choose y] = - y3 = V@ 3); else choose y; =y3 = V(=yd); Apply
vi==Gu-y1,7D
vo=-G({¥3, ¥4,

until (¥, ¥2, Y3, Ya» ¥s) = (y; ,0,0,0, y5l ); then go to Maneuver 3.
Maneuver 3: Apply

vi==GO1-¥1,¥D,

v2=—GQ3—y§,y4) ,
until (4, ¥2, ¥3 )’4,.)’5) = ()’I, 0, yg, 0, 0); then go to Maneuver 4.
Maneuver 4: Apply

A ="G(}’1,)’2) ,
va=-G(y3-Y3.749,

until (¥, Y2, Y3, ¥Y4» ¥s) = (0, 0, y3, 0, 0); then go to Maneuver 5.
Maneuver 5: Apply

vi=-G0Onyd,
vo==-G(¥3 Y4 >

until (¥, ¥2, Y3, Y4, ¥s) = (0, 0, 0, 0, 0); then go to Maneuver 2.

It can be verified that the execution of Maneuver 1 transfers the initial state of the nor-
mal form equations to the equilibrium state (0, 0, 0, 0, yd), for some yd, in finite time. Sub-
sequent execution of Maneuvers 2 through 5 then transfers the state (0, 0, 0, 0, y4) to the ori-
gin ir.1 finite time. This control algorithm is nonclassical and involves switching between vari-
ous feedback functions. Justification that it stabilizes the origin of the normal form equations
(4.7)-(4.11) in finite time follows as a consequence of the construction procedure. Since stabil-
ization of the normal form equations to the origin is equivalent to stabilization of the state
equations (3.7)-(3.11) to the origin, we conclude that the control inputs u; and u, given by
equation (4.6) with v, and v, defined by the above control 'algorithm stabilizes the reduced
spacecraft dynamics described by equations (3.7)-(3.11) to the e.quilibrium (0, 0, 9, 0, W) =
0, 0,0, 0, 0) in finite time. A computer implementation of the feedback control strategy can

be easily carried out.
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4.2. Feedback stabilization based on rigid body rotational characteristics

We now present an alternate discontinuous feedback control strategy for stabilizing the

origin of equations (3.7)-(3.11) in finite tme. This strategy requires that the spacecraft

undergo a sequence of specified maneuvers and is based on the fact that rigid body rotations

do not commute. The physical interpretation of the sequence of maneuvers that transfers any

initial state of equation (3.7)-(3.11) to the origin is as follows.

Transfer the inital state of equations (3.7)-(3.11) to aﬁy equilibrium state in finite time;
i.e. bring the spacecraft to rest.

Transfer the resulting state to an equilibrium state where ¢ = 0 in finite time; i.e. so that
the spacecraft is at rest with ¢ = 0.

Transfer the resulting state to an equilibrium state where ¢ = 0, 8 = 0 in finite time; i.e.

so that the spacecraft is at rest with ¢ =0, 6 = 0.

Transfer the resulting state to an equilibrium state where ¢ = X 0 = 0 in finite time; i.c.

so that the spacecraft is at rest with ¢ = lzt— 6 =0.
Transfer the resulting state to the equilibrium state (0, 0, %, 0, 0) in finite time.

Transfer the equilibrium state (0, 0, —7-2t— 0, 0) to the equilibrium state (0, 0, 0, 0, 0) in

finite time.

We now present a feedback control algorithm which stabilizes the spacecraft to the origin in

finite time; this feedback control algorithm implements the approach just described.

Maneuver 1. Apply

uy = —ksigno, ,

Uy = — ksignw, ,

until (®,, ®,) = (0, 0); then go to Maneuver 2.

Maneuver 2: Apply

u;=-G@, o),

u2=0,
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until (©,, ®,, ¢) = (0, 0, 0); then go to Maneuver 3.
Manuever 3: Apply

u;=0,

uy=—-G(6, 0y,
until (©;, ®,, ¢, 8) = (0, 0, 0, 0); then g§ to Maneuver 4.
Maneuver 4: Apply

uy=-G@ -0,

u, =0,
until (@, ©,, ¢, 8) = (0, 0, % 0), then go to Maneuver 5.
Maneuver S: Apply

u; =0,

u == Gy, oy,
until (@, ,, ¢, 6, ¥) = (0, O, 121:—, 0, 0); then go to Maneuver 6.

Maneuver 6: Appfy

uy=- G(d), (01) ’

U= 0 ,
until (0, 0,, ¢, 6, ¥) = (0, 0, 0, 0, 0, 0); then go to Maneuver 1.

It can be verified that the execution of Maneuver 1 transfers the initial state of equations

" (3.7)-(3.11) to the equilibrium state (0, 0, ¢!, 81, y), for some ¢!, 8!, y!, in finite time. Exe-
cution of Manuever 2 then transfers the state (0, 0, ¢%, 8!, y!) to the state (0, 0, 0, 6, y);
" execution of Manuever 3 then transfers the state (0, 0, 0, 61, w‘) to the state (0, 0, 0, 0, \4!1);
execution of Manuever 4 then transfers the state (0, 0, 0, 0, y!) to the state (0, 0, -1-2:-, 0, y);

execution of Manuever 5 then transfers the state (0, 0, %, 0, y!) to the state (0, 0, %, 0, 0);

finally, execution of Manuever 6 transfers the state (0, O, 12‘_’ 0, 0) to the state (0, 0, 0, 0, 0).

This strategy is discontinuous and nonclassical in nature. A computer implementation of the
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feedback control strategy can be easily carried out.

4.3 Comments

We have introduced two different control laws which transfer any initial state of equa-
tions (3.7)-(3.11) to the origin in finite ime. Each of these control laws is in feedback form,
since the control values depend on the current state; and each control law is discontinuous.
The first construction procedure makes use of-the nonholonomic features of the reduced
spacecraft dynamics, while the second construction procedure uses physical insight about rigid
body rotations. Tlfe first control law constructed makes use of both control actuators simul-
taneously, while the second control law (after Maneuver 1) uses only a single actuator at a
time. The two discontinuous feedback control laws exhibited are illustrations of the class of
control laws which asymptotically stabilize equations (3.7)-(3.11) to the origin. There are
other maneuver sequences, and corresponding feedback control laws, which will also achieve
the desired attitude stabilization of the spacecraft. But each such strategy is necessarily

discontinuous.

One of the advantages of the development in Sections 4.1 and 4.2 is that feedback con-
rol strategies are constructed which guarantee attitude stabilization in a finite time. The total
time required to complete the spacecraft reorientation is the sum of the times required to com-
plete the sequence of maneuvers described. It should be clear that the time required to com-
plete each maneuver depends on the single positive parameter & in the corresponding control
law. There is a trade off between the required control levels, determined by the selection of &,
and the resulting times to complete each of the maneuvers and hence the total time required to
reorient the spacecraft. In particular, the time to reorient the spacecraft from a given initial
state to the origin can be expressed as a function of the value of the parameter k and of the
initial state.

We have demonstrated, by construction, the closed loop properties for the special feed-
back control strategies presented. Our analysis was based on an ideal model assumption.

Further robustness analysis is required to determine effects of model uncertainities and exter-

nal disturbances. Unfortunately, such robustness analysis is quite difficult since the closed . -

loop vector fields are necessarily discontinuous. Perhaps, feedback control strategies which
stabilize the spacecraft attitude, different from ones presented in this paper, would provide
impro\}ed closed loop robustness. These issues are to be studied in future research.
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§. Simulation

We illustrate the results of the paper using an example. Consider a rigid spacecraft with
no control torque about the third principal axis and two control torques, generated by momen-
tum wheel actuators, are applied about the other two principal axes. Therefore the vectors b,
and b, are given by b, = (1, 0, O)T, b, =(0, 1, O)T. For our simulation, we use the space-
craft parameters used in Ref. 2. The mass of the spacecraft, m, is 500 Kg, and the masses of
the momentum wheels, m, apd ms, are each 5 Kg. The center of mass of the momentum
wheels are located at a distance 0.2 m from the center of mass of the spacecraft, i.e., dy=d,
= 0.2 m. The moment of inertia of the wheels about its axis -of rotation is 0.5 Kg.m?, i.e.,

j1 =J2=0.5. The inertia tensor of the spacecraft and the two momentum wheels are
I, = diag (86.215, 85.07, 113.565) Kg.m? ,
1, = diag (0.5, 0.25, 0.25) Kg.m?,
I = diag (0.25, 0.5, 0.25) Kg.m? .
Using these paramefers, the inertia matrix J can be calculated which equals
J = diag(86.7, 85.5, 114.5) Kg.m?,

approximately. The complete dynamics of the spacecraft system defined by equations (3.1)-
(3.4) is not controllable, but we consider the restriction that the angular momentum vector
H =0. Consequently, we are interested in stabilizing the reduced spacecraft dynamics
described by equations (3.7)-(3.11) to the equilibrium (w;, 0,, ¢, 8, y) = (0,0, 0,0, 0).
The spacecraft is initially at rest (ie., (n{) = @ = 0) with an initial orientation given by the
Euler angles ¢° = &, 6° = 0.25x and y? = - 0.5m.

First, a computer implementation of the feedback control algorithm specified in Section
4.1 was used to stabilize the spacecraft to the origin. The value of the gain k was chosen as
1. The time responses of the Euler angles, angular velocities and the control torques are
shown in Fig. 1, Fig. 2 and Fig. 3 respectively. After a total maneuver time of 11.77 seconds,
W =0,=0=0=y=0. Next, a computer implementation of the feedback control algo-
rithm specified in Section 4.2 was used to stabilize the spacecraft to the origin. The value of
the gain k was chosen as 1. The time responses of the Euler angles, angular velocities and
the control torques are shown in Fig. 4, Fig. 5 and Fig. 6 respectively. After a total maneuver

time of 13 seconds, w; =, =¢=0=y =0.
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6. Conclusion

The attitude stabilization problem of a spacecraft using control torques supplied by two
momentum wheel actuators about axes spanning a two dimensional plane orthogonal to a prin-
cipal axis has been considered. The complete spacecraft dynamics are not controllable. How-
ever, the spacecraft dynamics are small time locally controllable in a reduced sense. The
reduced spacecraft dynamics cannot be asymptotically stabilized using time-invariant continu-
ous feedback, but discontinuous feedback control strategies have been constructed which sta-
bilizes the spacecraft (in the reduced sense) to an equilibrium attitude in finite time. The
results of the paper show that although classical nonlinear control techniques do not apply, it
is possible to construct control laws based on the particular spacecraft dynamics.
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Abstract

An attitude control strategy for maneuvers of an interconnection of planar bodies in
space is developed. It is assumed that there are no exogeneous torques and that torques
generated by joint motors are used as means of control so that the total angular momen-
tum of the multibody system is a constant, assumed to be zero in this paper. The control
strategy utilizes the nonintegrability of the expression for the angular momentum. Large
angle maneuvers can be designed to achieve an arbitrary reorientation of the multibody
system with respect to an inertial frame. The theoretical background for carrying out

the required maneuvers is summarized.



1. Introduction

In this paper we develop an attitude control strategy for a system of NV planar
rigid bodies in space which are interconnected by ideal frictionless pin joints in
the form of an open kinematic chain. Angular momentum preserving controls, e.g.
torques generated by joint motors, are considered. The N-body system is assumed
to have zero initial angular momentum. Our earlier work!? demonstrated that re-
orientation of a planar multibody system with three or more interconnected bodies
using only joint forque inputs is an inherently nonlinear control problem which is
not amenable to classical methods of nonlinear control. The goal of this study
is to indicate how control strategies can be explicitly constructed to achieve the
desired absolute reorientation of the N-body system. The key is to excite certain
oscillatory motions in the shape of the structure, thereby pfoviding a capability

for reorientation of the structure with respect to an inertial frame.

There are many physical advantages in using internal controls, e.g. joint torque
controls, to carry out the desired muitibody reorientation maneuvers. First of all,
this control approach does not modify the total angular momentum of the multi-
body system. In addition, internal controls have obvious advantages in terms of
energy conservation. Moreover, they can be implemented using standard electrical

servo motors, a simple and reliable control actuator technology.

The formal development in this paper is concerned with control of a multibody
interconnection in space which has zero angular momentum. Although these re-
sults are formulated in a general setting, we have been motivated by several classes

of specific problems. Several potential applications of our general results are now
described.

Manipulators mounted on space vehicles and space robots have been envisioned
to carry out construction, maintenance and repair tasks in an external space en-
vironment. Previous research on maneuvering of such space multibody systems

has mainly focused on maneuvers which achieve desired orientation of some of the



bodies, e.g. an end effector, while the orientation of some of the remaining bodies
cannot be specified, at least using the methodologies employed®~®. Another related
application is the performance by astronauts of reorientation maneuvers in space.
Previous research in this area® has emphasized dynamics issues. Closely related
research has focused on describing the reorientation maneuvers of a falling cat!®.
Finally, we mention another area of potential application of the results of this
paper, namely the development of deployment maneuvers for multibody antennas
connected to a spacecraft. It is expected that such an approach would have many.

advantages over the use of existing passive antenna deployment mechanisms!!.

This paper is organized as follows. In Section 2, a mathematical model for a
planar multibody system in space is derived. We then formulate an attitude control
problem associated with the planar multibody system. In Section 3, we first sum-
marize se\;eral relevant theoretical results. We then introduce an attitude control
strategy to solve this reorientation problem. Section 4 consists of a summary of the
main results and concluding remarks about our continuing research. Although a
complete treatment of the topics in the paper requires use of differential geometric
tools, our presentation avoids these tools and uses only elementary mathematical

methods. However, references to relevant literature are provided throughout.

2. Mathematical Model for Planar Multibody System

We consider a system of N planar rigid bodies interconnected by frictionless
one degree of freedom joints in the form of an open kinematic chain. The configu-
ration space, for an observer at the center of mass of the system of rigid bodies, is
N dimensional. Since we assume an open kinematic chain there are exactly N —1
joints. We consider controlling the rotational motion of the system using torques
at the joints; each joint is assumed to be actuated so as to permit free adjusment
of the joint angle. It is assumed that there are no external torques acting on the
system. It is clear that the configuration of the N bodies can be described by the
absolute angle of any one of the bodies (say body 1) and NV —1 joint angles. Denote
by 6, the absolute angle of body 1, and by the (N — 1)-vector ¢ = (¢1, -+, ¥n-1)



the joint angle vector. Clearly, (8,,%) is a generalized coordinate vector for the
rotational motion. It can be shown that the Lagrangian (which is equal to the
rotational kinetic energy under the above assumptions), written in terms of these
coordinates and their time derivatives, does not contain §; explicitly, i.e. 6; is a
cyclic or ignorable coordinate. Consequently, the generalized rnofnentum associ- -
ated with the cyclic coordinate 8, is conserved. This conserved quantity is the first
integral of the motion corresponding to conservation of angular momentum of the
system. In this paper we assume zero initial angular momentum so that angular

momentum remains zero throughout a maneuver.

It is clear that Lagrange’s equations describe the motion on the joint angle
space, and the evolution of #; can be obtained from the expression for conservation
of angular momentum. Thus, the motion of a planar multibody system, under the

above assumptions, can be described by the following reduced order equations

T+ F(,9) =7 e
61 + /() = 0 | (2)
where 7 = (1, -, 7n-1) denotes the (N — 1)-vector of joint torques, J,(v) is a

symmetric positive definite (N —1) x (N — 1) matrix function; and s(3), Fs(t,b,z/;)
are (N — 1)-vector functions. Note that in this paper a “prime” denotes tranpose.

The explicit specifications of these functions can be found in the literature’!?.

State space equations for (1) and (2) are

b = —s(p)w , (3)
Y=w , (4)
W= —J7 () F(v,w) + I ()T (5)

Note that equations (4),(5) are expressed in terms of the joint phase variables

(@b,z[)) only. Hence the joint angle space constitutes a reduced configuration space



for the system. This reduced configuration space is also referred to as the “shape

12-16 1t is possible to consider control problems expressed

spéce” of the system
solely in terms of the shape space; such problems can be solved using classical
methods. However, in our work we are interested in the more general control
problems associated with the complete dynamics of the multibody system defined

by equations (1)-(2) (or (3)-(5)).

Note that equations (4):(5) only, which represent the projection of the motion
onto the shape phase space, are feedback linearizable using the feedback transfor-

mation

u=—J7 () F(y,w) + I ()7 (6)

where u € RN~!. The above feedback transformation yields the following normal

form equations

0, = —s()w , (7)
p=w , (8)
w=u (9)

We remark here that it is impossible to completely linearize the system defined by
equations (3)-(5) using static or dynamic feedback combined with any coordinate

transformation.

Note that an equilibrium solution of equations (3)-(5) corresponding to 7 = 0
(or equivalently an equilibrium solution of equations (7)-(9) for u = 0) is given by
(0%, ¢°, 0), where (65,v°) is referred to as an equilibrium configuration. Hence
an equilibrium solution corresponds to a trivial motion of the system for which all

the configuration space variables remain constant.

Note also that equation (3) represents conservation of angular momentum. This

equation is not integrable for N > 3 (i.e. if the multibody system consists of three



or more links). This fact has important implications in terms of controllability
properties of the system as will be shown in the subsequent development. As a
consequence of the symmetry possessed by the system, 8, does not appear explicitly. .
in equation (3). Mechanical systems with such symmetry properties are referred
to as Caplygin systems!’~2!. As a consequence of the nonintegrability for N > 3,
the scalar analytic functions

Hyp) = o - A

where [ = {1,---,N — 1}, do not all vanish, except possibly on a set which has

, (1,5) €1?, (10)

measure zero with respect to the shape space.

3. Attitude Control Problem

In this section, we address the following control problem associated with planar

multibody. systems described by equations (1)-(2) :

Problem : Given an initial state (69,¢°,w®) and a desired equilibrium so-
lution (0,v°,0), determine a motion (61(t),¥(t),w(t)), 0 < t < ty, such
that (6,(0),$(0),w(0)) = (69,4%0), (Bulty),Blts)wlts)) = (65,4%,0) and
(01(t),%(t),w(t)) satisfies equations (1)-(2) for some control function t — 7(t).

Note that, in particular, if w® = 0 then the above problem corresponds to a

rest-to-rest maneuver.

The existence of solutions to the above control problem was demonstrated in
our earlier work™?. In particular, we studied the nonlinear control system described
by equations (7)-(9) and employed certain results from nonlinear control theory
to characterize controllability properties of planar multibody systems described
by equations (1)-(2). These results not only prove the existence of solutions of
the above problem but they also provide a theoretical basis for construction of

nonlinear control strategies required to achieve the desired maneuver. We next



summarize those results!'?.

Under the stated assumptions, a planar multibody system has the foﬂowing

properties if N > 3, 1.e. if it consists of three or more links:

1. The system is strongly accessible. -

2. The system is small time locally controllable from any equilibrium.

3. The system can be transferred from any initial condition to any desired
equilibrium in arbitrarily small time.

If N =1 or N = 2, then the system is not even accessible, not small time
locally controllable and there exist initial conditions which cannot be transferred to
a desired equilibrium.

1,19

The proofs''® of the first two results depend on showing that certain Lie alge-

braic conditions are satisfied if N > 3. The third result is proved!!® constructively.

It should be emphasized that the subsequent development is assumed to be
carried out for multibody systems consisting of three or more links (N > 3) Note
that the reorientation or attitude control problem generally has many solutions.
In this paper, we describe one solution approach, outline the theory behind it, and
present some data from simulations. The key observation is that there is nonlinear
coupling between changes in the shape of the structure and the rotational motion
of the structure as a whole; this coupling is used to achieve reorientation of the

structure.

Consider equation (3). Assume that joint angles are controlled in such a way
that ¥(t), 0 < t; <t < ¢y, describes a closed path v in the shape space. Integrating
both sides of equation (3) from ¢ = ¢, to t = t; and using the fact that dy = Pdt,

we obtain

B(ts) ~ Oy(t) = }ﬁs'(zp)dzp . (11)

Thus by proper selection of a path 4 in shape space, any desired geometric phase



(which is a rotation of link 1) can be obtained. By the norilin‘tegrability property
mentioned previously, the above integral is in fact path dependent thereby guar-

anteeing the existence of (many) such paths.

Note that in differential geometry the quantity
a(y) = ¢ 5'(w)dw
Y

is referred to as the geometric phasé (or holonomy) of the closed path 5. This.
quantity depends only on the geometry of the closed path and is independent of
the speed at which the path is traversed.

Note that Stokes’ formula can be applied to obtain an equivalent formula for
a(¥) as a surface integral. For simplicity, assume that N = 3, i.e. the shape space
is the (’le,-‘wg) plane. Also, let 4 be traversed counterclockwise. Then by Stokes’
theorem the above formula can be written as

Osy  0sy
a(y) = /S(M - 51'/)—2)611/11611/’2
where S is the surface within the boundary 4. In the case that the path is traversed

clockwise, the surface integral is equal to —a(7).

More information concerning geometric phases can be found in the literature!®.
Geometric phase ideas have proved useful in a variety of inherently nonlinear con-
trol problems'®~2!. These ideas have also been used for a class of path planning

problems based solely on kinematic relations!>1416.

We now describe a control strategy, using the above geometric phase relation

* (11), which solves the reorientation problem.

Let (6¢,4°,0) denote the desired equilibrium solution. We refer to (6f,%°) and
1*° as the desired equilibrium configuration and the desired equilibrium shape, re-

spectively. We describe four steps involved in construction of an open loop control

/

function up,,) = (u1,---,un-1) which transfers any -initial state (69,4°,w°) to



6¢,1¢°,0) in time exactly t;, where t; > 0 is arbitrary.
it Y tf f y

Let 0 < t; < t; < t3 < t; denote an arbitrary partition of the time interval.
[0,t)).

