N93-31565

PROBABILISTIC EVALUATION OF SSME STRUCTURAL COMPONENTS

K.R. Rajagopal, J.F. Newell, and H. Ho Rockwell International Corp. Rocketdyne Division Canoga Park, California 91303

5/3-20

172 12

INTRODUCTION

This paper describes the application of CLS and NESSUS family of computer codes to the probabilistic structural analysis of four SSME space propulsion system components. These components are subjected to environments that are influenced by many random variables. The applications consider a wide breadth of uncertainities encountered in practice, while simultaneously covering a wide area of structural mechnics. This has been done consistant with the primary design requirement for each component. This paper dicusses the probabilistic application studies using finite element models that have been typically used in the past in deterministic analysis studies.

PROBABILISTIC TURBINE BLADE STATIC AND MODAL ANALYSIS

A high pressure fuel turbopump turbine blade was considered in this study (Figure 1). A total of ninteen random variables were considered in the analysis (Table 1) covering a wide range of parameters encountered in a practical production situation. Results of the analysis predicting expected variation in effective stress response at two different locations is shown Figure 2 and Figure 3 along with the sensitivity factors which are different at each loaction. This application demonstrates that large scale probabilistic static analysis is feasible and provides valuable information in the form of sensitivities that can help in designing more durable components. (Reference 1).

A knowledge of the variations in the frequencies of the first few modes of a turbine blade is of importance to avoid resonance conditions. Knowing the distribution of the frequencies and speed ranges it is possible to obtain quantitative probability estimates of interference with engine orders. The first ten variables listed in Table 1 were used in this probabilistic analysis.

The results from a mean value first order and the more accurate advanced mean value first order results are shown in Figure 4 for mode 1. It points out the unsymmetrical nature of the distribution and the capability of the probabilistic tools in predicting it. The computed coefficient of variation of the natural frequencies is consistant with the actual experience. If the frequency range is a criteria for acceptance or rejection of blades this analysis technics can then be used to calculate a

target design point that will reduce the rejection rate (Reference 2).

VIBRATION ANALYSIS OF DUCTS SUBJECTED TO UNCERTAIN LOADS

The high pressure oxidizer turbopump discharge duct is used in this study (Figure 5). The duct has three attach points subjected to both random and sinusoidal vibration, a multisupport excitation problem. The variation in the vibratory loads is attributed to engine system duty cycle operation, engine system hardware variations, and local component variations within the turbopump or combustors. A total of thirty eight random variables were used in this analysis (Table 2). A typical result obtained in the form of a cumulative distribution function at a typical node for bending moment in the y direction is shown in Figure 6. The analysis points to a way of designing structures subjected to a large number of excitation sources without exercizing undue conservatism (Reference 3).

PROBABILISTIC MATERIAL NONLINEAR ANALYSIS OF LOX POST

A main injector element of SSME is used in this study (Figure 7). The response variable of interest is the cyclic strain range (including the elastic and plastic portions of the stress strain curve). This response quantity is one of the primary drivers in determining Low Cycle Fatigue life of the component. The dominant loading on the component is the differential wall temperature across the Lox Post wall of approximately 1000 degrees rankine. It was the only loading considered in this analysis.

The random variables that affect the local temperature field are shown in Table 3. The probabilistic analysis involved a full two duty cycle incremental nonlinear analysis and constructiing a response surface linking effective strain range to random variables. The probabilistic analysis results based on the response surfaces at several locations are shown in Table 4 and the corresponding sensitivity factors in Table 5. The analysis demonstrates a methodology of linking global system variables to local response variables that can eventually be extended to calculate damage, all in a probabilistic domain (Reference 4).

PROBABILISTIC BUCKLING LOAD ANALYSIS

The structural liner in the SSME two duct hot gas manifold design was the subject of this study. The shell is doubly curved with five distinct zones of thicknesses (Figure 8). One of the primary design requirement for the liner is to have adequate margin against buckling failure. Unlike the previous examples cited above this application deals with estimation of the strength variable. As a first step in this process a probabilistic linear buckling analysis was conducted. A more rigorous material and geometric probabilistic collapse load analysis would be more accurate but the computational effort will also be significantly larger.

In this study the thickness in the five zones of the shell were considered as independent random variables but within each zone, the thickness variation was considered to be fully correlated. The probabilistic analysis method used is a response surface approach. The resulting computed cumulative distribution function is shown in Figure 9. Thus knowing the distribution of the buckling strength and the distribution of differential pressure the probability of buckling failure based on the linear eigen value analysis can easily be calculated.

SUMMARY

Application of the probabilistic analysis tools developed in CLS AND PSAM contracts to a select SSME components has been successfully demonstrated. The scope and size of the application prove the viability and usefulness of the tools and methods developed to practical design in terms of designing more durable components.

REFERENCES

1. Newell, J.F., Rajagopal, K.R., and Ho.H, "Probabilistic Structural Analysis of Space Propulsion System Turbine