Step 1 : Transfer the system to the desired equilibrium shape, i.e. find a control
which transfers the initial state (69,4% w°) to (61,1°,0) at time t;, for some 6}.

Since the dynamics on the shape phase space are so simple, namely decoupled
double integrators, Step 1 has many solutions which are easily obtained using
classical methods. One such control function is

_{ —22 cos( L) t € 0,0.5¢,)
u[ovtl) -

(P —yp° —wO Sl . (2t —
Sr(vi—v 71;1“’5 D sin(2E=h)y ¢ e [0.58,1) -

(12)

Next, we select a closed path v (or a series of closed paths - see Remark 1 below)
in the shape space which achieves the desired geometric phase. There are many
ways to accomplish such a construction; in our work we have found it convenient
to use only two joint motions, keeping the other joints locked, and to use a square
path in the restricted two dimensional shape space. It is convenient to select the
center of the square path in a region of the shape space which corresponds to a

“large” geometric phase change (see Remark 2 below).

To make the above ideas more concrete, we present a specific construction. Let
(¢,7) € I?, i # j, denote a pair of joints. Assume that for ¢ > ¢; only this pair of
joints are actuated while all the other joints are kept fixed. This is equivalent to
locking all the joints except the ones labelled ¢ and j and treating the N bodies as
three interconnected bodies, for ¢ > ¢,. In this case the desired geometric phase

formula can be written as
01(ts) — 07 = +a()

where +(-) corresponds to counterclockwise (clockwise) traversal of the closed path

5. Since we desire to make 6,(t;) = 6§, the closed path ¥ should be selected to



satisfy
0~ 0} = +a(y)
The path v lies in the two dimensional (;,%;) plane, so that
o) = § 80,y )t 350, ;)

where the scalar functions 3;(¥:, ¥;) and 3;(¥, ;) are obtained by ev&luating si(2)
and s;(¥) at ¥ = ¥§, Vk € I where k #4,5. |

As mentioned above we choose v to be a square path in the (v, ;) plane which
is centered at the shape defined by * and which has side of length z*, where z*

satisfies
+a(y.e) + 0 -6 =0.

Here v, indicates the dependence of the square path on the size parameter z. In

most cases, this equation is easily solved using standard numerical procedures.

Remark 1 : Note that here, for notational simplicity in presenting the main idea,
we assume that the desired geometric phase can be obtained by a single closed
path. In general, more than one closed path may be required to produce the
desired geometric phase; for such cases v can be viewed as a concatenation of a
series of closed paths. In any event, the motion along such a closed path defines a

periodic motion corresponding to a change in the shape of the structure.

Remark 2 : Selection of the center point %~ of the path is rather arbitrary, e.g.

one selection is ¥* = 1. However, other choices may provide a greater change

in the geometric phase for a given size path. In this regard, the use of Stoke’s

theorem, as indicated previously, suggests that ¢* should be chosen where
Iasj(lb) _ asi(d’)l

;i 0;

is a maximum.




We now describe the remaining three steps as follows.

Step 2 : Transfer the system from state (8],v°,0) to a state corresponding to the:
corner of v closest to ¥, along an arbitrary path in the shape space, in t, — t,

units of time.

As an example, if p] is the corner of v closest to ¥° we propose the following
control function for Step 2.

27 (p} — ¥°) 2m(t —t;)

(t2 — t1)? (t2 —t1)

Step 3 : Traverse the selected square path (counterclockwise or clockwise, depend-

sin( ). , (13)

Uty t2) =

ing on the sign of the desired geometric phase value), in t3 — ty units of time; the

resulting change in the angle 0, is necessarily 65 — 6;.

Without loss of generality, we assume that the desired geometric phase value
is obtained by counterclockwise traversal of the closed path starting and ending at
p;. Then, the following control functions guarantee traversal of the closed path,

thereby accomplishing Step 3. ,
27 (p5 — Py 27(t -1
F(p2 pl) si ( 7"( 2)

Ufts ta+h) = 12 A ) 3 (14)
2n(ps —p%) . 2n(t —t, —h
Uty +h,ta+2h) = (P;;Zz Pz) sm( ( h2 )) ) (15)
21 (ps ~ %) . ,27(t ~t; —2h
Ut +2h,t343k) = (p;lz pS) s ( ( h2 )) , (16)
2r(pt —p3) . 2m(t —t, —3h
iy = B P) i 221 Z3H), a7

where h = (t3 — t,)/4.

A Step 4 : Transfer the system back to the desired equilibrium shape ° following the
path used in Step 2, in t; — t3 units of time; thereby guaranteeing that the desired
final state (65,4°,0) is reached at time t;.



The following control function

_2r(y® —p1) . 2n(t —t5)
u[ts,tl)_’ (tf _ t3)2 Sln( (tf _ tS)

(18)

accomplishes Step 4.

The corresponding control torque r can be computed using equation (6). It is
clear that the constructed control torque transfers the initial condition of the sys-
tem (1)-(2) to the desired equilibrium configuration at time t;. It is important to
emphasize that the above construction is based on a priori selection of a square as
the closed path in the shape space. Selection of square paths simplifies computa-
tion of the controls; however other path selections, e.g. corresponding to sinusoidal
changes in the shape of the structure, could be made. There are infinitely many
choices for control functions which accomplish the above four steps, and the total

time required is arbitrary.

4. Conclusions

In this paper we have developed an attitude control strategy for planar rigid
bodies interconnected by ideal pin joints in the form of an open kinematic chain.
The control strategy utilizes the nonintegrability of the expression for angular mo-
mentum. We have demonstrated that large angle maneuvers can be designed to
achieve an arbitrary reorientation of the multibody system with respect to an iner-
tial frame; the maneuvers are performed using internal controls, e.g. servo torque
motors located at the joints of the body segments. The theoretical background
for cérrying out the required maneuvers has been briefly summarized. We men-
tion two nontrivial extensions of the approach in this paper which are currently
being developed. The first extension is to non-planar reorientation maneuvers of
multibody systems consisting of rigid and flexible links; in this case the dynamics
issues are much more complicated but in principle the approach is viable??. An-
other extension is the development of feedback implementations of the controls

presented in this paper; some results have been obtained!? using a (necessarily)



discontinuous feedback strategy. These important extensions generally require the

use of differential geometric methods for a complete treatment.
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. Abstract

The attitude stabilization problem of a rigid spacecraft using only
two coatrol torques is considered. The control torques are assumed to be
g by either gas jet actuators or momentum wheel actuators. In
on the development of a control strategy for the fol-

lowing two problems which have not been considered elsewhere: the agi-
3 [ symmedric spacecraft using coatrol torques
supplied by two pairs of gas jet actuators about axes spanning a two
imensional axis of symmetry; the attitude stabil-
ization of a spacecrafl using control torques supplied by two momentum

E

to be controllable or even accessible in these cases. However, the space-
craft dynamics are strongly accessible and small time locally conwrollable
in a restricted sense; but the restricted dynamics cannot be
asymptotically stabilized using any C® feedback. A nonsmooth
feedback control strategy is developed for the reswicted spacecraft
dynamics which achicves an arbitrary reorientation of the spacecraft.

1. Introduction

The attitude stabilization problem of a rigid spacecraft using
only two control torques is revisited. This may represent a space-
craft controlled by three control torques operating in a failure
mode. The linearization of the dynamic equations at an equilibrium
of such a system has an uncontrollable eigenvalue at the origin.
Thus controllability and stabilizability properties of the system can-
not be inferred using classical linearization ideas and requires
inherently nonlinear analysis. An analysis of the controllability pro-
perties of a with two independent control torques is
made in [7]. In [7] it is shown that a necessary and sufficient con-
diton for complete controllability of a spacecraft with control
torques supplied by two pairs of gas jet actuators about axes span-
ning a two dimensional plane is that the axis orthogonal to this
plane must not be a principal axis of symmetry of the spacecraft
For such a system, it is further shown that contollability is
equivalent to local controllability at any equilibrium. When a
spacecraft is controlled by less than three independent momentum
wheel actuators, the system is not controliable or even accessible at
any equilibrium [7]. Hence, all the resuits in the literatre on the
stabilization of a spacecraft with two control torques assume that
the control torques are generated by gas jet actuators. In what fol-

lows in this section, it is assumed that the control torques are gen-

erated by gas jet actuators unless stated otherwise.

In [6], it is shown that a rigid spacecraft controlled by two
pairs of gas jet actuators cannot be asymptotically stabilized to an
equilibrium using a continuously differentiable, i.c. C!, feedback
control law. However a smooth C° feedback control law is
derived which locally asymptotically stabilizes the spacecraft to a
circular attractor, rather than an isolated equilibrium. Using local
controllability results, an algorithm which locally asymptotically
stabilizes the to an isolated equilibrium is proposed in [7].
The algorithm is extremely cated and is based on Lic alge-
braic methods as proposed in [8]. The algorithm yields a piecewise
constant discontinuous control. Although very complicated, the
algorithm is the onlz one proposed in the literature which locally
asymptoticaily stabi the system to an equilibrium.

In this paper, we focus on two important control problems
which have not been considered elsewhere:

the attitude lmbillzaﬂon of .:y nxlally_symfmeuic_:asgmt

using control torques supplied by two of gas j s

abomamspammgamdimensimr;mmonrwgomltoﬂn

axis of symmetry;

the attitude stabilization of a spacecraft using control torques

supplied by two momentum wheel actators about axes span-

ning a two dimensional plane orthogonal to a principal axis.
The focus of this paper is on the development of a control strategy
for attitude stabilization, in a restricted sense, of the above men-
tioned systems. The control results in (7] and (6] are not
applicable to these spacecraft systems since the complete dynamic

equations fail to be controllable or even accessible at any equili-
brium. Under some rather weak assumptions, it is shown that the
dynamic equations of both the spacecraft systems being considered
reduce to an identical set of equations which are identified as a
nonholonomic control system. A coordinate transformation is
made and feedback is then used to obtain a nonlinear control model
in a nomal form. The linearization of the normal form equations at
an equilibium has an uncontrollable eigenvalue at the origin.
Based on analysis of the normal form equations, the spacecraft sys-
tems are strongly accessible and small time locally controllable at
any equilibrium in a restricted sense. The spacecrafl systems cannot
be asymptotically stabilized to an equilibrium using smooth C'
feedback. Nevertheless, a nonsmooth feedback control strategy is
developed which achieves reorientation of the spacecraft. The feed-
back control strategy is based on holonomy or geometric phase,
which is due 1o the presence of a nonintegrable constraint on the
spacecraft motion in the cases studied.

We conclude this section with a of some of the
important results on the stabilization of the angular velocity equa-
tions (i.e. without considering the attitude equations) of a space-
craft using fewer than three i control torques. Asymp-
totic stabilization of the angular velocity equations of a spacecraft
using only control torques about two of its principal axes is con-
sidered in [1,5). It is shown that the angular velocity is asymptoti-
cally stabilizable to the origin using smooth C' feedback if the
uncontrolled principal axis is not an axis of symmetry of the space-
craft. Explicit control laws are derived in {S] and (1] using center
manifold theory. For a spacecrat with no axis of symmerry,
asymptotic stabilization using a linear control law is possible using
just one control torque about an axis having nonzero components
along each principal axis {3]. The control law, however, is not
robust. In the case of an axially symmetric spacecraft controlled
using a single control torque about an axis having nonzero com-
ponents along each principal axis, there exists no linear control law
which asymptotically stabilizes the origin; however there exists a
nonlinear asymptotically stabilizing control law [10). If there is
only one control torque applied about an axis which is a principal
axis of the spacecraft, then asymprc stabilization is not possible
{2]. However, there exist smooth C' feedback control laws which
make the origin stable in the sense of Lyapunov {2]. A point o
notice is that the resulting closed loop system is robust if the
moment of inertia about the control axis is either the maximum or
minim‘;xm principal moment of inertia. Otherwise, the control law is
nonrobust, i

2. Kinematic and Dynamic Equations

Kinematic Equations
The orientation of a rigid spacecraft can be specified using vari-

ous parametrizations of SO (3). Here we use the following Euler

angle convention. Consider an inertial X ,X,X4 coordinate frame;.
let x;x%x4 be a coordinate frame aligned with the principal axes of

the spacecraft with origin at the center of mass of the spacecraft.

If the two frames are initially coincident, a series of three rotations

about the body axes, performed in the proper sequence, is sufficient

to allow the spacecraft to reach any orientation. The three rotations
are:

a positive rotation of frame XX,X4 by angle y about the X3
axis; let x,xoxy denote the resulting coordinate frame;
a positive rojation of frame x,x,xy by angle 6 about the x;
axis; let x;x2x5 denote the resulting frame;
a positive rotation of frame x,x3x3 by angle ¢ about the x,
axis; let x x,x3 denote the final coordinate frame.
A rotation matrix R relates components of & vector in the inertial |
frame to components of the same vector in the body frame. in
terms of the Euler angles a rotation matrix is



cyct - syco -50
R(y.0,9) = —sycd +cysOsé cyce +sysBsd cBso 2.1)
sysd +cysbce ~cysé+sysbcd cOcd
he = cos(y), SV = sin(y). We assume that the Euler
;vnglrecs g;: i tg!.l’ 10 the ranges X<y<k -2 <6 <2,
-t<H)<E Suppose ©y, ®;, @y are the principal axis components
of the absolute angular velocity vector o of the spacecraft. Then
expressions for wy, @y, @3 are given by

o =9~ ysind , (2.2)
@, = Hcos + yeosh sing 2.3)
3 = - Osing + YcosO cosd . 2.4)

By excluding the case where 8 = & x/2, these equations are invert-
ble. Thus we can solve for ¢, B, y in terms of ©,, 3, ®y obtain-

ing

6 = ©; + Wysing tanb + Wscosd tand , 2.5) .
8 = 089 — Gysind , : 2.6)
¥ = (;5in¢ secO + W;cosp sechd . @n

Next we consider the dynamic equations which describe the
evolution of the angular velocity components of the spacecrafl.
Dynamic Equations: Gas Jet Actuators

Let J = diag(J.J1.J 7 be the inertia matrix of the spacecraft in
a coordinate frame defined by its principal axes. Let # be the
angular momentum vector of the spacecraft relative to the inenial
frame. Then we have

Jo=RWO.0H . 2.8)
Differentiating (2.8) we get
Jio=S(@RWO.NH + RYI.NH . 29)
where )
0 o -»
S=]-0y 0 of. (2.10)
w -~ 0

We assume that the control torques &’y and u’, are applied about
the axes represented by unit vectors b, and b, respectively. This
implies that

R(Y.O.0H = b’y + b’y . 2.11)

Further the vectors b, and b, are assumed to span a two dimen-
sional plane orthogonal to a principal axis of the spacecraft.
Without loss of generality, b; are assumed to be of the form
(b;1, biz, 0)7. Thus the equations describing the evolution of the
angular velocity of the spacecraft are given by

J1@y = (3 = J 1)@y + byyu’y + bz 2.12)
Joly = (T3 = J o3y + byau’y + bgu’s 2.13)
J305 = (/= Ty, . 214)

Dynamic Equations: Momentum Wheel Actuators

Consider a rigid spacecraft with two momentum wheel actua-
tors spinning about axes defined by unit vectors b,, b, fixed in the
spacecraft such that the center of mass of the j-th wheel lies on the
axis defined by b;, and a control torque — 4’; is supplied to the /-
th wheel about the axis defined by b; by a motor fixed in the
spacecraft. Consequently, an equal and opposite torque «’; is
exerted by the wheel on the spacecraft. We refer o the spacecraft
and the two wheels as body 1, body 2 and body 3 respectively. Let
C; denote a coordinate frame aligned with the principal axes at the
center of mass of body i. We assume that b; defines a principal
axis for the i-th wheel which is symmetric about b;. Further b
and b, span a two dimensional plane which is orthogonal to a prin-
cipal axis of the spacecraft. Without loss of generality b; are
assumed to be of the form (b;;, b;3, 0)".

Let /; denote the inertia tensor of body i in the coordinate
frame C ;. The mass of body i is denoted as m; and p;' denotes the
position vector, expressed in the C, frame, of the center of mass of
body i with respect to the center of mass of the whole system. Let
o denote the absolute angular velocity of the spacecraft expressed

in the spaoécraﬁ body frame. By the definition of the center of
mass, we have

3

_Z'imm.-' =0, @2.15)
and from the location of the wheels

pl=pl+ dyds 0, (2.16)

pi=p! +dsde O, @17

where (d,,d;,0)7 and (ds.d,0)7 are position vectors of the center
of mass of body 2 and body 3 respectively, relative to the frame
C,. Further manipulation of equations (2.15)-(2.17) gives

T

m m m m
pl= =224, - D2y, -—2dy - =24, 0) 2.18)
m m m m

my+msy

my+msy m T
—_— dz--;}m. 0 . @19

1 mjy
= dy - —d,,
P2 =( 1 3
m g

T
1 my ma m+m
p3 = (~—d| + ———d3, ——d; + 172
m m m

- de0) , (220

where m = m+my+ms. We denote p} as p} = (¢;1, ¢i2, 0)T. The
total “ angular momentum vector of the system is given, in the
spacecraft body frame, by

RWWOOH =Jo+v, (.21
where
3.3
J=h+ XL+ XU -1, (22
is] i=
¢t -2 O
=ml—cicy cd o |, (2.23)
0 0 ci+ed
v =, vy 0 =0+ 5,6) +I50+5,8), (2.24)
L=bblji I3=bdlia, .29
I| = diag(l". l12' ,13)' (226)
1, = block diag(/31, 22y, 13 = block diag(l3;. /3y, 227

where lu. lgl are invertible 2 x 2 matrices, ’“. In. l|3. ln. 132
are nonzero real numbers, j, is the moment of inertia of body 2
about the axis defined by b,, j, is the moment of inertia of body 3
about the axis defined by b,, and 0,, 8, are the angles of rotation
of the wheels about the axes defined by b, and b, respectively.
Here H denotes the angular momentum vector of the system
expressed in the inertial coordinate frame. The angular momentum
vector H is a constant since there is no extemnal moment about the
center of mass of the system. Suppose u’; and u’; are the control
torques; then

Vv =- (bl“'l + bzu 17) . (228)
Differentiating (2.21) we obtain
Jo= S(W)R (V.O.Q)H + blu'l + bzll ’z . 2.29)

3
where H is a constant vector. Note that /, + Y.I; represents the

isl
moment of inertia of the system with the momentum wheels
replaced by point masses and is hence positive definite. The
matrices /; - [;, i =2, 3 are positive semidefinite and block diago-
nal. Therefore J is a positive definite matrix and hence invertible.
In fact J is of the form

J = block diag (/4, /9 , (2.30)

where Jy i8 an invertible 2 x 2 matrix and J, is a nonzero real
number. '

3. Controliability and Stabilizability Properties of Complete
Spacecraft Dynamics with Two Control Torques

As background for our subsequent development, we present
controllability and stabilizability properties for the complete
dynamics of the spacecraft systems described in the previous sec-
tion. The case for gas jet actuators is shown to depend significantly
on the condition J, # J;. The case for momentum wheel actuators
is straightforward.



Results for Gas Jet Actuators

We first consider the equations describing the motion of a
spacecraft controlled by two pairs of gas jet actuators. Define

WE (R

J2
From Section 2 the state equations can be rewritten as
@) = @)W + iy o G.1)
0 = a0y + ¥z, (32)
By = a0y , (3.3)
¢ = ) + ©,sind tand + Wycosd tand , (3.4)
6 = cosd — Wssing . (3.5)
W = a;Sing secO + @ycos secd , (3.6)
where
a,__= lell, yaz2= 131111 1333 JIJSJZ .
This is of the form
X=f(x)+ 814+ guz, 3.1

where 1 = (0,0,0,.0.0,¥)7 and f. g, 83 are vector fields

defined appropriately. Let M denote the open set
M =(x:w0€eR,i =123, ¢, ye(-x, x), Be(-0.5¢ , 0.5x)) .

It is easily verified that the lincarization of the equations about an
equilibium has an uncontrollable eigenvalue at the origin. This
implies that an inherently nonlinear analysis is necessary in order
to characterize the controllability and stabilizability properties of
the system. .

We present important results on the controllability and stabil-
izability properties-of the complete spacecraft dynamics described
by (3.1)(3.6).

Theorem 3.1: The complete spacecraft dynamics described by state
equations (3.1)-(3.6) are strongly accessible ¥ xeM if and only if
J\| #J5, i.e. the uncontrolled principal axis is not an axis of sym-
metry.

Proof: 1f Jy#J,, the vector fields gy, g3 (81/) [(82/)
{8221/ 1), [[g218:/ 1)/ span a six dimensional space ai every
xeM . Thus the strong accessibility Lie algebraic rank condition is
satisfied and hence the complete spacecraft dynamics are strongly
accessible. If J, = J, the complete spacecraft dynamics fails to be
accessible since o, is necessarily constant.

Theorem 3.2: The complete spacecraft dynamics described by state
equations (3.1){3.6) arc small time locally controllable at any
equilibrium if and only if J, #» J,.

Proof: Suppose J, #J,. Then the complete spacecraft dynamics
are strongly accessible. Following Sussman (11], let Br(x) denote
the smallest Lie algebra of vector fields containing f, g, g2- Let
B be any bracket in Br(x). Now denote 3%(8), 8'(8), 8%B) as the
number of occurrences of the vector fields /, g4, £3 rupecgvelyin

the bracket B. The degree of B ueqwmmevnmof;s‘(n).

-0
The Sussman condition for small time local controllability at
equilbrium s hat the o-called pad brackes. the brackens with

sarily be odd. The bad bracket of degree
at any equilibium. The bad brackets of three
{g1.81/])) and [g2[82/]] and j

fields. Thus the complete spacecraft dynamics are small

=

Theorem 33: The complete spacecraft dynamics described by state
equations (3.1)«3.6) cannot be locally asymptotically stabilized to

im equilibrium by any C' static or dynamic state feedback control
aw, . :

The above theorem was proved in (6] b appealing to
Krasnoselski’s theorem. Although the full set of );quanons (%.l)-
(3.6) cannot be asymptotically stabilized to an equilibrium via C!
feedback, one may sill wish 1o design a smooth control law which
stabilizes at least a particular subset of state variables. Consider the
state equations for @, @, 0y,  and 0 given by (3.1)(3.5). These
equations are not affected by the Euler angle variable y. Asymp-
totic stabilization of this subset of the original ations
corresponds to stabilization of the motion of the spacemm‘ about
an attractor, which is not an isolated equilibrium. The following
theorem from {6] shows that the closed loop trajectories can be
asymptotically stabilized to the manifold

Q= ((0,0.05.90.) . ==y =y =0= 0'} . (3.8)
using smooth C" feedback.

Theorem 3.4: Suppose Jy # J,. The feedback control law

J =

-J
2 Jw

U= -0 -9~ A0y - B,of - (A + 28,0, 7
3

I .
-(—z}-l—’)m,a),-a),-m,stmne-w,cosMane.

I
Uy= =y = 0 - Aziy - By0F — (A3 + 28,00y,
Js

Is=
-(—’;‘z—‘)mnw;-wzcosowam.

;v':lm Ay Ay B,, B, are gain parameters which satisfy A1A; =0

It
( ‘h’xA.(A.-a,)-A,(A,+s,))<o, 39)

locally asymptotically stabilizes the rigid spacecralt to the one
dimensional manifold Q defined by (3.8).

" We mention that although the complete spacecraft dynamics
described by (3.1)(3.6) cannot be asymptotically stabil-
ized to an equilibrium by C feedback, an algorithm generating a
piecewise constant discontinuous control is developed in (7] which
locally asymptotically stabilizes the compiete spacecraft dynamics
to an equilibrium. The algorithm requires that Jy » J;, i.e. the
uncontrolled principal axis must not be an axis of symmetry. The
algorithm is based on Lie algebraic methods ag proposed in (81
The algorithm is extremely complicated and is not an easily imple-
mentable control strategy. However, stabilization of the oomg ete
spacecraft dynamic equations (3.1)«(3.6) is an inherently difficult
problem and the algorithm in (7] is the only control strategy pro~
posed in the literatyre thus far.

Results for Momentum Wheel Actuators

Now let us consider the case of a rigid spacecraft controlled by .
two momentum wheel actuators. Define

uy by by |4
."l-‘ » .
uy bz b3) {u"

From Section 2 the state equations can be rewritten as

T O

0= gy S5 |SORWSOH +(uy, uy, o . (3.10)
¢ = @ + @sing tand + wycosh tand , @1y
8 = 0,c05p ~ axsing , (3.12)
‘i"’«hﬂll’swﬂw'm,(;o»se‘-,e»f 3.13)

where H is a constant vector. In (7] it is shown that the complete
dynamics of a spacecraft controlled by two momentum wheel
actuators as described by equations (3.10)<(3.13) are not controll-
able or even accessible &t any equilibrium. As a consequence of
this negative result, the complete spacecraft dynamics cannot be
asymptotically stabilized using two momentum wheel actators.

4, Controllability and Stabilizability Properties of Restricted
Spacecraft Dynamics with Two Control Torques

From the analysis made in the previous section, we find that



the complete dynamics of a spacecraft system controlled by two
control torques supplied by gas jet actuators as described by equa-
tions (3.1)<(3.6) fail to be controllable or even accessible if the
uncontrolled principal axis is an axis of symmetry of the space-
craft, i.e. if J; = J;. Due to the lack of controllability, the stabiliz-
ing control algorithm proposed in (7] is not applicable to this case.
Moreover, the control law given by Theorem 3.4 which asymptoli-
cally stabilizes the spacecraft 10 a one dimensional manifold will
not work in this case since condition (3.9) is violated. Also, the
complete dynamics of a controlled by two
momentum wheel actuators as described by equations (3.10)-(3.13)
fail to be controllable or even accessible, Note that in this case it is
not necessary that the uncontrolled principal axis be an axis of
symmetry of the spacecraft. In this secton we concentrate on
these important cases. In particular we ask the question: what res-
tricted control and stabilization properties of the spacecraft can be
demonstrated in the cases considered? Our analysis begins by
demonstrating that, under appropriate restrictions of interest, the
spacecraft ions can be expressed in tems of normal form
equations. Restricted controllability and stabilizability properties for
each case follow as a consequence of previous work.
Normal Form Equations

We first consider the equations (3.1)-(3.6) describing: the
motion of a raft controlled by input torques supplied by two
pairs of gas jet actuators about axes spanning a two dimensional
plane orthogonal to a principal axis of the spacecraft. It is assumed
that the uncontrolled principal axis is an axis of symmetry of the
spacecraft. From equations (3.1)-(3.6) and /, = /, we have

W) = Q)00 + Uy , “4.1)
Dy = G200 + K3, 4.2)
D=0, (4.3)
¢ = 0, + (,Sin tan® + 0230089 tand , 4.4)
8 = 0c05P — WaSing , “4.5)
\iﬁso),sino sec + w;cosd sech . 4.6)

If we assume that the initial angular velocity component of the
spacecraft about the axis of symmetry is zero, i.e. ©3(0) =0, then
o, = 0. Under such a restriction, the restricted spacecraft dynamics
for this case are described by

@ =uy, %))
d)z =Us., (48)
o= @ + O»sing tand , 4.9
6 = wcosh , (4.10)
W = ;sing sech . @.11)

We next consider the equations (3.10)-(3.13) describing the
motion of a spacecraft controlled by input torques supplied by two
momentum wheel actuators about axes spanning a two dimensional
plane orthogonal to a principal axis. Suppose the angular momen-
tum vector H of the system is zero. From equations (2.21), (2.24)
and (2.30) it follows that the angular velocity component of the
spacecraft about the uncontrolled principal axis is identically zero,
i. w3 =0. The restricted spacecraft dynamics for this case are
described by

[ NENTIR 4.12)
Wy = Uy, @.13)
$ = 0, + @,sind tand , 4.14)
9 = wycosd , @.15)
¥ = 0,sind sech . (4.16)

The equations describing the motion of the spacecraft, under
the restrictions specified, reduce to an identical set of equations in
both the cases considered: we say that equations (4.7)-(4.11) (or
(4.12)-(4.16)) describe restricted spacecraft dynamics since, in each
case, assumptions have been made which a priori guarantee that the
component of the spacecraft angular velocity @, = 0. Acconding to
equation (2.4), the condition that @y = 0 implies that

—(sing)d 0 + (cosBcosd)dy =0 ; 4.17)

this re a nonintegrable constraint on the spacecraft motion.
Therefore the dynamic equations in each case define a nonholo-
nomic control system of the form studied in (4,9).

Now consider a diffeomorphism defined by

y1 = cos§ In(sec + tanf) + ysing , @.18)
Y2 = tpsecd - y gy, @é.19)
y3=¢, . (4.20)
Y4 = 0 + 08ind tand , @.21)
¥s = sin$ In(sech + tand) — ycosd . 4.22)

The state equations (4.7)-(4.11) (or (4.12)-(4.16)) in the new vari-
ables are given by

Y1=Y2, @23
Y2 = ~ysidy + (secd - yssindtan@)u; - ydy, + cos¢(secBtanfw?
- y sy tanBw; - yssingsec’0w]) , @.24)
Y3=Ys, (4.25)
Y4 = uy + sintanBu; + cosd(y tanb, + singsec’®0f) ,  (4.26)
Ys=yo - @27
If we now define the feedback relations
Uy —singsin® (1~y ssindsing) vy
Ll e
-y Jy 1+cosi(secBtanBnf-y sy danbwzy ssingsec?0w)
- cosi(y d12nBa+singsec’drs)

then the restricted spacecraft dynamics are described by normal
form equations

Y1=Y2, 4.29)
ya=vy. (4.30)
Y324, (4.31)
e=va, @)
Yys=yo - (4.33)

Note that the origin of equations (4.7)~(4.11) (or (4.12)-(4.16)) -
for;g.pom to the origin of the normal form equations (4.29)-
4,

The above normal form equations thus represent the spacecraft
control system for each of the cases considered in the restricted
sense; namely, for the gas jet actuator case 3(0) =0 is a priori
assumed, and for the momentum wheel actuator case the angular
momentum vector of the system H is a priori assumed to be zero.
The following results stated for each of the spacecraft systems, are
based on the normal form equations above and follow directly from
general results in (4].

Results for Gas Jet Actuators

As indicated previously, the complete dynamics of an axially
symmetric spacecraft (J, = J4) controlled by two pairs of gas jet
actuators as described by equations (4.1)«(4.6) is not strongly
accessibie, it is not small time locally controllable, ﬁnd it cannot by
asymptotically stabililized to an equilibrium by a C' feedback con-
trol law. On the other hand, if we a priori add the restriction that
@4(0) =0 then the resulting restricted dynamics are
described by equations (4.7)<(4.11), and hence by the normal form
equations (4.29)-(4.33). We now indicate that this restricted control
system satisfies certain controllability and stabilizability properties.
Theorem 4.1: The restricted dynamics of an axially symmetric
spacecraft controlled by two pairs of gas jet actuators as described
by equations (4.7)-(4.11) are strongly i
Theorem 42: The restricted dynamics of an axially symmetric
spacecraft controlled by two of gas jet actuators as described
by equations (4.7)-(4.11) are small time locally controllable at any
equilibrium.

Theorem 43: The restricted dynamics of an axially symmetric
spacecraft controlled by two pairs of gas jet actuators as described
by equations (4.7)-(4.}1) cannot be asymptotically stabilized to an
equilibrium using a C" feedback control law.

Theorem 44: The restricted dynamics of an axially symmetric
spacecraft controlled by two pairs of gas jet actuators as described
by equations (4.7)-(4.11) can be asymptotically stabilized to the _
one dimensional equilibrium manifold



Q= {(0,0,40¥) 0=, =¢p=0=0}, 4.349)
using a smooth feedback control law given by (4.28) with v, and
va given by

vim=kypya=&, (4.3%)

vym = kyys = vy, : (4.36)

where kyy, k13, k31, k3 >0 a0d yy, 3. y3. Y4 are defined by
(4.18)<4.22).

The implications of the properties stated above are as follows.
For all initial conditions that satisfy 5(0) = 0, the axially sym-
metric spacecraft controlled by two pairs of gas jet acators as
described by equations (4.1)-(4.6) can be controlied o any isolated
equilibrium. However, any feedback control law that asympeotically
stabilizes the to an isolated equilibrium must necessarily
be nonsmooth. Thus reorientation of the spacecraft can be
achieved if ©y(0) = 0; if 03(0) # O, reorientation of the spacecraft
cannot be achieved.

Results for Momentum Wheel Actuators

From Section 3, the complete dynamics of a spacecraft con-
trolled by two momentum wheel actuators as descnbed by equa-
tions (3.10)<(3.13) is not controllable or even accessible at any
equilibrium, On the other hand, if we a priori add the restriction
that the angular momentum vector M = 0 then the resulting res-
tricted spacecrat dynamics are described by equations (4.12)-
(4.16), and hence by the normal form equations (4.29)-(4.33). We
now indicate that thig restricted control system satisfies certain con-
trollability and stabilizability properties.

Theorem 4.5: The restricted dynamics of a spacecraft controlled by
two momentum wheel actuators as described by equations (4.12)-
(4.16) are strongly accessible.

Theorem 4.6: The restricted dynamics of a spacecraft controlied by
two momentum wheel actuators as described by equations (4.12)-
(4.16) are small time locally controllable at any equilibrium.

Theorem 4.7: The restricted dynamics of a spacecraft controlled by
two momentum wheel actuators as described by equations (4.12)-
(4.16) cannot be asymptotically stabilized to an equilibrium using a
C! feedback control law.
Theorem 4.8: The restricted dynamics of a spacecraft controlled by
two momentum wheel actuators as described by equations (4.12)-
(4.16) can be asymprotically stabilized to the one dimensional
equilibrium manifold

Q= {(0,0,60) 0y =0 =9=0=0}, @37

using a smooth feedback control law given by (4.28) with v, and

v, given by .
vis—kpyr -k, 4.38)
vy= =k ye—knys. 4.39)

where Ly, kya, kzl. kn > 0 and y{. ¥ Y ye A defined by
(4.18)44.22).

The implications of the properties stated above are as follows.
Suppose the angular momentum vector i is zero. Then the space-
craft controlled by two momentum wheel sctuators as described
equations (3.10)-(3.13) can be controlled 0 any isolated -
brium. However, any feedback control law that asymptodically sta-
bilizes the spacecraft to an isolated equilibrum must necessanly be
nonsmooth. This that arbitrary reorientation of the space-
craft can be under the restriction H = 0; if H # O reorien-
tation of the spacecraft cannot be achicved.

5. Feedback Stabilization Algorithm for Restricted
Spacecraft Dynamics with Control Torques

We must restrict our study to the class of non-smooth feedback
controllers in order to asymptotically stabilize the restricted ?aee-
craft dynamics described by state equations (4.7)-(4.11) (or (4.12)-
(4.16)). Qlearly, traditional nonlinear control design methods are of
no use. However, a control algorithm ing a non-smooth
feedback control which asymptotically stabi an equilibrium can
be constructed - as suggested by the controllability properties of
the system, Without loss of generality, we assume that the equili-
brium to be stabilized is the origin. Asympiotic stabilization of
equations (4.7)-(4.11) (or (4.12)-(4.16)) to the origin is equivalent
to asymptotic stabilization of the normal form equations (4.29)-
(4.33) o the origin; hence we consider asymptotic stabilization of
the normal form equations.

From equation (4.33) we find" that if the raft motion -
defines a closed path ¥ in the (1y) space theny T TooOn

ays= L Yidys, .1

anAy,hﬂnunlnﬂnvlﬂabley,.ﬂﬁsBﬂwholommyor
gmeovﬂr:r;(tci gnhau: Tl'lais“lvl%lmy can be us%d;e to control the system
using procedure; rocedure i -
quently implemented as (nonsmooth) feedback. P re is subse
Let n%mg.m{’.o"’ﬂ& m an initial s(t:xe for the restricted
spacec ynamics descri Yy equations (4.7)-(4.11) (gr (4.12)-
(4.16)). This corresponds to an mﬁ:la:we Oma%?n ). for
the normal form equations (4.29)-(4.33). ’
Step 1: Transfer the inidal state 0202080808 of the normal
form equations W the state (0.0.0.0.yj ), for some y{, in finite
time.
Step 2: Traverse a closed path v in the (y,.y3) space in finite time
where the path v is selected to produce the desired holonomy

-yd = [y s ' 6.2

Note that the execution of step 1 is classical. Execution of step
2 requires explicit characierization of a closed path y which pro-
duces the desired holonomy. In ral there may be infinitely
many closed paths which are dates for step 2. Here we con-
sider a rectangular path in the (y,05) space formed by line, seg-
ments from (0,0) o (y1,0), from (y,.0) to (yy ¥3), from (yy.y3)

to (Oy3). and from (Oy3) to (0,0). The holonomy given by
equation (5.2) now becomes
-yd =yvs . (5.3)

rithm implements control
details on this feedback implementation see {4.9].
Feedback Control Algorithm
Step 0: I 0, choose y} =—y3 =V(yJ)% else choose
Y1 =y3 = Y(=ys)
Step 1: Set
. . yalya .
-SRO T g2 010
e 0; 010D =01.0

\
4

.

. Ydyd o
J7E0s+ T (0 % 00)

va= L 0: 03y 0 = ©0)

until (¥ ,y20390 = (1 0,0.0); then go to step 2.
Step 2: Set

. . h‘h' .
(TSRO T (502 01,0

= | 0; 0D = 01.0)

. o Yayd 3
{75807 + T (5450 # 3.0

vi= 0; 0300 = 03.0)

until (7520390 = (7] 03.0); then go to step 3.
Step 3: Set

' . yalyal .
[=s1801+ =500 4,5 200

V1= | 0; 0199 = 00)

,

_ o . Yalyd .
{TIBROTYI T (02050

0: 0300 =030

V=




until (y,330.0 = (0.0y3.0); then go o step 4.

Step 4: Set
.

yalyal .
(73RO T ) = 00)
g | 0: 102 = (0.0)

. Ydyd )
{790+ T (0 00)
va® 0: @3y = (0.0)

until (y,y2039¢ = (0.0,0,0); then go to step 0.

The most natural way to initialize the control algorithm is to
begin with step 4 since the control inputs do not depend on the
values of y; and y; in that step. This control algorithm is,nonclas-
sical and involves cyclic switching between various feedback func-
tions. Justification that the constructed contro! algorithm globally
asymptotically stabilizes the origin of the normal form equations
(4.29)-(4.33) follows as a consequence of the construction pro-
ure. Since stabilization of the normal form equations to the ofi-
in is equivalent to stabilization of the state equations (4.7)-(4.11)
or (4.12)-(4.16)) to its origin, we conclude that the control inputs
defined by (4.28) with v, and v, defined by the above control
algorithm asymptotically stabilizes the restricted spacecraft dynam-
ics described by equations (4.7)-(4.11) (or (4.12)-(4.16)) to the
equilibrium (w;,w5,9.8,y) = (0,0,0.0,0).

6. Simulation

We illustrate the results of the previous sections using an
example. We consider an axially symmetric rigid spacecraft in the
form of a cylinder. It is assumed that there is no control torque
about the axis of symmetry and two control torques, generated by
gas jet actuators, are applied about the other principal axes. The
complete dynamics of the spacecraft system cannot be asymptoti-
cally stabilized, but we consider the restriction that @4(0) = 0. Con-
sequently, we are interested in asymptotically stabilizing the res-
tricted spacecraft d ics described by equations (4.7)-(4.11) to
the equilibrium (a),gnz,o.e.w) = (0,0,0,0,0). The spacecraft is ini-
tially at rest (i.e. @ = @f = 0) with an initial orientation given by
meEulerfanglao =x, 0°=0.25nn;x;d h
s o system  COrrespo to an initi state
ok .y{’.y;?‘y?.ey?) = (- 0.881,0,%,0,~0.5x) for the normal form
equations (4.29)-(4.33). A computer implementation of the feed-
back control algorithm specified in Section 5§ was used to asymp-
totically stabilize the equilibrium. The algor‘kthm was initialized at
step 4. At the end of siep 4, y) =y$ =y] =y{ =0 and
y§ =~ L118. The desired holonomy is produced by traversing a
square path in the (y,.y3) space with y; =y = 1.057. The time
responses of the Euler angle variables ¢, 8 and y are shown in
figure 1. Three dimensional visualization schemes have been
developed using a Silicon Graphics Iris work station in order w0
display the reorientation maneuver of the spacecraft.

v = -0.5r. The initial

Since the restricted dynamics for a sracecrm controlled by two
momentum wheel actuators about two of its principal axes have the
same reduced form, we do not consider a separate example to illus-
trate this case.
7. Conclusion

The anitude stabilization problem of a spacecraft using only
two control inputs has been considered. Particular emphasis has -
been given to the development of a control strategy for two impor-
tant problems which have not been considered elsewhere: the ati-
tude stabilization of an axially symmetric spacecraft using control
torques supplied by nﬁs jet actuators about axes spanning a two
dimensional plane orthogonal to the axis of symmetry; the attitude
stabilization of a spacecraft using control torques supplicd by
momentum wheel actuators about axes spanning a two dimensional
plane orthogonal to a principal axis. The complete dynamics of the
spacecraft system fails to be controllable or even accessible about
any equilibrium. Under some rather weak assumptions, it has beerr
shown that the restricted dynamic equations in BHoth
cases reduce 10 an identical set of equations which represents a
nonholonomic control system. A feedback control strategy based
on holonomy has been presented which achieves arbitrary reorien-
tation of the spacecraft.
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We next consider the case where the uncontrolled pﬁncipai—‘g-—g’
axis of the spacecraft is an axis of symmetry. In this case, the I —
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Abstract
We consider the antitde stabilization of a rigid spacecraft using

control torques supplied by gas jet actuators about only two of its princi-
pal axes. First, the case where the uncontrolled principal axis of the
spacecraft is not an axis of symmetry is considered. In this case, the
complete spacecraft dynamics are smail time locally controllable. How-
ever, the spacecraft cannot be asymptotically stabilized to an equilibrium
attitude using time-invariant continuous feedback. A discontinuous stabil-
izing feedback control strategy is constructed which stabilizes the space-
craft 10 an equilibrium attitude. Next, the case where the uncontrolled
principal axis of the spacecraft is an axis of symmetry is considered. In
this case, the complete spacecraft dynamics are not even accessible. How-
ever, the spacecraft dynamics are strongly accessible and small time
locally controllable in a reduced sense. The reduced spacecraft dynamics
cannot be asymptotically stabilized to an equilibrium attitude using time-
invariant continuous feedback, but again a discontinuous stabilizing feed-
back control strategy is constructed. In both cases, the discontinuous
feedback controllers are constructed by switching between one of several
feedback functions.

1. Introduction

We consider the attitude stabilization of a rigid spacecraft
using control torques supplied by gas jet actuators about only two
of its principal axes. A ngid spacecraft in general is controlled by
three independent actuators about its principal axes. The situation
considered here may arise due to the failure of one of the actua-
tors. The linearization of ‘the complete spacecraft dynamic equa-
tions at any equilibrium attitude has an uncontrollable eigenvalue
at the origin. Consequently, controllability and stabilizability pro-
perties of the spacecraft cannot be inferred using classical lineari-
zation ideas and requires inherently nonlinear analysis. Moreover, a
linear feedback control law cannot be used to asymptotically stabil-
ize the spacecraft to an equilibrium attitude. An analysis of the
controllability properties of a spacecraft with two independent con-
trol torques 1s made in [7]). In [7] it is shown that a necessary and
sufficient condition for complete controllability of a spacecraft with
control torques supplied by gas jet actuators about only two of its
principal axes is that the uncontrolled principal axis must not be an
axis of symmetry of the spacecraft. In [6), it is shown that a rigid
spacecraft controlled by two pairs of gas jet actuators about its
principal axes cannot be asymptotically stabilized to an equilibrium
attitude using a time-invariant continuously differentiable, i.c., C?,
feedback control law. Moreover, using some of the theoretical
results in (9] and [12], it also follows that there does not exist any
time-invariant continuous feedback control law which asymptou-
cally stabilizes the spacecraft to an equilibrium attinde. However
a smooth C! feedback control law is derived in [6) which locally
asymptotically stabilizes the spacecraft to a circular attractor, rather
than an isolated equilibrium.

We first consider the case where the uncontrolled principal

axis of the spacecraft is not an axis of symmetry. In this case, the
- complete spacecraft dynamics are small time locally controllable at.

any equilibrium attitude. However, as stated carlier, the spacecraft

_ cannot be asymptotically stabilized to any equilibrium attitude

using a time-invariant continuous feedback control law. Using

local controllability results, an algorithm which locally asymptoti-
cally stabilizes the spacecraft to an isolated equilibrium is proposed
in {7]. That algorithm is extremely complicated and is based on
Lie algebraic methods in [8]. The algorithm yields a piecewise
constant discontinuous control. Although very complicated, the
algorithm is the 211{ one proposed in the literature thus far which
locally asymptotically stabilizes the attitude to an equili-

jum. In this paper a new discontinuous stabilizing feedback con-
trol strategy is constructed which stabilizes the spacecraft to an
equilibrium attitude. The control strategy is simple and is based on
physical considerations of the problem.

complete spacecraft dynamics are not even accessible. Under some
rather weak assumptions, the spacecraft dynamic equations are
strongly accessible and small time locally controllable at any
equilibrium attitude in a reduced sense. The reduced spacecraft
dynamics cannot be asymptotically stabilized to an equilibrium atu-
tude using time-invariant continuous feedback. Nevertheless, a
discontinuous feedback control strategy is constructed which
achieves attitude stabilization of the spacecraft.

2. Kinematic and Dynamic Equations

The orientation of a rigid spacecraft can be specified using
various parametrizations of the special orthogonal group SO (3).
Here we use the following Euler angle convention. Consider an
inertial X, X, X5 coordinate frame; let x, x, x3 be a coordinate
frame aligned with the principal axes of the spacecraft with origin
at the center of mass of the spacecraft. If the two frames are ini-
tally coincident, a series of three rotations about the body axes,
performed in the proper sequence, is sufficient to allow the space-
craft to reach any orientation. The three rotations are [14]:

a positive rotation of frame X, X, X4 by an angle y about

the X, axis; let x; x5 x3 denote the resulting coordinate

frame;

a positive rotation of frame Xy X3 x3 by an angle 6 about the

x4, axis; letx, x5 x3 denote the resulting frame;

a posjtive rotation of frame x, x, X3 by an angle ¢ about

the x, axis; let x; x5 x5 denote the final coordinate frame.

A rotation matrix R (y,0,0) relates components of a vector in the
inertial frame to components of the same vector in the body frame
{14]. We assume that the Euler angles are limited to the ranges

-R<Y, <A, -2<0<A2. 2.1)

Suppose ®,;, w,, Wy are the principal axis components of the abso-
lute angular velocity vector w of the spacecraft. Then expressions
for w,, ®,, w5 are given by

®, = ¢ - ysind , 2
W, = Bcosd + \i/cose sing , 2.3)
Wy =~ ésinq) + \ilcose cosd . 2.4

Since these equations are invertible, we can solve for ¢, 8, v in
terms of ®,, w,, W3 obtaining

& = @, + @,sind tand + scos¢ tand , (2.5)
6 = w,cos¢ — wysing , (2.6)
V = O;sind sec + (03c0s sech . Q@7

Next we consider the dynamic equations which describe the

" evolution of the angular velocity components of the spacecraft

Let J .= diag (1, /2, J3), J; >0, i = 1,2, 3, be the inertia mawrix
of the spacecraft in a coordinate frame defined by its principal
axes. Let H be the angular momentum vector of the spacecraft
relative to the inertial frame. Then we have

Jo=RWY.0.0)H : (2.8)
Differentiating (2.8) we obtain '
Jo=S@Ry.0.0)H +R(yO.0OH , 29

where

* This work was partially supporied by NSF Grant No. MSS - 9114630 and NASA Grant No. NAG - 1 -

1419.



0 w3 -y
S=]|-0y 0 (2.10)
W, -y 0

We assume that the control torques 4’y and u”; are applied about
axes represented by unit vectors b; and b, respectively. This

implies that
ROWOMOH =byu'y + b’y .

2.11)

* Without loss_of generality, we assume that b, = (1,0, 0)" and

by=(0,1, 0)7 . Thus the equations describing the evolution of the

angular velocity of the spacecraft are given by

J10y = (Jy = Jy)apwy + 4’y , (2.12)
Joly = (J3 = J a0y + 4y, (2.13)
Ty = (Jy = Iy, . (2.14)

" Theorem 3.1: The complete spacecraft dynam ®
. equations (3.1)-(3.6) are strongly accessible if and only if J; #J,,

3. Controllability and Stabilizability Properties
of Complete Spacecraft Dynamics

As background for our subsequent development, we consider
the controllability and stabilizability properties for the complete
dynamics of the spacecraft with control torques only about two
principal axes. Define

4
uy T
[“2] Ty
T,
From Section 2 the state equations can be rewritten as
@y = g Wy + Uy, 3.0
Oy = 8,00y + U3, (32
03 = a30,0, (3.3)
6 = m; + W,sind tand + wzcosd tand , (34)
0= Wycosd — (nsind , (3.5)
V¥ = Wysing secB + crcosd sech , (36)
" where
Jy~J3 J3-Jy Ji=J1y
ay = 7, 182 = Ta ,a3=—]3——.

. It is easily verified that the linearization of the equations about an

equilibrium has an uncontrollable cigenvalue at the origin. This
implies that an inherently nonlinear analysis is necessary in order
to characterize the controllability and stabilizability properties of
the complete spacecraft dynamics. Morcover, a lincar feedback
control law cannot be used to asymptotically stabilize the space-
craft to an equilibrium attitude.

We now present fundamental results on the controllability and
stabilizability properties of the complete spacecraft dynamics
described by equations (3.1)-(3.6). The reader in referred to [13)
for additional details.

ics described by state

i.e., the uncontrolled principal axis is not an axis of symmetry.
Theorem 32: The complete spacecraft dynamics described by state

equations (3.1)-(3.6) are small time locally controllable at any .
- equilibrium if and only if J # J,.

Theorem 33: The complete spacecraft dynamics described by state
equations (3.1)-(3.6) cannot be locally asymptotically stabilized to
an equilibrium by any time-invariant continuous state feedback
control law.

Theorem 3.3 holds if J, # J, and also if J =J,. A weaker
version (with “"continuous” replaced by "C!") was proved in [6).

- However, Theorem 3.3 follows from [6] using results in [9] and

{12). This negative result also implics that feedback control

~ approaches based on linearization, Lyapunov methods, center mani-

fold theory, or zero dynamics cannot be used to asymptotically sta-
bilize the spacecraft to an equilibrium attitude.

Although the full set of equations (3.1)-(3.6) cannot be
asymptotically stabilized to an equilibrium. via continuous feed-
back, one may still wish to design a smooth control law which

stabilizes at least a particular subset of state variables. Consider the
state equations for @y, Wy, 3, ¢ and O given by equations (3.1)-
(3.5). These equations are invariant with respect to the Euler angle
V. Asymptotic stabilization of this subset of the original equations
corresponds to stabilization of the motion of the spacecraft about
an attractor, which is not an isolated equilibrium. A result from (6)
shows that the closed loop trajectories can be asymptotically stabil-
ized to the manifold

Q = {(0,0,,03,0.09) : O =W = W3 =0=0=0)} (38)
using smooth C! feedback.

We mention that although the complete spacecraft dynamics
described by equations (3.1)-(3.6) cannot be asymptotically stabil-
ized to an equilibrium by continuous feedback, an algorithm gen-
erating a piecewise constant discontinuous control has been
developed in (7] which locally asymptotically stabilizes the com- -
plete spacecraft dynamics to an equilibrium. The algorithm
requires that J, # J,, i.e., the uncontrolled principal axis must not
be an axis of symmetry. The algorithm is based on Lie algebraic
methods in [8]. The algorithm is extremely complicated and is not
an casily implementable control strategy. However, stabilization of
the complete spacecraft dynamic equatons (3.1)-(3.6) is an
inherently difficult problem and the algorithm in [7] is the only
control strategy proposed in the literature thus far.

4. Attitude Stabilization of a Non-Axially Symmetric
Spacecraft with Two Control Torques

In this section, we consider the equations (3.1)-(3.6) describ-
ing the motion of a spacecraft controlled by input torques only
about two of its principal axes. It is assumed that the uncontrolled
principal axis is not an axis of symmetry of the spacecraft, i.c.,
Jy #J,. As a consequence of the negative result of Theorem 3.3,
we restrict our study to the class of discontinuous feedback con-
trollers in order to asymptotically stabilize the complete spacecraft
dynamics. However, as shown in the previous section, the com-
plete spacecraft dynamics are small time locally controllable at any

“equilibrium attitude. This suggests that a piecewise analytic feed-

back control law can be constructed which asymptotically stabilizes
the complete spacecraft dynamics to an equilibrium attitude. Here
we present a particular discontinuous feedback strategy, which is
obtained by requiring that the spacecraft undergo a sequence of
specified maneuvers. Without loss of generality, we assume that
the "equilibrium attitude to be stabilized is the origin. We first
present a physical interpretation of the sequence of maneuvers that
transfers any initial state to the origin.

Maneuvers 1.3. Transfer the initial state of the spacecraft to an
equilibrium state in finite time; i.e., bring the spacecraft to rest.

There are control laws based on center manifold theory (1]
and zero dynamics theory [6) which accomplish this in an asymp-
totic sense. Here we use a sequence of three maneuvers, and
corresponding feedback control laws, which bring the spacecraft to
rest in finite time.

Maneuver 4. Transfer the resulting state to an equilibrium state
where ¢ = 0 in finite time; i.c., so that the spacecraft is at rest with
¢ = 0. This maneuver is accomplished using the control torque u;
only.

Maneuver 5. Transfer the resulting state to an equilibrium state
where ¢ =0, 6 =0 in finite time; Le., so that the spacecraft is at
rest with ¢ =0, 6 = 0. This maneuver is accomplished using the
control torque u, only.

In order to complete specificaion of the sequence of
maneuvers, the Euler angle y must be brought to zero. This cannot
be accomplished direcdy since a control torque cannot be applied
about the third principal axis of the spacecraft. However, the
resulting state can be transferred to the origin indirectly using three
maneuvers. The three maneuvers comespond to three consecuuive
rotations about the two controlled principal axes of the spacecraft,
the first and the third being around the first principal axis. This
produces a net change in the orientation of the spacecraft so that
the state of the spacecraft is transferred to the origin in finite dme. -
The three manecuvers are described as follows.
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Maneuver 6. Transfer the resulting state to an equilibrium state
where ¢ = 0.5%, 6 = 0 in finite time; i.c., so that the spacecraft is
at rest with ¢ = 0.5x, 8 = 0. This maneuver is accomplished using
the control torque u, only. :

Maneuver 7. Transfer the resulting state to the equilibrium state
(04,00,04,0,.0,y) = (0,0.0,0.5%,0,0) in finite time. This mancuver
is accomplished using the coatrol torque & only.
Maneuver 8. Transfer the equilibrium state (©,,0,,03,0,8,¥) =
(0,0,0,0.5%,0,0) w the equilibrium state (0,0,0.0,0,0) in finite time.
This maneuver is accomplished using the control torque 1 only.

Note that, excluding the first three mancuvers where the
spacecraft is brought to rest, all subsequent mancuvers are such
that the angular velocity component @, is maintained identicaily
zero. This is accomplished by carrying out maneuvers which
require use of only a single control torque at a time.

It is convenient to introduce some notation. Throughout,
assume k£ > 0, and define

x4l x5
kif (x;+—="2—>0)o0r
Xz!le
{x, + % =9andx2>O]
xplx
G(xl,xz)J—k if [x;+ 22 <0} or
lele
{x; + % =0 and x, <0}
L 0 if {x;=0 and x,=0)}

We use the well-known property that the feedback control
u==-Gx,-x.x9
for the system
=X,
.iz =u
transfers any initial state to the final state (¥;,0) in a finite time.
We also use the standard notation that
1if X1 2> 0
sign(x)) =¢-1 if x,<0.
0 if x 1= 0
Our mathematical construction of a control strategy which transfers
an arbitrary initial state of the spacecraft to the origin is based on a
sequence of equilibrium subsets and a sequence of control func-
tions which transfers a state in one subset to another. Consider the
following equilibrium subsets
M = {(©,,0;,03.0,0,y) = (0,0,0,4,0,y), $,0,y arbitrary},
MZ = [(wliohi(‘):|¢le! ) = (olovotooeﬂw)l erv arbitrary},
M = {(0,002,04,0,0.) = (0,0,00,0,y), y arbitrary},
M, = ((001,02,02,0,0,¥) = (0,0,0,0.5%,0,y), ¥ arbitrary}.

We now present the feedback control laws that accomplish the
sequential maneuvers described above; for cach case we show that
a desired terminal state which defines the maneuver is reached.

Transferring any initial state to a state in M 1

In order to transfer the arbitrary initial state to a final state
which satisfies @; = 0y = 0y =0 three sequential maneuvers arc
required. The first maneuver results in @; = @; =0 while w3 # 0
in general; the second mancuver results in ©; = 0; and ©; = O,
where ), @, are chosen to guarantee that at the end of the third
maneuver ; = i, = @3 = 0. These three mancuvers are described
in detail as follows.

Maneuver 1. Let (0f,0f,00,6%6°y% denote an initial state for
the complete spacecraft dynamics described by equations (3.1)-
(3.6). Define

V= a0+ Uy,
VzBaz(Djm‘+ﬂ2.

Equations (3.1)-(3.3) can now be rewritten as
d)l = "l »

* 4.1)
W=V, 4.2)
W3 = a3, . 4.3)
Apply the feedback control functions
vy =~ ksignw, ,
vy =~ ksignw, .
It is casy 19 see that after a finite time given by
lodl ™ ! -
max(—k ,———), @) = @, = 0; at this instant let w3 = By where

the constant value &, can be evaluated.

Maneuver 2. Apply the feedback control functions
v, = - ksign(@; - @),
vy = - ksign(e, ~ 7).,

where

1
. 3"'65' ? . . .

0] = | ————1] , Oy = - sign®, signa, .
. 2'83'

It is again easy to see that after a finite time given by

&
o, = @y, ®; = w7, and in addition it can be shown that w3 = %
Maneuver 3. Apply the feedback control functions

v; = = ksignoy, ,

vy = = ksignw, .

L]
®
It can be seen that after a finite time given by _El-' 0 =0,0,=0
and it can be shown that 03 = 0.
Consequently, the resulting state after these three sequential
maneuvers is (0,0,0,0!,8',y!) € M, for some ¢}, 8%, y'.
Transferring a state in M, to a state in M, (Maneuver 4)

Let (0,0,0,0',0%,y!) € M, denote a state of the spacecraft.
Apply the feedback control functions

uy=-G( w0,
uy=0.

It follows that
w,=0,0;=0,
0=0',y=y!,

satisfy equations (3.2), (3.3), (3.5), (3.6) while equations (3.1),
(3.4) become

(hl = —G(¢o 0)1) ’
¢ = .
Consequently, after a finite time @, =0, ¢ =0; and thus a state

0.0,06',8'.yY) € M, is mansferred to the state (0,0,0,0,8'.y}) €
M, in finite time.

_Transferring a state in M, to a state in M3 (Maneuver 5)

Let (0,00,0,8',y)) € M, denote a state of the spacecraft.
Apply the feedback control functions

uy =0,

Uy =-G(O, o).
It follows that

0=0,0,=0,

o=0y=y,

satisfy equations (3.1), (3.3), (3.4), (3.6) while equations (3.2),
(3.5) become

=~ GO v,
b=a,.



Consequentl){, after a finite time w, =0, 8 =0; and thus a state
(0,0,0,0,6',¢!) € M, is transferred to the state (0,0,0,0,0,y!) € M3
in finite time.
Transferring a state in M; to a state in M4 (Maneuver 6)

Let (0,0.0,0.0.\;!‘) € Mj; denote a state of the spacecraft.
Apply the feedback control functions .

4y =-G(9-0.5m ),

uy=0.

It follows that
wy=0,0;=0,
8=0,y=y',

satisfy equations (3.2), (3.3), (3.5), (3.6) while equadons (3.1),
(3.4) become

d’l =- G(¢ - 0.5x, 0.)1) .

¢ =@ .
Consequemlly, after a finite time @, = 0, ¢ = 0.5%; and thus a state
(0,0,0,0,0,y") € M, is transferred to the state (0,0,0,0.57,0.y') €
M 4 in finite time.
Transferring a state in M4 to (0,0,0,0.5r,0,0) (Maneuver 7)

Let (0,0,0,0.57,0,y') € M, denote a state of the spacecraft.
Apply the feedback control functions

u; =0,

Uy ==Gy, ) .
It follows that

0 =0,0;=0,

¢=057,6=0,

satisfy equations (3.1), (3.3), (3.4), (3.5) while equations (3.2),
(3.6) become 5

q)z =-G (wv 0)2) ’

y=0;.
Consequently, after a finite, ime ®, =0, ¥ =0; and thus a state
(0.0.0,0.51:,0,\41‘) € M, is transferred to the state (0,0,0,0.5%,0,0) in
finite time.
Transferring (0,0,0,0.51,0,0)" to (0,0.0,0,0,0) (Maneuver 8)

Let (0,0,0,0.5%,0,0) denote the state of the spacecraft. Apply
the feedback control functions

uy=-G o),

uy=0.
It follows that

@,=0,0:=0,

0=0,y=0,
satisfy equations (3.2), (3.3), (3.5), (3.6) while equatdons (3.1),
(3.4) become

@ =~-G( o),

= o .
Consequently, after a finite time @ =0, ¢ = 0; and thus the state
(0,0,0,0.5%,0,0) is transferred to the state (0,0,0,0,0,0) in finite time.

In summary, the feedback control strategy outlined above can
be implemented by sequential switching between the following
~ feedback functions.

Maneuver 1. Apply
ul () = - a;0,03 - ksigne, ,
Uz (x) = = 6,050, — ksigne, ,

until (@;,0,,03) = (0,0,8;) for some value @,; then go to Manu-
ever 2.

Maneuver 2. Compute

. [3/:15,1}% . [Sklm3l

y, =
! 2’03’

)
3
] sign®, signa, ;
apply
ut(x) = -aw0; - ksign{w; - 0;) ,
uf(x) = - a;030, - ksign(w, - ;) ,

until (01,0,,03) = (©],0,; ,-6;3—); then go to Maneuver 3.
Maneuver 3. Apply

ud(x) = - a3 - ksigno, ,

uj(x) = - a,wyw, - ksigna, ,

until (0;,0,,04) = (0,0,0), i.e., (0},0,,03,0,8,y) € M; then go to
Maneuver 4.

Maneuver 4: Apply
ufx)=-G(% o),
usx)=0, .
until (@,0,,03,0) = (0,0,0,0), i.e., (@),0,,03,0.8,¥) € M; then go

~ to Maneuver 5.

Maneuver 5: Apply
ufx)=0,
Ui x)=-G@® oy,

until (@;,0,01,0,8) = (0,0,0,0,0), i.e., (0.0,,03,0,0,y) € M3; then
go to Maneuver 6.

Maneuver 6: Apply
ufx)=-G @ -05m, o),
ufx)=0,

un‘il (m]1m21m3v¢re) = (010v0v0~5nv0)’ i'e'v (ml'%'%‘¢'e’w) € M4'
then go to Maneuver 7.

Maneuver 7: Apply
ulx)=0,
u]x)=-Gw. w),
until (09;,005,003,9,0,¥) = (0,0,0,0.5x,0,0); then go to Maneuver 8.
Maneuver 8: Apply
ufx)=-G@ @),
uf(x)=0,
until (0,07,04,0.8,y) = (0,0,0,0,0,0).

This feedback control strategy achieves auitude stabilization
of the spacecraft by executing a sequence of maneuvers. This stra-
tegy is discontinuous and nonclassical in nature. Justification that it
stabilizes the complete spacecraft dynamics to the equilibrium att-
tude (at the origin) in finite time, under the ideal model assump-
tions, follows as a consequence of the construction procedure. A
computer implementation of the feedback control strategy can be
easily carried out.

S. Attitude Stabilization of an Axially Symmetric
Spacecraft with Two Control Torques

From the analysis made in Section 3, we find that the com-
plete dynamics of a spacecraft controlled by two control torques
supplied by gas jet actuators, as described by equations (3.1)-(3.6),
fail to be controllable or even accessible if the uncontrolled princi-
pal axis is an axis of symmetry of the spacecraft, i.e., if J; =J,.
Due to the lack of controllability, the control algorithm proposed in
(7] is not applicable to this case. In this section we concentrate on
the case where the uncontrolled principal axis of the spacecraft is
an axis of symmetry, i, Jy =J,. In particular we ask the ques-
tion: what restricted congol and stabilization properties of the
spacecraft can be demonstrated in this case? Our analysis begins
by demonstrating that, under appropriate restrictions of interest, the
spacecraft equations can be expressed in a reduced form. Controlla-
bility and stabilizability properties for this case follow from an
analysis of the reduced equations.
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Consider the equations (3:1)<(3.6)-describing the motion of a
spacecraft controlled by input torques supplied by gas jet actuators
about only two of its principal axes. It is assumed that the uncon-
wolled principal axis is an axis of symmetry of the spacecraft.
From equations (3.1)-(3.6) and J; = J, we have

@) = a,0,04 + U4y, 5.1
Dy = @005 + Uz, 5.2)
@y =0, (5.3)
& = (0, + ©,sin tand + wycosd tand , (5.4)
8 = w,cosd — Wysing , (5.5
\;.l = ,sing secd + Wycosd secd . (5.6)

If 43(0) # O then @y cannot be transferred to zero using any
control function. If we assume that 3(0) = 0, then w3 = 0. Under
the restriction @5(0) = 0, the reduced spacecraft dynamics for this
case are described by

oy =u;, 5.7)
@ = Uy, (5.8)
¢ = @, + ©,sin¢ tand (5.9
8 = w,cos0 , (5.10)
¥ = @,sing sech . (.11

The following results can be casily shown. The proofs of Theorem
5.1 and Theorem 5.2 are similar to the proofs of Theorem 3.1 and
Theorem 3.2 respectively in [13]. Theorem 5.3 follows from the
results in [S], [9] and (12].
Theorem §5.1: The reduced dynamics of an axially symmetric
spacecraft controlled by two pairs of gas jet actuators as described
by equations (5.7)-(5.11) are strongly accessible.
Theorem 52: The reduced dynamics of an axially symmetric
spacecraft controlled by two pairs of gas jet actuators as described
by equations (5.7)~(5.11) are small time locally controllable at any
equilibrium.
Theorem 53: The reduced dynamics of an axially symmetric
spacecraft controlled by two pairs of gas jet actuators as described
by equations (5.7)-(5.11) cannot be asymptotically stabilized to an
equilibrium using a time-invariant continuous feedback control law.

The implications of the propertics stated above are as follows.
For all initial conditions that satisfy m3(0) =0, the axially sym-
metric spacecraft controlled by two pairs of gas jet actators as
described by equations (5.1)-(5.6) can be controlled to any equili-
brium attitude. However, any time-invariant feedback control law
that asymptotically stabilizes the spacecraft to an isolated equili-
brium attitude must necessarily be discontinuous. Thus arbitrary
reorientation of the spacecraft can be achieved if Wy(0) = 0; if
@5(0) # 0, reorientation of the spacecraft to an cquilibrium attitude
cannot be achieved.

Conveniently, it tums out that sequential execution of the
maneuvers defined as Manuevers 3 through 8 in the previous sec-
tion transfers any initial state of the reduced spacecraft dynamics
(5.7)-(5.11) to the origin in finite ime. The physical interpretation
of the manuevers is same as described previously; the overall
feedback control strategy is as follows.

Maneuver 1. Apply
uf@x) = - ksignw, ,
ud (x) = - ksigno, ,
until (@y,67) = (0,0); then go to Maneuver 2.
Maneuver 2: Apply
uf@x)==G@© W),
ufx)=0,
until (,,07,0) = (0,0,0); then go to Maneuver 3.
- Manuever 3: Apply
ufx)=0,
ux)=-G@O vy,
unti} (©,,0,,6,0) = (0,0,0,0); then go to Maneuver 4.

* which is

"so that only one is nonzero at any time interval

Maneuver 4: Apply

utx)=-G@-0.5m ),

ufx)=0,
until (0,63,,4,8) = (0,0,0.57,0), then go to Maneuver 5.
Maneuver S: Apply

Ui (x)=0,

ui (x) = -Gy, ),
until (©0;,0,,6,8,y) = (0,0,0.5%,0,0); then go to Maneuver 6.
Maneuver 6: Apply

ufx)=-Go, o),

ufx)=0,
until (,,0,,0.8,%) = (0,0,0,0,0,0). )

This feedback control strategy achieves attitude stabilization -
of the spacecraft, in the sense described previously, by executing a
sequence of maneuvers. This strategy is discontinuous and nonclas-
sical in nature. A computer implementation of the feedback control
strategy can be easily carried out.

Notice that according to equation (2.4), the condition that
wy = 0 implies that
—(sindp)d @ + (cosbcosdp)dy =0 ;

represents a nonintegrable invariant of the spacecraft motion.
Therefore the reduced ic equations define a non-

this

g dynamic eqy
linear control system of the form studied in [4]. An alternate

discontinuous control strategy which achieves attitude stabilization
of the spacecraft is presented in {13).

6. Simulation

Y\;ﬁ illustrate the masc‘;lct:af:f the pv;lith an example of a
nonaxially symmzemc sp with principal moments of inertia
Jy=100Kg. M*, J, =250 Kg. Mg,‘and13=350Kg. M?*. There
is no control torque about the third principal axis and two control
torques, generated by gas jet actuators, are applied about the other
two principal axes. The ecraft has an mbual orientation
described by the Euler angles 0=~m, =0.25x, and
y° = — 0.5% radians, and an_initial angular velocity given by
©?=03, @ =-03, and ©f = 0.1 radians per second. A com-
puter implementation of the feedback control strategy described in
Section 4 was used to asymptotically stabilize the to the
origin. The value of k is chosen to be 1. Fig. 1, Fig. 2 and Fig. 3
show the time responses on the Euler angles, angular velocities and
the control torques respectively. At ¢ = 0.3 seconds, which is the
end of Maneuver 1 of the aigorithm, w, and @, are both zero
while @y = &3 = 0.1039 radians per second. At ¢ = 1.73 seconds,
the end of Maneuver 3 of the algorithm,
W =w=w3=0, and ¢ = =2.59, 8 = 0.37 and y =-1.913 radi-
ans. The subsequent maneuvers described by Steps 4 through 8
results in $ =0 =y =, = W, =03 =0 as shown in Fig. 1 and
Fig. 2. It might be observed from Fig. 3 that until 1.73 seconds,
which is the end of Mancuver 3, the control torques u, and u, are
both applied to bring the spacecraft to rest. But once the spacecraft
is brought to rest, the subsequent maneuvers are such that only one
of the control torques is nonzero in any interval of time. Thus
remains zero at all time beyond 1.73seconds,ando)1and;?vary
beyond 1.73
seconds. Since the feedback control strategy for the reorientation
of an axially symmetric s is similar to the feedback con-
trol strategy for the reorientation of a non-axially symmetric space-
craft, we do not consider a seperate example to illustrate this case.

7. Conclusion

The attitude stabilization problem of a spacecraft using con-
trol torques supplied by gas jet actuators about only two of its
principal axes been considered. If the uncontrolled principal
axis_is not an axis of symmetrv of the spacecraft, the complete
spacecraft dynamics cannot be asymptotically stabilized to an -
equilibrium anitude using continuous feedback. A discontinuous
feedback control strategy was constructed which stabilizes the
spacecraft to an equilbnium attitude in finite time. If the uncon-
trolled principal axis is an axis of symmetry of the spacecrafl, the



complete ‘spacecraft dynamics cannot be stabilized. The reduced
spacecraft dynamics cannot be asymptotically stabilized using con-
tinuous feedback, but again a discontinuous feedback control stra-
tegy was constructed which stabilizes the spacecraft (in the reduced
sense) to an equilibrium attitude in finite time. The results of the
paper show that although standard nonlinear control techniques do
not apply, it is possible to construct a stabilizing control law by
performing a sequence of maneuvers.

One of the advantages of the development in this paper is that
feedback control strategies are constructed which guarantee attitude
stabilization in a finite time. The total time required to complete
the spacecraft reorientation is the sum of the times required to
complete the sequence of maneuvers described. From the analysis
provided, it should be clear that the time required to complete each
maneuver depends on the single positive parameter &k in the
corresponding control law. There is a trade off between the
required conwrol levels, determined by the selection of k, and the
resulting times to complete each of the maneuvers and hence the
total time required to reorient the spacecraft. In particular, the time

to reorient the spacecraft from a given initial state to the origin can .

be expressed as a function of the value of the parameter k£ and of
the initial state.

For each of the two attitude stabilization problems considered,
we have presented one example of a sequence of maneuvers which

achieves the desired spacecraft attitude stabilizadon. There are -

many other maneuver sequences, and comresponding feedback con-
trol strategies, which will also achieve the desired attitude stabiliza-
tion of the spacecraft. But each such strategy is necessarily discon-
tinuous.

We have demonstrated the closed loop properties for the spe-
cial feedback control strategies presented. Our analysis was based
on a number of assumptions which are required to justify the
mathematical models studied. Further robustness analysis is
required to determine effects of model uncenainities and external
disturbances. Unfortunately, such robustmess analysis is quite
difficult since the closed loop vector fields are necessarily discon-
tinuous. Perhaps, feedback control strategies which stabilize the
spacecraft attitude, different from ones presented in this paper,
would provide improved closed loop robusmess.
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Planar reorientation of a free—free beam in space using embedded electromechanical actuators
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ABSTRACT

It is demonstrated that the planar reorientation of a free—free beam in zero gravity space can be
accomplished by periodically changing the shape of the beam using embedded electromechanical actuators.
The dynamics which determine the shape of the free-free beam is assumed to be characterized by the Euler~
Bernoulli equation, including material damping, with apppropriate boundary conditions. The coupling
between the rigid body motion and the flexible motion is explained using the angular momentum expression
which includes rotatory inertia and kinematically exact effects. A control scheme is proposed where the
embedded actuators excite the flexible motion of the beam so that it rotates in the desired semnse with

. respect to a fixed inertial reference. Relations are derived which relate the average rotation rate to the
amplitudes and the frequencies of the periodic actuation signal and the properties of the beam. These
reorientation maneuvers can be implemented by using feedback control.

L. INTRODUCTION

Classical models of uniform free-free flexible beams in zero-gravity space result in complete decoupling
of rigid body motion and flexible motion. However, conservation of the angular momentum of the beam
indicates that the classical models are incomplete in the sense that there is in fact higher order nonlin-
ear coupling between the rigid body motion and the flexible motion, if rotatory inertia and kinematically
exact modeling effects are included. Assuming that the angular momentum of the beam is always zero,
oscillations in the shape of the flexible beam can actually cause a rotation of the beam with respect to a
fixed inertial reference. The rotation of the beam over one period depends only on the shape of the beam
over the period and does not depend on the length of the period; hence this phenomenon is referred to as
a geometric phase change.

These observations lead to a scheme for carrying out asymptotic reorientation of a free—free flexible
beam in space using only electromechanical actuators embedded in the beam. These embedded electrome-
chanical actuators, e.g. piezoelectric actuators, do not change the angular momentum of the free-free heam
but they can be used to change the shape of the beam in a periodic way thereby resulting in a rotation of the
beam in space. This reorientation scheme, based on the use of embedded actuators, does not require use of
momentum wheels or gas jets and thus requires a minimal use of fuel to achieve a given beam reorientatiou.

In this paper, the basic modeling issues are addressed. The dynamics which characterize the shape
of the free-free beam is assumed to be characterized by the Euler-Bernoulli equation, including material
damping, with apppropriate boundary conditions. The coupling between the rigid body motion and the
flexible motion is explained using the angular momentum expression. A control scheme is proposed where
the embedded actuators excite the flexible motion of the beam so that it rotates in the desired sense.
Relations are derived which relate the average rotation rate to the amplitudes and the frequencies of
the periodic actuation signal and the properties of the beam. These reorientation maneuvers can he
implemented by using feedback control. Important features of the approach are indicated.



2. A PLANAR FREE-FREE BEAM MODEL

Consider a uniform free-free beam of undeformed length 2L in space with zero angular momentum and
zero linear momentum. Referring to Fig. 1 the motion of the beam is constrained to a plane defined by
vectors (€1, €3) where (€, &;, €3) is an orthonormal basis for an inertial frame whose origin is at the center
of mass of the beam. Let (7,],k) be a rotating frame with its origin fixed at the origin of the inertial
frame such that the vectors (i,k) lie in the plane (&(,&3) and j = &,. The straight line passing through
the origin in the direction of vector k is called the reference line. Let the beam initially be at rest in a
straight line configuration aligned with the reference line. Then, the location of each point on the line of
mass centroids of the beam can be described in terms of the parameter s € [—L,L]. This parameter s
can be viewed as a label for each of the crossections. We assume that as the beam deforms the shape and
the area of the crossections remain invariant. Following other researchers!?? we introduce three functions
w(s,t),y(s,t): [-L, L] x R — RN and w(s.t): [-L,L] x R — T! such that (u(s,t) + s,y(s,t)) define the
coordinates of the line of centroids in the deformed configuration with respect to the moving frame (i, k) at
time t. The angle ¥(s,t) between the normal to the crossection at s and é3 specifies the orientation of the
crossection. The normal to the crossection at s is denoted by £3. We define the material basis (#;,12,3) to
be orthonormal so that f; lies in the plane (é;,&3). The crossection itself can be associated with the set of
points (£1,€,) in a compact set A C R? such that £,#; + &aty + (u(s,t) + s)k + (y(s, 1))t gives the location
of any point on the beam as & and &; vary through A and s varies from —L to L.

Since the origin of the inertial frame is fixed at the center of mass of the beam we obtain

L "
/L y(s,t)ds =0, (1)

L
/ u(s,t)ds = 0. (2)
-L

Let p denote the constant mass density per unit volume of the beam. We assume that the beam has a
symmetric crossection so that the first moment of inertia of the crossection about the line of centroids is

f‘pfldé.ld€2 =0. (3)
The second moment of inertia of the crossection about the line of centroids is
I = /A P 2dE1dEs. (4)

The mass per unit length of the crossection is given by

mp = /Apdfxdfz- (3)

We define the angle 8(t) between &3 and k so that y(s,t) measured from the reference line satisfies the
following orthogonality condition

L
/ sy(s,t)ds = 0. (6)
~L

The existence of the angle 6(t) follows from the geometry indicated in Fig. 1. This definition provides a
separation between the motion which determines the shape of the beam, given by y(s,t), -L < s < L. and
the rotation of the beam as a whole, given by 6(t).



3. EQUATIONS OF MOTION

We first develop a kinematically exact expression for the angular ‘momentum of the freefree beam. Let
2(s.£1,&2.0.1) be the vector from the origin of the inertial frame to a point (s,£1,£;) on the beam at time
t; then

& =(ssinf + ycosf + & cos ¥ + usin0)é; + (£2)€; + (scosf — &y sinyp — ysinf + ucoshle;  (7)

where 8 = 0(t),y = y(s,t) and ¥ = ¥(s,t). The angular momentum about the origin of the inertial frame
at time ¢ is zero so that

L ' dé
/ / o6 x “Ldeidezds = 0. (3)
~LJA t

Substituting equation (7) into equation (8) and using equations (4) and (5) we can express § in terms of
y,u and a as

L 3 . u
i JE {mos3E + Lo+ mo(%u — 2y)}ds
f_LL{—mos2 — moy? — I, }ds

where & = 1 — 8 is the angle between the normal {3 to the crossection at s and the reference line.

(9)

Assume that the beam is unshearable and inextensible and that the deformations are small. This
implies, using equation (2), that
' u(s,t) = 0. (10)
and that
oY, (11)

We use the Euler-Bernoulli beam model to characterize the shape of the beam.*® Thus y(s, ) satisfies the
Euler-Bernoulli equation of the form

m
MoYit + YYtssss + Efyma = - Z vj(t)él(s - Sj) (12)
J=1
with the boundary conditions
yss(‘_L) = yss(L) =0, (13)
ysss(—L) = ysss(L) =0 (L

where [ = I,/p, E is Young'’s elasticity modulus, ¢’ is the distributional derivative of the delta function and
where for simplicity we assume Kelvin-Voigt damping with a positive damping coefficient . In addition.
y(s,t) must satisfy conditions (1) and (6). Internal bending torques v;(t), j = 1,...,m are produced by
m point actuators located at s = s; on the beam where s; € [~L, L]. These embedded electromechanical
actuators change the shape of the beam but at the same time preserve the angular momentum. Although
such actuators are capable of inducing relatively small displacements one can excite the beam periodically
at a frequency near one of the lower resonant frequencies of the beam to obtain relatively large periodic
shape change.

Using expressions (6), (10) and (11) in equatioh (9) we obtain

- f_LL [2yt.sds

g = T >
T+ [2 moyids




where 7 = %moL3 +2I,L. This expression demonstrates the nonlinear coupling between the beam’s shape
and its rigid body motion. Expression (15) is non-integrable in the sense that if y(s, t) is a periodic function

of time, the integral of § over one period is, in general, non-zero.

Remark 3.1 If in the above derivation we had not used the kinematically exact expression for the angular
momentum but had used the linearized strain assumptions we would have obtained the expression

. 1 L
6= -;/_Lfgys,ds. (16)

As can be seen expression (16) leads to the incorrect conclusion that a periodic change in the shape of the
beam does not result in rotation of the beam. Note that inclusion of rotatory inertia effects and the use
of the kinematically exact expression for the angular momentum is necessary in order to demonstrate that
the beam can rotate in space due to periodic shape change.

We expand the solution y(s.t) to equation (12) in the series

oo

y(s,t) =Y wi(s)q(t) (17)

i=1
where w;(s),i = 1,2,... are the orthonormal elastic mode shapes of the Euler-Bernoulli model. The elastic
mode shapes are given by
) cos(Bis) — SROGEL cosh(fys) if i =1,3,5...
wi(s) = os(B:L) .. o
sin(3:s) + C%;ﬁ% sinh(8;s) if i = 2,4,6...

where 13; are the positive roots of the equation
cos(2BL) cosh(28L) =1
ordered according to their magnitude.

Expansion (17) provides the modal decomposition

@+ ad+wlg=dbyvi(t),i=1,2... (18)
i=1
where w;2 = %—f—t, ¢ = %’% and b;; = %‘—”;H,:,J. Equation (12), or equivalently equation (18), determines
the shape of the beam and is called the shape space equation. Substituting equation (17) into equation ( 13)
we obtain

— b s
0'= 12 Ez:o.;(’]tqt) (19)
T+ Zi:l qi2
where J; = w;(L) — w;(—L). We note that (19) is non-integrable for any truncation of the infinite series

in (17).



4. ASYMPTOTIC REORIENTATION MANEUVERS

The goal is to accomplish asymptotic maneuvers, i.e. starting with 8(to) = o, y(s,t0) = ye(s.t0) = 0
we want to rotate the beam so that 8{(t) — 84, y(s,t) — 0 and y,(s,t) — 0 as t — oo for some desired
angle 6,.

Consider the periodic excitation of the beam at a single frequency w as
v;(t) :v?+-v3‘-’cos(wt),j= 1,2,...,m (20)

Since the shape space dynamics of the free-free beam is asymptotically stable, the steady-state motion of
the beam is given by

q:(t) = I; + a; cos(wt + ¢;) A (21)
where . -
1 &, o ' . ~
=5 by (22)
1 ]=l
a = : 3 b0 @
T = 17V
\/(w, — w2)2 + c.2w,2 =1 !
and '
¢; = ~—arcty (———Zciwi 2) . (24)
Wi —w

The excitation function (20) should be sufficiently small so that the Euler-Bernoulli model for the shape
space dynamics remains valid®.

If 2, ¢% is small comparing with 7 we can approximate

T+Z 1q1 T T

and thus

i=1

9~-——Z]q,. [i],q',} [iqu].

Integrating over one period and using equation (21) we obtain

9(125)—0(0) /7% [ZJq,] [Zq] }dt

= /(;T % [i —a;Jiwsin(wt + ¢i)] [Z (I; + a; cos(wt + qu))?} dt
=1 =1

o
U
—

22 Z a;Jilja;sin(¢; — ;). (

1=17=1,7#1

Expression (25) implies that, in general, the change in angle @ in steady-state over one period is non-zero
thereby proving that a periodic change in shape of the beam results in a rotation of the beam; the steady-
state difference (2 2L) — 6(0) is referred to as the geometric phase. There are cases, however, when the



geometric phase turns out to be zero.

Proposition 4.1 Assume that the steady-state motion of the beam is described by equation (21). Then,
9(%}") — 6(0) = 0 if any of the following conditions hold:

1. a; =0 for all :
2. I, =0forall ¢
3. &; = ¢; for all 4,7

The second statement of the proposition is the most important. It implies that for a non-zero geomet-
ric phase the beam should necessarily vibrate about a non-straight line reference configuration. It follows
from expression (19) that following the motion §;(t) = —I; — a; cos(wt + ¢;) yields a steady-state geometric
phase change negative to that of (21). Therefore, in order to rotate the beam in the opposite direction it
is sufficient to reverse the signs of v{ and v?.

Remark 4.1 Expression (25) can be used in order to predict the sign and the value of the geometric
phase. Consider a beam which has a square crossection with side size R. Assume that two actuators at
§1 = —rL and s; = rL where 0 < 7 < 1 produce torques according to equation (20). Using two first modes
in the series (25) yields

9(2&’_7?) _ 0(0) ~ 81-5661((”7)2 - (”‘2")2)(”(1) - vg)d)(_r) sin(¢z — 1)

(26)
p2L3ER7(%(7%)2 + %)2\/(0_’% _ w2)2 + c%wz\/(w% _ w_2)2 + c%w2

where
®(r) = (sin(2.365027) + 0.1329 sinh(2.36502r))%(cos(3.92667) — 0.0279 cosh(3.9266r)).

‘We are now in a position to formulate a specific control strategy to accomplish the asymptotic ma-
neuver. Starting at rest with 8(¢g) = 6y application of control law (20) results in a nonzero rotation over
a period. By repetition of cycles of motion (21) as many times as necessary the beam can be caused to
rotate closer and closer to 8. As 6(t) approach 8; we can reduce the amplitude of the oscillations to zero
in.a way so that 6(t) — 03 as t — oo.

The proposed control law is of the form
. - o, 150 Sw - . 9=
ij(t)_;k[vj—i-vj cos(wt)],J_l,...,m, (27)

where 2—(—“—-5133 <t-ty < 2%’12, k = 1,2,...; that is, the control excitation is an amplitude modulated
function, where z‘/?, Uy are constants and ¢ denotes the scalar amplitude modulation sequence that defines
the control excitation on the k-th cycle. Each cycle is exactly p periods.

The constants w, 7, U5

maximize the geometric phase expression

0 5 can be chosen nearly arbitrary, although one approach is to choose &7, &7 to

8

E a,-Jiljaj sin(d>j - (b,)

=1 j=1,5#1



Since |cx| — O then g;i(t) — 0-and ¢; — 0 as t — 0o. By continuity 6(t) — 6°°™ for some constant §°°"
as t — co. We want to show that §°™ = §,. '

By contradiction, assume that §°°® > 4. Let 3 > 0 be sufficiently small so that 8™ — é5 > ;. Choose
&3 so that b s
geon — @y — 64 5
< 7 ) > €3> 0.
Then, there exists an integer N3 such that for any k > N3 it follows that |ex| < &3 and |63 - §°°™| < 65.
Note that for any £k > Nz +1land { > N3+ 1

9, — gave -;;
Tk =<d—A0—§—_l_> <0

and

1
geor — 83 — 63\ 3
> (737 74 .
7| > ( N ) > €3 > |ei

Thus, we conclude from (A2) that for any k,! > N3 + 1 it follows that ¢4 = ¢; # 0. Hence, we obtain
a contradiction to the convergence of the sequence € to zero as k — oo. Similar arguments lead to a
contradiction in case 8°°* < 8.

a
Finally, it follows from equations (28) and (23) that
lim 6(t) = 64, lim ( y(s,t) ) =0,-L<s<L .
t—oco t—o0 \ y(s,1)

The controller which we have constructed has two functions. Its main function is to excite the oscilla-
tions of the beam in such a way so that the beam rotates in the desired sense. Subsequently, the controller
serves to suppress the vibrations previously excited so that the free-free beam comes to rest with a desired
orientation. Note that control law (27) is a non-smooth feedback control law.

5. NUMERICAL EXAMPLE

Space structures can often be modeled as light and flexible beams. Consider a beam with half-length
L = 1[m)], density per unit volume p = 1400[kg/m3] and square crossection with the side size R = 0.1{m].
Young’s modulus of the beam is £ = 3.0 x 10{N/m?] and the damping coefficient of Kelvin-Voigt damping
is v = 0.2. Two actuators are installed near both ends of the beam at » = 0.9. The maximal torque each
of the actuators can produce is equal 100[Nm]. The excitation frequency w = 13[Hz] is selected to lic
between the first 10.6[H z] and the second 29[H z] resonant frequencies of the beam; %9 and ¥, j = 1.2 are
chosen using expression (26) to maximize the geometric phase change over one period. For this example
we choose p = 5 and 71 = 72 = 0.9. We want to rotate the beam from 6y = 0.1{rad] at t = 0 [sec] 10
84 = O[rad]. The dependence of the angle 8(t) [rad] on time t[sec| is shown for a part of the maneuver in
Fig. 2. In this case the geometric phase change over one period in steady-state predicted by expression {26)
is equal to —2.7465 x 10~4 [rad] whereas its actual value is equal to —3.0411 x 107 [rad]. The dependence
of the control parameter ¢ on time is shown in Figure 3.



where a;, l;, %, = 1,..., are related to 'ﬁ?, vl,j=1...,m according to expressions (22)-(24), and vo oy
are constrained by

(5)° < Be.

0

_0\2
(U?) < a,

i

J=1

In terms of v y 07,0 =1,...,m this is a constrained mathematical programming problem which is linear
in v (for ﬁ\ed v ) and quadratic in 57 (for fixed 17?). We will subsequently denote the maximum value of
thxs constrained optlmlza,txon problem as Ag*.

The modulation sequence 44 is defined in terms of an ”average” of 6(t), over the k-th cycle, that is

X 1
61 = 3 (max 6(t) + min 6(t)) (28)
where the maximum and minimum are over Uk—L)rp <t—-ty < 2—"—’59 We also introduce two auxilary

w
variables 63" = 6y and gg = sign (—“—) We express € in terms of (9‘“’ and €¢_; as indicated below:

Ag*
B (od_ ave);-
T = —A-b"_ .

(A2) In case |rg| > |ek-1], if ri and ex_; have the same signs then e = |ex_y|sign(ry); if 7 and €4y have
opposite signs then ex = ¥1|cr—1|sign(rk), where 0 < v < 1.

(A1) Compute

(A3) If 0 < |rk] < Jek~1] then g, = y2ry, where 0 < 72 < 1.
(A4) If rp, = 0 then g = g4y

Proposition 4.2 If the proposed control law is of the form (27) where ¢4 is selected according to
steps (A1)-(A4), then

lim 6" = 64, hm er = 0.
k—oco

Sketch of the Proof. The sequence |¢i| is non-increasing and bounded on [0, 1]. Therefore, there exists
b € [0, 1] such that b = infx |cx|. We want to show that b = 0.

By contradiction, assume b # 0. Then, for £ = %%:—;)—) we can find an integer N; such that for
all k > Ny |ex] — b < €. From (A2) and (A3) we conclude that only two cases are possible: ¢, = b for all

k> Nyoreg=~bforall k > N;.
Assume that the former case is true. Since the transient decays to zero and using continuity of § with
respect to q; and ¢; we assert that for & = ;63A6' there exists an integer N, such that for any k& > N

B3IAG" — & < 032 — 67V < bPAG™ + &4,

where Ag* > 0. Note that —A%L > b% > 0. Choosing an integer ! so that [ > ZW + 1 we conclude

that

— (60" — &)l + 0 — %7 S 04 — 0%°,, o
Af* Ag”

Therefore, the former case can never occur. Similarly, we can verify that the latter case also leads to a

contradiction. Hence, 6 = 0.

> 0.

0>



6. CONCLUSION

In this paper the angular momentum expression for a planar free-free beam in space is derived. It is
shown how the general motion of the beam can be separated into rigid and elastic motions. The change
of shape of the beam is described by the Euler-Bernoulli equation with free-free boundary conditions.
Angular momentum conservation leads to the nonlinear dependence of the rigid motion on the shape of
the beam. As shown this dependence is non-integrable in the sense that a periodic change in shape of the
beam results in a non-zero rotation of the beam over one period. Approximate relationships expressing the
average rate of rotation of the beam in terms of the amplitudes and phases of periodic excitation of the

beam by internal actuators are derived. Finally, a control strategy for a planar asymptotic reorientation
maneuver is developed.

A general treatment of the interplay between deformations and rotations of deformable bodies is given
by Shapere and Wilczek.” Reyhanoglu and McClamroch® have developed a framework for reorientation
of multibody systems in space. In this paper, we have used the framework developed by Shapere and
Wilczek for the specific problem of reorientation of a free-free beam in space; our results represent, in a

certain sense, the limiting case of the multibody results obtained by Reyhanoglu and McClamroch when
the number of bodies increases without limit.

Although our study in this paper has been concerned with the ideal case of reorientation of a free-free
beam in space, we note that the same ideas are applicable to reorientation of a wide class of deformable space
" structures, using only actuators embedded into the structure. In this sense, smart structures technology
can be used to accomplish a variety of efficient reorientation maneuvers for space structures.
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Abstract

It is demonstrated that the planar reorientation of

a free-free beam in zero gravity space can be ac:
complished by periodically changing the shape of the
beam using internal actuators. A control scheme is
proposed in which electromechanical actuators excite
the flexible motion of the beam so that it rotates in
the desired manner with respect to a fixed inertial
reference. The results can be viewed as an extension
of previous work to a distributed parameter case.

1. Introduction

Following [8], we introduce the concept of a de-
formable body, for which distances between the points
of the body can change during the motion. Ex-
amples of deformable bodies include both lumped
and distributed parameter systems such as multilink
rigid body interconnections and structures with dis-
tributed flexibility. The orientation of a deformable
body with respect to a fixed inertial reference can be
specified by a choice of body frame. In general, there
are many ways to choose a body frame. For exam-
ple, in the case of planar motion a body frame can be
identified with any two distinct points in the body.
The shape of a deformable body can be specified in
terms of the position of the body relative to the body
frame. Thus, an arbitrary motion of a deformable
body can be separated into rigid body motion and
shape change.

Assume that both linear and angular momenta about
the center of mass of the body are conserved and
equal to zero. These conditions hold if the body is
in a circular orbit around the Earth or is in a free
fall. As a consequence of angular momentum conser-
vation, shape change and the rigid body motion are
coupled. This coupling is inherently nonlinear. In
particular, one may be interested in inducing a ro--
tation of a deformable body with respect to a fixed
- inertial reference by periodically changing the shape
of the body with internal (momenta preserving) actu-
ators. Reorientation strategies for lumped parameter
mechanical systems have been extensively studied in
the literature {4, 5, 7, 8]. Reorientation schemes based
on the use of internal actuators require a minimal use
of fuel to achieve the desired reorientation maneuver.

* This research was supported by the National Science Foun-
dation under Research Cirant No. MSS-9114630 and the Na-
tional Aeronautics and Space Administration under Research
Grant NAG-1-1419.

In this paper we extend the aforementioned reorien-
tation strategies to the case of flexible bodies. In
particular, we are interested in a planar reorientation
of a free—free beam in space using only electrome-
chanical actuators. These electromechanical actua-
tors, e.g. piezoelectric or shape memory actuators.
do not change the angular momentum of the free-
free beam but can be used to change the shape of the
beam in a periodic way. Assuming that the angular
momentum of the beam is always zero, oscillations
in the shape of the beam can cause a rotation of the
beam with respect to a fixed inertial reference. The
rotation of the beam over one period depends only on
the shape of the beam over one period and does not
depend on the lenﬁth of the period; hence this phe-
nomenon is referred to as a geometric phase change.

The extension of existing strategies to the free-free
beam case is not straightforward for several reasons.
Classical models of uniform free—free flexible beams
in zero gravity space result in complete decoupling
of rigid body motion and flexible motion. Higher
order nonlinear coupling between rigid body motion
and flexible motion 1s captured in geometrically exact
beam theories [9]. The resulting models, however, are
complicated. The free—free beam is an infinite dimen-
sional superarticulated system. Thus, an arbitrary
shape change cannot be produced by a finite number
of actuators. In addition, the body frame of the beam
needs to be chosen so that the shape change is inde-
endent of the rigid body motion. Such a choice of
ody frame is natural for lumped parameter systems
since variables specifying orientation are ignorable.

In this paper, we first address basic modeling is-
sues. The dynamics which determine the shape of
the free—free beam are assumed to be characterized
by the Euler-Bernoulli equation, including material
damping, with appropriate boundary conditions. The
higher order coupling between the rigid body motion
and the flexible motion is captured using the angular
momentum expression which includes rotatory iner-
tia and kinematically exact effects. A control scheme
is proposed in which the actuators excite the flexibie
motion of the beam so that the beam rotates in the
desired sense.

2. A Planar Free-Free Beam Model

Consider a uniform free—free beam of undeformed
length 2L in space with zero angular momentum and
zero linear momentum. Referring to Fig. 1 the mo-
tion of the beam is constrained to a plane defined by
vectors (€y,€3) where (&;,&3,&3) is an orthonormal
basis for an inertial frame whose origin is at the cen-
ter of mass of the beam. Let (i,j,k) be a rotating



frame with its origin fixed at the origin of the iner-
tial frame such that the vectors'{i. k) lie in the plane
(é,,83) and j = &,. The straight line passing through
the origin in the direction of vector k is called the
reference line. Let the beam initially be at rest in a
straight line configuration aligned with the reference
line. Then, the location of each point on the line of
mass centroids of the beam can be described in terms
of the parameter s € [~L, L]. This parameter s can
be viewed as a label for each of the crossections. We
assume that as the beam deforms the shape and the
area of the crossections remain invariant. Following
other researchers [l, 6, 9] we introduce three func-
tions u(s.t),y(s.t) : [=L.L] x R — R and w¥(s.t) :
[=L,L] x ® — T such that (u(s.t) +s.y(s. t)) de-
fine the coordinates of the line of centroids in the
deformed _configuration with respect to the moving
frame (2, k) at time t. The angle v;(s.t) between the
normal to the crossection at s and é3 specifies the
orientation of the crossection. The normal to the
crossection at s is denoted by t3. We define the mate-
rial basis ({1, t2, t3) to be orthonormal so that ; lies in
the plane (€),&3). The crossection itself can be asso-
ciated with the set of points (§;,&,) in a compact set
A C R? such that &) +&fa+(u(s, ) +s)k +(y(s,t))i

ives the location of any point on the beam as &, and
%2 vary through A and s varies from —L to L.

Since the origin of the inertial frame is fixed at the
center of mass of the beam we obtain

L

/ y(s, t)ds =0, (1)
=L
L

/ u(s,t)ds = 0. (2)
=L ,

Let p denote the constant mass density per unit vol-
ume of the beam. We assume that the beam has a
symmetric crossection so that the first moment of in-
ertia of the crossection dabout the line of centroids is

/ o derdes = 0. (3)
A

The second moment of inertia of the crossection about
the line of centroids. referred to as the rotatory iner-
tia, 1s

12:/P€12d€1d€2- (4)
A

and assumed to be positive. The mass per unit length
of the crossection is given by

mo-—-/pdfldfz. (5)
A .

We define the angle 8(t) between é3 and k so that
y(s,t) measured from the reference line satisfies the
following orthogonality condition

L
/ sy(s, t)ds = 0. (6)
-L

The existence of the angle 6(t) follows from the ge-
ometry indicated in Fig. 1. This definition provides a

. v
separation between the motion which determines the
shape of the beam, given by y(s,t), —L < s < L, and
the rotation of the beam as a whole, given by 6(t)

®
(e‘e‘e“

e

Fig . Planar Beam Model

We next develop a kinematically exact expression for
the angular momentum of the free—free beam. Let

P(s,€1,82,8,t) be the vector from the origin of the
inertial frame to a point (s,&;,&;) on the beam at
time t; then

@ = (ssinf + ycosf + & cos ¢ + usinb)é; +
(£2)€2 + (scos 8 — &y siny — ysinf + ucosB)é;  (7)
where 8 = 0(t),y = y(s,t) and ¥ = ¥(s,t). The

angular momentum about the origin of the inertial
frame at time ¢ is zero so that

L _
/ / o5 x 32 de deads = 0. (8)
-t Ja dt

Substituting equation (7) into equation (8) and using

equations (4) and (3) we can express § in terms of
y,u and a as

L .
_ f_L{mOs%Jt- + L+ mo(%‘fu — uy))ds

f_LL{—mgs2 —moy? — [ }ds

€)]

where o = i) — 8 is the angle between the normal {1
to the crossection at s and the reference line.

Assume that the beam is unshearable and inextensi-
ble and that the deformations are small. This implies.
using equation (2), that

u(s,t)=0. - (10)
and that A
R Y. (H)

We use the Euler—Bernoulli beam model to charac-
terize the shape of the beam [3]. Thus y(s, t) satisfies
the Euler-Bernoulli equation of the form

m
MoYer+TYessss + ElYsans = = D v;(8)6'(s=5;) (12)
) o i



with the boundary conditions -
Yss(—L) =ya:(L)~—ny (13)

ysas(“L) = ysu(L) =0 (14)

where [ = I5/p, E is Young’s elasticity modulus. ¢ is
the distributional derivative of the delta function and
where for simplicity we assume Kelvin-Voigt damp-
ing with a positive damping coefficient 7. In adcr'-
tion, y(s,t) must satisfy conditions (1) and (6). In-
ternal bending torques v;(t), 7 = I.....m are pro-
duced by m point actuators located at s = s; on the
beam where 5; € [—L, L]. These actuators change the

shape of the beam but at the same time preserve the

anﬁular momentum. Although such actuators are ca-
pable of inducing relatively small displacements one
can excite the beam periodically at a frequency near
one of the lower resonant frequencies of the beam to
obtain relatively large periodic shape change.

Using expressions (6), (10} and (11) in equation (9)
we obtain L

. - J_ 12y ds
jo L loyeds (15)

T+ [2, moy*ds

where 7 = 2moL® + 2I>L. This expression demon-
strates the nonlinear coupling between the beam’s
shape and its rigid body motion. Expression (15) is
non-integrable in the sense that if y{s,t) is a periodic

function of time, the integral of 6 over one period is,
in general, non-zero.

We can expand the solution y(s.t) to equation (12)
in the series

o)
y(s,t) = D wils)ai(t) (16)
i=1
where w;(s),i ='1,2,... are the orthonormal elastic

mode shapes of the Euler-Bernoulli model. The solu-
tion y(s,t) satisfies equations (1) and (6), which can
be viewed as orthogonality conditions for the rigid
body modes and elastic modes. Expansion {16} pro-
vides the modal description

Gi + g +wilg= ) bijui(8),i=1,2...  (17)
i=1

Equation (12), or equivalently equation (17), deter-
mines the shape of the beam and is called the shape
space equation. Substituting equation (16) into equa-
tion (15) we obtain

o 2 Eisidi)
T4 0
where J; = wi(L) — wi(—L). We note that (138) is,

in general, non-integrable for any truncation of the
-infinite series in (16).

(18)

gle frequency w as

-

e

3. Asymptotic Reorientation Maneuvers

The goal is to accomplish asymptotic maneuvers, i.e.
starting with 8(to) = 6o, y(s.to) = Yi(s,tg) = 0 we
want to rotate the beam so that 6(t) — 8, y(s,t) — 0
and yi(s,t) — 0 as t — o0 for some desired angle 8,.

Consider the periodic excitation of the beam at a sin

vj(t):u?+v;~" cos(wt), 7 =1,2,....m (19)
Since the shape space dynamics of the free-free beam
is asymptotically stable, the steady-state motion of
the beam is given by

%i(t) = i + a; cos(wt + 6;) (20)

where the parameters {;; a; and ¢; can be expressed in
terms of vy and v} according to equation (17). The
excitation function (19) should be sufficiently small
so that the Euler—Bernoulli model for the shape space-
dynamics remains. valid. Substituting equation (20)
into equation (18) and integrating over one period we

obtain the steady-state change in angle 8 over one
period is given by

o>

.4

<

/ Go cos(wt + xo)dt
o L+q(cos(wt+ x1)+ c2cos(2wt + x2)

(21)

for constants <p, i, S2, X0, X1 and x2. Expres-
sion (21) implies that, in general, the change in angle
6 in steady-state over one period is non-zero, thereby
proving that a periodic change in shape of the beam
results in a rotation of the beam. The steady-state

difference 8(2Z) — 6(0) is referred to as the geometric
phase. If Y;2, ¢? is small as compared with =, we
can approximate

T

T'*'Z?o:lqiz T

and thus using equation (20) we obtain

NS

T

o3y~ 9(0) = 2 i i a;Jil;a; sin($; — 1)
” 2, 2. /il j = @il
=1l j=1,j#4

(22)
Although the geometric phase is generally non-zero.
there are cases when the geometric phase is zero.

Proposition 4.1 Assume that the steady-state mo-
tion of the beam is described by equation (20). Then.

6(%) — 8(0) = 0 if any of the following conditions
hold:

1. a; =0 for all ¢
2. l; =0 for all i
3. ¢i=¢; foralli,j

The second statement of the proposition is the most
important. [t implies that for a non-zero geometric
phase the beam should necessarily vibrate about a
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non-straight line reference configuration. It follows
from expression (18) that in order to rotate the beam
in the opposite direction it is sufficient to reverse the

. w 0
signs of v¥ and vj.

We are now in a position to formulate a specific con-
trol strategy to accomplish the desired asymptotic
maneuver. Starting at rest with 8(tn) = fy applica-
tion of control law (19) results in a nonzero geometric
phase change over one period. By repetition of cvcles
of motion as many times as necessary the beam can
be caused to rotate closer and closer to #4. As 6(¢)
approach 84 we can reduce the amplitude of the oscil-
lations to zero in a way so that 8(t) — 8, ast — x.

The proposed control law is of the form

vi(t) = € [17? + Uy cos(wt)] J=1... m. (23)

where z(k—:,lie <t-ty < %—je k= 1.2....: that
is, the control excitation is an amplitude modulated

function, where 17?, vy are constants and ¢ denotes

the scalar amplitude modulation sequence that de-
fines the control excitation on the k-th cycle. Each

cycle is exactly p periods. The constants w, 6?, vy can

be chosen nearly arbitrary, although one approach is

to choose 17?, 9 to maximize geometric phase expres-
sion (22) where a;,l;, ¢;,i = 1, ..., are related to E';),
w,Jj = l,...,m according to expressions (20) and
(17), and %7, 5% are constrained in norm. In terms
of ﬁ?, w,g=1....m this is a constrained mathe-
matical programming problem which is linear in 6?
(for fixed %) and quadratic in v} (for fixed z')})). We

will subsequently denote the maximum value of this
constrained optimization problem as Ag".

The modulation sequence ¢4 is defined in terms of
an average of 8(t), over the k-th cycle, that is

gve = —;— (max6(t) + minf(t)) (24)

where the maximum and minimum are over

Nk —=1)7 > .

HE-UTP < ¢ —ty < #Z2. We also introduce two

auxilary variables 83V = 6y and £ = sign 8a=80)
0 Aad

We express ¢, in terms of §3"% and €¢_, as indicated
below:

(A1) Compute

Bg — 62U\ 3
tETae )

(A2) In case |ri} > |ek-1l, if re-and cg_y have
the same signs then ¢ = |ep—|sign(re); if
rr and .-, have opposite signs then £ =
Y€k [sign(ry), where 0 < v < 1.

(A3) If 0 < |rk| < |gk=1] then g¢ = 21, where
0<y < 1.

(A4) If rp, =0 then g = c_1.

Proposition 4.2 If the proposed control law is
of the form (23) where = is selected according to
steps (A1)-(A4). then

Jim 02 = 2, lim £, <1

Sketch of the Proof. The sequence |z;| is non-
increasing and bounded on {0, 1]. Therefore. there
exists b € [0,1] such that b = inf [,]. [t can be
shown that by construction of the sequence 6 nust
be zero.

Since |cg] — 0 then ¢i(t) — 0 and ¢ — 0 ast — x.
By continuity 8(t) — 0°°" for some constant 7" as’

¢t — . It can be shown that 8°°" = §,.

-

Finally, it follows from equations (24) and (20) that

. _ . y(s, t) _
rl_l.rrclaﬁ(t) = 0,1,tl_1.n°1o ( (s, ) ) =0,-L<s<L

The controller which we have constructed has two
functions. Its main function is to excite the oscil-
lations of the beam in such a way that the beam
rotates in the desired sense. Subsequently, the con-
troller serves to suppress the vibrations previously ex-
cited so that the free—free beam comes to rest with a
desired orientation. Note that control law (23) is a

non-smooth feedback control law {2].
4. Numerical Example

(onsider a beam with half-length L = I[m], den-
sity per unit volume p = 1400[kg/m®] and square
crossection with the side size R = 0.1{m]. Young's
modulus of the beam is £ = 3.0 x 105[N/m?] and
the Kelvin-Voigt damping coeflicient is v = 0.2. Two
actuators are installed near both ends of the beam
at sy = ~0.9[m] and s; = 0.9[m]. The maximal
torque each of the actuators can produce is equal to
100[:Vm]. The excitation frequency w = 13[H =] is se-
lected to lie between the first 10.6{H z] and the second

29{H =] resonant frequencies of the beam; 5? and ¢} .

j = 1.2 are chosen using expression (22) to maximize
the geometric phase change over one period. For this
example we choose p = % and v; = y2 = 0.9. The
first four elastic modes of the beam are used in our
simulation.

We want to rotate the beam from §y = 0.1{rad] at
t = O[sec] to 84 = O[rad]. The dependence of the

angle 8(t)[rad] on time t[sec] is shown for a part of

the maneuver in Fig. 2. In this case the geometric
phase change over one period in steady-state pre-
dicted by expression (22) is equal to —2.7465 x 10~*
[rad] whereas its actual simulation value is equal to
—3.0411 x 10™* [rad]. The dependence of the mod-
ulation parameter ¢ on time is shown in Figure 3.
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5. Conclusion

In this paper the angular momentum expression for a
lanar free~free beam in space is derived. It is shown
ow the general motion of the beam can be separated

into rigid and elastic motions. The change of shape

of the beam is described by the Euler—Bernoulli equa-
tion with free-free boundary conditions. Angular mo-
mentum conservation leads to the nonlinear depen-
dence of the rigid motion on the shape of the beam.
As shown this dependence is non-integrable in the
sense that a periodic change in shape of the beam
results in a non-zero rotation of the beam over one
period. Approximate relationships expressing the av-
erage rate of rotation of the beam in terms of the
amplitudes and phases of periodic excitation of the

beam by internal actuators are derived. Finally, a

control strategy for a planar asymptotic reorientation
maneuver is developed.

A general treatment of the interplay between defor-
mations and rotations of deformable bodies is given
by Shapere and Wilczek [8]. Reyhanoglu and Me-
Clamroch (7] have developed a framework for reorien-
tation of multibody systems in space. In this paper,
we have used the framework developed by Shapere
and Wilczek for the specific problem of reorientation
of a free—free beam in space; our results represent, in
a certain sense, the limiting case of the multibody re-
sults obtained by Reyhanoglu and McClamroch when
the number of bodies increases without limit.

Although our study in this paper has been concerned
with the ideal case of reorientation of a free—free beam
in space, we note that the same ideas are applicable
to reorientation of a wide class of deformable space
structures, using only actuators embedded into the
structure. [n this sense, smart structures technology
can be used to accomplish a variety of efficient reori-
entation maneuvers for space structures.
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Abstract

It is well known that three momentum wheel
actuators can be used to control the attitude of a
rigid spacecraft and that arbitrary reorientation
maneuvers of the spacecraft can be accomplished. If
failure of one of the momentum wheel actuators
occurs, it is commonly thought that attitude control
is not possible using only two momentum wheel
actuators. In this paper, we demonstrate that, in fact,
two momentum wheel actuators can be used to con-
trol the attitude of a rigid spacecraft and that arbi-
trary reorientation maneuvers of the spacecraft can
be accomplished in a specific sense. The complete
spacecraft dynamics cannot be stabilized to an equili-
brium attitude. However, the spacecraft equations
are small time locally controllable in a reduced non-
linear sense. The reduced spacecraft dynamics can-
not be asymptotically stabilized to an equilibrium
attitude using a time-invariant continuous feedback
control law, but a discontinuous feedback control
strategy is constructed which asymptotically stabil-
izes an equilibrium attitude of the spacecraft. Conse-
quently, arbitrary reorientation of the spacecraft can
be accomplished using this discontinuous feedback
control strategy.

1. Introduction

The attitude stabilization problem of a rigid
spacecraft using only two control torques supplied
by momentum wheel actuators is revisited. Although
a rigid spacecraft in general is controlled by three
independent actuators, the situation considered in this
paper may arise due to the failure of one of the

actuators of the spacecraft. Since we are considering-

a space-based system, the problem considered here,
namely, the attitude stabilization of a spacecraft
operating in an actuator failure mode, is an important
control problem.

In this paper, we consider the attitude stabiliza-
tion of a spacecraft using control torques supplied by
two momentum wheel actuators about axes spanning
a two dimensional plane orthogonal to a principal
axis. The linearization of the complete spacecraft
dynamic equations at any equilibrium attitude has an
uncontrollable eigenvalue at the origin. Conse-
quently, controllability and stabilizability properties
of the spacecraft cannot be inferred using classical
linearization ideas. Moreover, a linear feedback con-
trol law cannot be used to asymptotically stabilize
the spacecraft to an equilibrium attitude. It is shown
that the complete spacecraft dynamics controlled by
two momentum wheel actuators is not controliable at
any equilibrium attitude. Thus any equilibrium atti-
tude of the complete spacecraft dynamics is not sta-
bilizable. Under some rather weak assumptions, the
spacecraft dynamic equations are shown to have a
nonintegrable motion invariant, so that they fall
within the class of nonlinear control systems previ-
ously studied®. A coordinate transformation is made
and feedback is then used to obtain a nonlinear con-
trol model in a normal form. The linearization of the
normal form equations at an equilibrium has an
uncontrollable eigenvalue at the origin. Based on
analysis of the normal form equations, the spacecraft
dynamics are smail time locally controllable at any
equilibrium attitude in a reduced sense. The reduced
spacecraft dynamics cannot be asymptotically stabil-
ized to an equilibrium attitude using time-invariant
continuous feedback. Nevertheless, a discontinuous
feedback control strategy is constructed which
achieves reorientation of the spacecraft. The feed-
back control strategy is based on geometric phase,
which is due to the presence of a nonintegrable
invariant of the spacecraft motion.
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2. Kinematic and Dynamic Equations

Kinematic Equations

The orientation of a rigid spacecraft can be
specified using various parametrizations of the spe-
cial orthogonal group SO (3). Here we use the fol-
lowing Euler angle convention. Consider an inertial
X, X, X5 coordinate frame; let x| x; x5 be a coordi-
nate frame aligned with the principal axes of the
spacecraft with origin at the center of mass of the
spacecraft. If the two frames are initially coincident,
a series of three rotations about the body axes, per-
formed in the proper sequence, is sufficient to allow
the spacecraft to reach any orientation. The three
rotations are:

a positive rotation of frame X, X,; X; by an
angle y about the X3 axis; let x; x; x3
denote the resulting coordinate frame;
a positive rotation of frame x; x; x3 by an
angle 0 about the x, axis; let x; x; X3
denote the resulting frame;
a positive rotation of frame x; x; x; by an
angle ¢ about the x, axis; let x| x, x5 denote
the final coordinate frame.
A rotation matrix R relates components of a vector
in the inertial frame to components of the same vec-
tor in the body frame; in terms of the Euler angles a
rotation matrix is of the form
cycH
R(y.0,0)=|—-5sycod +cysBso
sYsd + cysOcd
sycH -s50
cych +sysOBsd cOBso
—cyso+sysOcd cBc
where ¢y = cos(y), sy =sin(y). We assume that
the Euler angles are limited to the ranges
m<y<n® -M2<0 <2, -K<$ < Suppose
o, @, 5 are the principal axis components of the
absolute angular velocity vector ® of the spacecraft.
Then expressions for ®;, ®,, 3 are given by

®, = ¢ — ysind, Q.1
Wy = Bcosd + \L!cose sing, » (2.2)
W3 =-— Bsing + Wcosd coso. o (23)

By excluding the case where 8 = £ /2, these equa-
tions are invertible. Thus we can solve for ¢, 8, ¥
in terms of ®,, W, 4 obtaining

d) = @ + W,sing tand + wycos¢ tand, (2.4)
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8 = w,cosp — Wysing, @.5)
Wy = W,sing secd + w,cosf secH. (2.6)

Next we consider the dynamic equag
which describe the evolution of the angular cielogi’(‘;
components of the spacecraft.

Dynamic Equations

Consider a rigid spacecraft with two momen-
tum wheel actuators spinning about axes defined by
unit vectors &y, b, fixed in the spacecraft such that
the center of mass of the i-th wheel lies on the axis
defined by b;, and a control torque - u’; is supplied
to the i-th wheel about the axis defined by b; by a
motor fixed in the spacecraft. Consequently, an
equal and opposite torque u’; is exerted by the
wheel on the spacecraft. We refer to the spacecraft
and the two wheels as body 1, body 2 and body 3
respectively. Let C; denote a coordinate frame
aligned with the principal axes at the center of mass
of body i. We assume that b; defines a principal
axis for the i-th wheel which is symmetric about b;.
Further b, and b, span a two dimensional plane
which is orthogonal to a principal axis of the space-
craft. Without loss of generality b; are assumed to
be of the form

bi = (b, biz, O, i = 1,2. 2.7

Let /; denote the inertia tensor of body i in
the coordinate frame C,. The mass of body i is
denoted as m; and p;! denotes the position vector,
expressed in the C, frame, of the center of mass of
body i/ with respect to the center of mass of the
whole system. Let ® denote the absolute angular
velocity of the spacecraft expressed in the spacecraft
body frame. By the definition of the center of mass,
we have

3
Tmp! =0, 2.8)
i=1 »

and from the location of the wheels
p:=pf + . dy, 0, 2.9)
pi=pi +(dy d,, O, (2.10)

where (d .d5,0)7 and (ds.d,0)7 are position vectors
of the center of mass of body 2 and body 3 respec-
tively, relative to the frame C,. Further manipula-
tion of equations (2.8)-(2.10) gives
T
ol = (-2 -T2g, 124, Mg, 0)
m m m m



my+ms ms

dl
m m
my+ms

ds,
mi T
m .

©
~N
|

m
my+m,

m»
p3 = (“;‘dl‘* ds,

ms m1+m2

T
d’)_"‘ d4o O)

m
where m =m,+m,+m;. We denote pl as
pl = (i cias 0)7. The total angular momentum
vector of the system is given, in the spacecraft body
frame, by

RWO.OH =Jo +v, @.11)
where

3_ 3
J=U,+ 3L+ XU - (2.12)

i=1 i=2

3 iz O
I=m|—c;ca €3 0 |, (213)

0 0 i+
v =, v 0 (2.14)
=@+ b,8) + [0 + bs8y),  (2.15)

Ly=bbljy, (2.16)
3= bybljs @.17)
1, = diagd 11 I 12 113)s (2.18)
I, = block diag(l 5y, I 7y, (2.19)
Iy = block diag(/3y, I3y (2.20)

where 7,15, are invertible 2x 2 matrices,
14y, 42, 113, 199, I3, are nonzero real numbers, j is
the moment of inertia of body 2 about the axis
defined by b, j, is the moment of inertia of body 3
about the axis defined by b, and 9;, 8, are the
angles of rotation of the wheels about the axes
defined by b, and b, respectively. Here H denotes
the angular momentum vector of the system
expressed in the inertial coordinate frame. The
angular momentum vector H is a constant since
there is no extemal moment about the center of mass
of the system. Suppose #’, and u’, are the control
torques; then

) = — (b’ + bau'y. (2.21)
Differentiating (2.11) we obtain
Jo = S (0)R (y,0.9)H
+bu’y+ b’ (2.22)
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_ 3
where H is a constant vector. Note that /, + N
{

=1

represents the moment of inertia of the system with *
the momentum wheels replaced by point masses and
is hence positive definite. The matrices /; -/,

i =2, 3 are positive semidefinite and block diagonal.
Therefore J is a positive definite matrix and hence
invertible. In fact J is of the form

J = block diag (J1, /), (2.23)

where J is an invertible 2 X 2 matrix and J, is a
nonzero real number.

3. Controllability and Stabilizability of
Complete Spacecraft Dynamics

In this section we consider the controllability
and stabilizablity properties of the complete space-
craft spacecraft dynamics controlled by two momen-
tum wheel actuators. Define

“l by bay|ju’y
upl ~ 71 b1y by 4"
From Section 2 the complete spacecraft dynamics

can be rewritten as

I Opay
1 { S(OR (y.0,0)H

= -
Oy 73"

+ (uy, uq O 3.1y

¢ = ©; + ,5ind tand + w,cosd tand (3.2)
= ©,C089) — Wssing 3.3
¥ = ©,5ing secOd + wacos secd (3.4)

where H is a constant vector. From equation (2.21)
and
c=(,0, 1), (3.5)

we have ¢v =0; hence c¢’v =a where a is a
constant. Therefore from equation (2.11) we have

TRy O.OH =cTJo + o (3.6)

~ Since H is also a constant, this equation represents a

constraint on the motion of the spacecraft irrespec-
tive of the controls applied. Thus we conclude that
the complete spacecraft dynamics is not controllable.
Moreover this implies that the complete spacecraft
dynamics cannot be stabilized to an equilibrium atti-
tude.



4. Controllability and Stabilizability of
Restricted Spacecraft Dynamics

From the analysis made in Section 3, we find
that the complete dynamics of a spacecraft controlled
by two control torques supplied by momentum wheel
actuators fail to be controllable. In this section we
ask the following question: what restricted control
and stabilization properties of the spacecraft can be

- demonstrated in this case? Our analysis begins by
demonstrating that, under appropriate restrictions of
interest, the spacecraft equations can be expressed in
a special form that we previously studied. Restricted
controllability and stabilizability properties follow as
a consequence of previous work.

Normal Form Equations

We consider the equations (3.1)-(3.4) describ-
ing the motion of a spacecraft controlled by input
torques supplied by two momentum wheel actuators
about axes spanning a two dimensional plane orthog-
onal to a principal axis. Suppose the angular
momentum vector H of the system is zero. From
equations (2.11), (2.14) and (2.23) it follows that the
angular velocity component of the spacecraft about
the uncontrolled principal axis is identically zero, i.e.
@3 = 0. Under such a restriction, the reduced space-
craft dynamics are described by

Oy = uy, @.1
W, = Uy, 4.2)
ci) = @ + Wysing tand, 4.3)
8 = W,c0sd, (4.4)
\il = @ysind secH. 4.5)

According to equation (2.3), the condition that
@3 = 0 implies that

~(sin$)d 6 + (cosOcosp)dy = 0; 4.6)

this represents a nonintegrable invariant of the space-
craft motion. Therefore the reduced spacecraft
dynamic equations define a nonlinear control system
of the form studied earier, Now consider a
diffeomorphism defined by

y1 = cosd In(secB + tanB) + ysing a7 .

Y2 = @p5eCO — yays (4.8)
y3=¢ “49)
Y4 = @ + @,sind tand (4.10)

¥s = sin¢ In(sec® + tanB) — ycosp  (4.11)

The state equations (4.1)-(4.5) in the new variables
are given by

IAF-92-0035

~

Y=Y 4.12)
y2 =~ ysuy + (sec® - ysingtanB)u,
~y 3y + cosd(secOtanbw?
- 5y 41anB; - y ssingsec’8w}) (4.13)
Y3=Ya 4.14)
Y4 = Uy + sin¢tanBu + cos(y stanbe,
+ singsec’8wf) (4.15)
Y=Y (4.16)
If we now define the feedback relations .

u, —sindsin® (l—y 5sin¢sm9) Vi
u] | cosd ¥ 5c0s6 V2

—y 3y 1+cosd(secBtan8w -y <y 4tanbew,)
cosd(y stanBay+singsec’00v3)
cosdy ssingsec’0w?
+ 0

then the reduced spacecraft dynamics are described
by normal form equations

.17

Yi=Yz2 (4.18)
y2=vy, 4.19)
Y3=Ya (4.20)
Ya=va, | @.21)
Ys=Y 4.22)

Note that the origin of equations (4.1)-(4.5)
corresponds to the origin of the normal form equa-
tions (4.18)-(4.22). The following results are based
on the nomal form equations above and follow
directiy from general results in the work of Bloch,
et. al.”.

Theorem 4.1: The reduced dynamics of a spacecraft
controlled by two momentum wheel actuators as
described by equations (4.1)-(4.5) are small time
locally controllable at any equilibrium.

Theorem 4.2: The reduced dynamics of a spacecraft
controlled by two momentum wheel actuators as
described by equations (4.1)-(4.5) cannot be asymp-
totically stabilized to an equilibrium using a time-
invariant continuous feedback control law.

Theorem 4.3: The reduced dynamics of a spacecraft
controlled by two momentum wheel actuators as
described by equations (4.1)-(4.5) can be asymptoti-
cally stabilized to the one dimensional equilibrium
manifold



Q= {(0,0208.y) : 0 = 0,
=¢= 6 = 0}, 4.23)

using a smooth feedback control law given by (4.17)

with v, and v, given by
vi=—kpy2— ks, (4.24)
S vy=—kaya - ks, (4.25)

where k11 >0, k12>0, k37 >0, kp >0 and y,, y2
¥3, Y4 are defined by (4.7)-(4.11).

The implications of the properties stated above
are as follows. Suppose the angular momentum vec-
tor H is zero. Then the spacecraft controlled by two
momentum wheel actuators as described by equa-
tions (3.1)-(3.4) can be controlled to any isolated
equilibium attitude. However, any time-invariant
feedback control law that asymptotically stabilizes
the spacecraft to an isolated equilibrium attitude
must necessarily be discontinuous. Thus arbitrary
reorientation of the spacecraft can be achieved under
the restriction H = 0; if H # 0, reorientation of the
spacecraft to an equilibrium attitude cannot be
achieved.

5. Feedback Stabilization Algorithm

We restrict our study to the class of discon-
tinuous feedback controllers in order to asymptoti-
cally stabilize the reduced spacecraft dynamics
described by state equations (4.1)-(4.5). Clearly,
traditional nonlinear control design methods are of
no use. However, an algorithm generating a discon-
tinuous feedback control which asymptotically stabil-
izes an equilibrium can be constructed, as suggested
by the controllability properties of the system.
Without loss of generality, we assume that the
equilibrium to be stabilized is the origin. Asymptotic
stabilization of equations (4.1)-(4.5) to the origin is
equivalent to asymptotic stabilization of the normal
form equations (4.18)-(4.22) to the origin; hence we
consider asymptotic stabilization of the normal form
equatons.

From equation (4.22) we find that if the space-
craft motion defines a closed path y in the (y;,y1)
space then

Ays = [y y1dys, 5.1)

where Ayg is the change in the variable ys or the
geometric phase® corresponding to the path y. This
relationship is the basis for control of the system to
the origin using (discontinuous) feedback.

First, transfer the initial state of the normal form
equations (4.18)-(4.22) to the state (0,0,0,0,y4), for
some ys, in finite time.
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Next, traverse a closed path ¥ in the (y in
X, L } 1-Y3) space in
finite time, where the path v is selected to satisfy

- 34 = [y yidys. 52)

Note that the execution of the first maneuver
is classical. Execution of the second maneuver
requires explicit characterization of a closed path y
which produces the desired path integral. Since
yidys is not exact, such a path necessarily exists;
and there are many such closed paths. Here we con-
sider a rectangular path vy in the ()_I,.yg) space formed
by line segments from (0,0) to (y1.0), from (y;.0) to
O1.y3) from (y1.y3) t0 (0.y3), and from (0O,y3) to
(0,0). For such a path, the line integral in equation
(5.2) can be explicitly evaluated as yjy; so that
equation (5.2) becomes :

-yd =yws. (5.3)

and the parameters y; and y; specifying the particu-
lar rectangular path are chosen to satisfy the above
equation. Note that this selection guarantees that, at
the end of the maneuver, ys = 0. Since the path y is
closed, y; =0, y3=0 at the end of the maneuver.
The sequential implementation of the two maneuvers
guarantees, by construction, that any initial state of
the normal form equations is tranferred to the origin
in finite time. .

We now present a specific feedback control
algorithm which asymptotically stabilizes the space-
craft to the origin; this feedback control algorithm

implements the  approach  just  described.
Throughout, assume & > 0, and define
(
x5! x5l
k if {x; + =22 >0} or
lele
(x, + =0 and x; > 0}
# _ x5l x
G(xypxp)=|~k if {x;+ <0} or
x2l x5l
[I]"" 22 =0 and X2<0}
| 0 if {x;=0 and x; =0}

We use the well-known property that the feedback
control

u=-Gx;—Xx;,xp)
for the system

X=X,

X2=u

transfers any initial state to the final state (¥;,0) i s



finite time.

Step 0: If y) >0, choose y} =—y3 = V(yJ ) else
choose y{ =y3 = \J(—y,' ); then go to Step 1.
Step 1: Set ' :
v ==Gy1-¥1.¥D -

va==G(O3ye)»
until (y1,y2:y3.Y4) = (v1.,0,0,0); then go to Step 2.
Step 2: Set

vi==-GO1-y1.52 .

v ==-G3-Y3.Yd " »
until (y 1.y2y3.54) = 01.0.y3.,0); then go to Step 3.
Step 3: Set

vi=-GOunyd,
vo==G(y1-Y3, Y4
until (¥ ,y2:y3.Y4) = (0.0,y3,0); then go to Step 4.
Step 4: Set
vi==GOnyd,
ve=—-GQU3ya .
until (y,y2.y3y4) = (0,0,0,0); then go to Step 0.

The most natural way to initialize the control
algorithm is to begin with Step 4 since the control
inputs do not depend on the values of y1 and y3 in
that step. It can be verified that the execution of Step
4 transfers the initial state of the normal form equa-
tions to the state (0,0,0,0,yd), for some y{, in finite
time. Execution of Steps 0 through 4 then transfers
the state (0,0,0,0,y4) to the origin in finite time.
This control algorithm is nonclassical and involves
switching between various feedback functions.
Justification that the constructed control algorithm
globally asymptotically stabilizes the origin of the

nommal form equations (4.18)-(4.22) follows as a

consequence of the construction procedure. Since
stabilization of the normal form equations to the ori-
gin is equivalent to stabilization of the state equa-
tions (4.1)-(4.5) to the origin, we conclude that the
control inputs u, and u, given by equation (4.17)
with v, and v, defined by the above control algo-
rithm asymptotically stabilizes the reduced spacecraft
dynamics described by equations (4.1)-(4.5) to the
equilibrium (®,;,0,,9,8,y¥) = (0,0,0,0,0) in finite time.
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6. Simulation

We illustrate the results of the paper using an
example. Consider a rigid spacecraft with no control
torque about the third principal axis and two control
torques, generated by momentum wheel actuators,
are applied about the other two principal axes. The
complete dynamics of the spacecraft system defined
by equations (3.1)-(3.4) cannot be asymptotically sta-
bilized, but we consider the restriction that the angu-
lar momentum vector H = 0. Consequently, we are
interested in asymptotically stabilizing the restricted
spacecraft dynamics described by equations (4.1)-
(4.5) to the equilibrium (0y,0,,,8,y) = (0,0,0,0,0).
Here we present a simulation of equations (4.1)-
(4.5). The spacecraft is initially at rest (i.e. © =
®y = 0) with an initial orientation given by the Euler
angles ¢° = &, 6° = 0.25% and y°® = —0.5x. The ini-
tial state of the safstem corresponds to an initial state
0y y2y2y9) = (-0.881,0,%,0,~0.5%) for the
nomal form equations (4.18)-(4.22). A computer
implementation of the feedback control algorithm
specified in Section 5 was used to asymptotically
stabilize the equilibrium. The value of the gain &
was chosen as 1. The algorithm was initialized at
Step 4. The simulations are shown in Fig. 1 through
Fig. 5. At ¢t =3.55 seconds, which is the end of
Step 4, y} =y =y} =y} =0 and y§ =- 1.118.
The desired geometric phase is produced by travers-
ing a square path in the (y,;)y3) space with
y| =y3 = 1.057, which is calculated from Step O.
At ¢ = 5.6 seconds, which is the end of Step 1,
y1=1057, y;=y3=y4=0, and ys remains at
-1.118. At ¢ =7.66 seconds, which is the end of
Step 2, y; and y, remain the same while y3 = 1.057,
ys=0and ys =0. At t = 9.71 seconds, which is the
end of Step 3, y; =y;=0, y3=1057, y4=0 and
ys=0. Finally at ¢ = 11.77 seconds, which is the
end of Step 4, y;=y,=y3=y4=ys=0. Thus
®; = 0, = ¢ = 0 = y =0 after a total maneuver time
of 11.77 seconds. Three dimensional visualization
schemes have been developed using a Silicon Graph-
ics Iris work station in order to display the reorienta-
tion maneuvers of the spacecraft.

7. Conclusion

" The attitude stabilization problem of a space-
craft using control torques supplied by two momen-
tum wheel actuators about axes spanning a two
dimensional plane orthogonal to a principal axis has
been considered. The complete spacecraft dynamics
are not controllable. However, the spacecraft dynam-

~ics are small time locally controllable in a reduced

sense. The reduced spacecraft dynamics cannot be
asymptotically stabilized using continuous feedback,
but a discontinuous feedback control stratcgy has



v

been constructed which stabilizes the spacecraft (in
the reduced sense) to the equilibrium attitude in
finite time. The results of the paper show that
although standard control techniques do not apply, it
is possible to construct a control law based on the
particular spacecraft dynamics.
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Abstract

A source of space station attitude disturbances is identified. The
attitude disturbance is driven by internal space station motions
and is a direct result of conservation of angular momentum.
Three examples are used to illustrate the effect: a planar three
link system, a rigid carrier body with two moveable masses, and
a nonplanar five link system. Simulation results are given to
show the magnitude of the attitude change in each example.
Factors which accentuate or attenuate this disturbance effect are
discussed.

Introduction

A variety of nonclassical, inherently nonlinear dynamic modelling
and control problems have been investigated recently. These
investigations have revealed new possibilities for controlling
certain systems and new explanations for certain sources of
disturbances. These ideas are directly related to control and
disturbance analyses for the space station.

For example, a planar multilink system can be reorieated to an
arbitrary attitude using only internal motions [1], [2]. Internal
motions are executed in the shape space, defined by the relative
angles of the links, to achieve a desired change in the absolute
orientation. This effect can be extended to nonplanar multibody
systems (as shown in an example given later) to allow arbitrary
reorientation.

An example [3] of a rigid body with point mass oscillators also
illustrates this effect. In this example, point masses move in slots
at controlled rates. The model was motivated by the attitude drift
of the Hubble Space Telescope due to thermally excited solar
panel vibrations.

These examples and other space and non-space related examples
[4], (5] illustrate the basic phenomena: that internal motions for
a multibody system for which angular momentum is conserved
can give rise to absolute orientation changes of the mulitibody
system. In our case, we are interested in exploiting our insight
into this phenomena to study potential attitude disturbances to the
space station due to internal motions. Internal motions are the
relative motions of the system sub-structures, payloads, and
modules with respect to each other.

* This research was supported by NSF grant No. MSS-9114630
and NASA grant No. NAG-1-1419

This paper illustrates these effects for the space station through
several examplies. These examples serve to illustrate the
magnitude of this disturbance effect, as well as to distinguish this
disturbance from other disturbances such as atmospheric drag and
solar wind. The emphasis in this paper is on internal motions of
the space station, driven externally or internally, which can result
in‘an attitude change of the space station.

Space Station and Large Space Structures

Design of the space station (or other large spacecraft structures)
is presented with competing requirements. Of particular focus
here is the requirement to maintain stable pointing of the overall
structure in the presence of additional requirements to point
antennas and payloads, stabilize appendages, and conduct internal
operations. For instance, the momentum management and
attitude control system for the space station must provide space
station attitude controi within 5 deg of the local vertical and local
horizontal lines, with an attitude rate boundary of 0.02 deg/sec.
The design goal for nominal operation is to maintain the station
attitude excursion to less than 0.2 deg from the average
equilibrium attitude and the total attitude within 5 deg of the local
vertical and local horizontal lines. The attitude excursion is
relaxed to 1 deg during attitude secking [6]. Nominal operations,
however, include astronaut activities, solar panel actuation,
antenna actuation, and many other potential disturbances.

We are interested in exploring a particular class of disturbances
that can modify the attitude of the space station. Some elements
of the space station that may produce such attitude disturbance
effects include:

1) Motions of flexible bodies, such as solar arrays, connecting
beam structures, and laboratory modules, excited by external or
internal forces. These motions can change over time due to
thermal effects and flexibility effects.

2) Manipulated clements such as antennas, robot arms, solar
panels, solar dynamic power concentrators, attached pointing
payloads, and new station segments added through construction.
The space station design includes several elements which are
manipulated independently of one another, through a dedicated
local control system. The overall effect of these independent
manipulations will cause the system shape, as described by the
relative orientations of manipulated elements, to change with
time. Also, during construction large clements are manipulated



into place to define new overall configurations.

3) Internal motions of astronauts, servicing robots,
centrifuges, and circulating pumps. For the space station, a
servicing robot has been discussed that would traverse the beam
sections of the space station.

Effects of the above three classes of configuration changes are
illustrated by three examples.

Example 1: Planar Three Link Model

Consider a planar model of a space station with central body and
two rigid appendages (figure 1). Appendages could represent
mechanical links, such as the space station beta joints, or they
could represent a lumped parameter approximation of a large
flexible structure. The model is characterized by (1) the distance

between each link center of mass and the connecting link hinge
Jink 1 .

Figure 1: Planar Three Link System

points, (2) the mass and inertia of each link. The appendages are
restricted to move as rotational links only. The configuration
space is given by the two hinge angles (y,, ¥,) and the overall
orientation of one of the links, §. The shape space is given by
the two hinge angles. This type of dynamic system has received
much attention in the literature [1], [2], [7], [8]. We are
interested here in a modification of the special kinematic case
presented in [7). Our modification includes an offset of the
middle link center of mass from the line connecting the two hinge
points. The model can also be extended to include additional
links; however, three links are sufficient (and necessary) to
illustrate the attitude change effect.

The primary relation of importance for our discussion is the
angular momentum expression for the system. Since we are
considering zero external torque on the system, angular
momentum is constant throughout the motion of the appendages.
The angular momentum u is written as:

BT Wy, 92) 04N, (W, 90 W+, (9, 920 %, (1)

where

J(¥,, ¥,) sk, vkyco8 (§,) +kycos (¥,) +k,cos (¥, +¥,)
rkgsin(9,) vkgsin(y,)

N, (¥,,¥,;) sk, +k,co8($,) +k,cos (¥,)
+kcos (¥, +9,) +k,,8in(¥,)

N, (¥, ¥,) =k;3+k,co8 (§,) +k, ,cos (¥,)
rkygcos (¥, +¥,) +ky¢sin(y,)

The constants k; through k4 are functions of the link kinematic
parameters only {8]. Note that the angular momentum is not a
function of the orientation angle. The Lagrangian function
constructed for this system would show that § is ignorable. We
assume-that the appendages are excited according to:

Further, this excitation is persistent for a long period of time
(several orbital periods). The excitation is characterized by (1)

-
K

-
¥, ( c) =¢sm(&‘—t- +d,) +¥,,

2
yz(t:) 2asin( 21:: +d,) +¥y, )

a phase difference between the two appendages (¢, # ,), and
(2) a nonzero mean value (Yo # 0 and Yoy # 0). The
importance of these two assumptions is explained later.

In order to make our results concrete, a set of parameters is
selected for this example, representing an approximation of a
large space structure with two flexible appendages (see table 1).
For this example, (¢,,¢;) = (0.0, 7/2), (V10.¥%) = (n/8,7/8),
and a=%/8 rad. For this system, simulation results clearly
indicate that there is a small but steady drift in the orientation
angle of the base link (figure 2).

Table 1: Parameters for 3 Link System

Lire 1 Limk 2 Link 3
a1 « 20 m 921 =20m 932 = 20 m
@12 = 20 m 323 = 20 m 331 = 20 m
m1 = 3000 xg azy = 10 m m3 = 3000 «g

11 = 2.3 @+5 kg-m2 m2 = 6000 kg
12220 a§ kg-m2

'3 =2 3 @5 kg-mr2

oriesiction angle in sedions

Q 10 20 R . 30 © 70 8o [ <3¢

time ln peconas

Figure 2: Orientation Change for 3 Link System

Example 2: Rigid Body with Moveable Point Masses

Consider a model of a rigid space station module with two
internal moveable masses, for instance representing astronaut
motions, mobile robot motions, or a centrifuge facility (figure 3).
This model is an adaptation of a model originally presented in
(3). The model is characterized by (1) the path along which the
masses move, and (2) the carrier body inertia matrix and the
masses of each element. For this model, R € SO(3) represeats

- the orientation of the carrier body with respect to the inertial

frame and q; and q, are the position vectors of the oscillators
with respect to the carrier-fixed frame. Also, O is the angular
velocity of the body in the carrier frame, [, is the inertia matrix
of the carrier body, and (*) represents the skew symmetric matrix
formed by the components of ( ) under the standard isomorphism
“:R? » 30(3) given by:

(x,, x,,x,)»[ 3 -x,] (3)

The important relation here is the angular momentum expression,



m1

Figure 3: Rigid Central Body with 2 Moveable Masses

B=R{I,+*AI,) Q+D,¢1+D;d; (4)
where
| AI=-mie,d{+e, 8- (6,8 40,4, %)
Dy=m{ (1-¢,) &,4,-¢,€,q,)
Dy=m[-e,8,4, +e,(1-€,) &)
my;
¢1'~;;
mamg+my +m,
Consider again zero initial angular momentum.

The body
angular velocity vector is given by:

Q=T (D,4,+D;4,) (5)
where

Tioex=To*A I,

For illustration purposes, these two point masses are assumed to
move relative to the rigid body with the following motions:

@ (e)=lr 0 d(1ecos(2XE.0,))]7
1

@(tr=lo ¢ -du.cos(—z—;."—‘.o,m' ®
Properties of this motion include (1) the masses are offset from
each other, and (2) their velocity vectors are orthogonal. Other
motions could be chosen; these were chosen to illustrate general
motions of the base body. (In particular, circular motions of
either particle will directly lead to an attitude drift).

The angular momentum equation can be integrated numerically
for the given motions to obtain body rates over time. In orderto
illustrate how these body rates effect the overall attitude of the
base body, consider an Euler 3-2-1 system represented by (y,9,¢)
attached to the base body, initially at (0,0,0) and integrate the
following transformation equations from the body rates
1=(w,,wy,w,) to the orientation rates, to obtain the base body
attitude as a function of time, expressed in orientation angles:

‘3-,( w, 3ind+w,cosd) secd
., 9=(w,cosd-w.8ing) ' (7)
d=u,+ (0 sind+w,cosd) tand

Again, to make this example concrete the set of parameters in
table 2 were used to define a simulation. The body rates for this
simulation are shown in figure 4. The orientation angles for this
simulation as a function of time are given in figure §.

Table 2: Parameters for Cylinder with Moveable Masses
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Figure 4: Body Rates for Rigid Body with Moveable Masses
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Figure §: Attitude Drift for Rigid Body with Moveable
Masses

This example illustrates the orientation drift that can occur in
three dimensions.

Example 3: Non-phmr § Link Model

Finally, consider a model for a deployment or construction
sequence where large elements are manipulated by a robotic arm.
The robot arm is constructed with single degree of freedom
rotational joints; the overall system is represented by five links
(see figure 6). The overall dynamics of this system for general
link motions is very complicated. However, we consider a
specific sequence of relative motions so that at any instant the
motion is planar, but the plane of the motion changes
periodically. Again, this system is characterized by (1) the
distance between each link center of mass and the connecting link
hinge points, (2) the mass and inertia of each link. The
configuration space is now given by the four hinge angles and
suitable orientation parameters (in SO(3)) for one of the links.
The shape space is given by the four hinge angles.
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Figure 6: Five Link Nonplanar System

A sequence of three major motions is performed. Each motion
segment consists of a movement of the two coplanar hinges while
the other two hinges are held fixed. For simplicity, we choose

_ motions that consist of square paths in the shape space. -The

entire sequence consists of a segment using the inner joints, then
the outer joints, and finally the inner joints again (figure 7).
Parameters for this example are shown in table 3.
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Figure 7: One Segment of Féur Joint Motions

Table 3: Parameters for 5 Link System
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The angular momentum equation is identical to example 1 for’

each of the motion segments. Equation (1) is numerically
integrated for the given internal motions, using the appropriate
kinematic parameters, to obtain the @, and w, body rates. In
order to illustrate how these body rates effect the overall attitude
of the base body, consider an Euler 3-2-3 system represented by
(v,8,9) attached to the center link. - This system is chosen since
a rotation of the inner set of joints results in a change of the 3rd
orientation angle directly and a rotation of the outer set of joints
results in a change of the 2nd orientation angle. Note that v, =0
for all motions in this case. The orientation angle system is
defined with the z axis pointing vertically upward before the first
rotation. The system is initially at (x/3,x/3,%/3). The following
transformation equations from the body rates to the Euler rates

are integrated to obtain the base body attitude, expressed in Euler -~

coordinates:

¥--o Sin(e)

7°8in(8) ¢

8=0 cos(¢) _ - (8)

Several cycles of the joints were used in order to illustrate the
orientation change. The resulting motion of the orientation
angles is shown in figure 8.
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Figure 8: Attitude Drift for Five Link Nonplanar System

Note that all three orientation angles experience a drift. It can be
shown for this system that any final arbitrary attitude can be
achieved for the overall system through a series of planned
motions as described in figure 7. In this example, the system
retumed to the same internal configuration at several times during
the manipulation sequence; each time a new overall orientation
was achieved.

-

Discussion .

These three examples illustrate different types of internal motions
for a large structure such as the space station, however, the
models have important similarities. The fundamental relation in
all three cases arises from the conservation of angular
momentum, involving both internal velocities and external
orientation. The internal motions, although possibly locally
repetitive, are asynchronous or out of phase with respect to each
other.

The examples have intentionally exaggerated the orientation
disturbance effect for illustration purposes. The actual
disturbance effect for a given system may be quite small for a
single cycle of internal motions. However, for the space station,
some of these disturbances are persistent, acting throughout each
orbit. The net effect of these disturbances over a long period of
time is additive and can result in significant attitude errors,

. resulting in greater than anticipated demand on the momentum

management system.

There are internal motions which result in no orientation change.
For instance, in examples 1 and 3, motions which are symmetric
or antisymmetric about the origin in joint space result in no
orientation change, independent of the magnitude of the motions.

In general, the effect of any motion on the system orientation can
be analyzed using the angular momentum expression and Stoke's
theorem. For planar multibody systems, this has been done
previously in [S], [9], and [10]. The equation of interest is given «
as:



.af, of
Aﬂuff(w‘:-?.l‘)dvxd., (9)
where
N
L3

N,
£,=22
LI 4

The integrand of this function can be plotted versus the joint
angles for the parameters used in example 1 (figure 9). For
example 2, a similar result can be obtained where the body axis
rate components are found as a function of the two mass
incremental motions. From the function shown in figure 9, it is
apparent that motions which contain an area with nonzero integral
will result in an orientation change.
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Figure 9: Integrand of Equation 9 versus Joint Angles

For general space manipulator systems, paths of minimum and
maximum disturbance can be analyzed according to an enhanced
disturbance map [11]. This map represents the change in attitude
which is experienced from an incremental change in joint
variables, i.e. the angular momentum expression in differential
form.  Graphical techniques are used with the enhanced
disturbance map to visualize low and high disturbance paths.
Motions are planned to cross zero disturbance lines in regions of
low disturbance effect and are planned to move parallel to zero
disturbance lines in high disturbance areas.

There are system characteristics and internal motion
characteristics that accentuate or attenuate the attitude
disturbance. For multibody systems, the effect is intensified
through manipulating large inertias through large motions. Since
the attitude disturbance effect arises as a consequence of
conservation of angular momentum, similar results hold for any
large space structure. Also, some internal motions can be
planned to minimize the attitude disturbance or to cancel
disturbances due to uncontrollable effects. These types of
planning strategies could be performed using maps similar to
figure 8.

Implications for the Space Station

Models of the complete space station are needed in order to
perform a complete investigation of the internal motions which
may disturb the space station attitude. From the examples here,
multibody spacecraft and large platforms with articulating and
moving clements can have significant attitude changes resulting
from internal motions. The magnitude of the effect will depend
on the mass distributions, the amplitudes of the motions, and the
path the motions take in shape space. The analysis involves
consideration of the overall angular momentum and how it is
exchanged during a motion, keeping overall momentum constant.

Some planning for "controllable” motions like robot and astronaut-
paths can mitigate some of the disturbance effects. These might
be analyzed using equation 9 or the enhanced disturbance map
givenin [11]. The investigation of attitude changes from internal
motions is important to minimize fuel required to operate the
momentum management system on the space station.
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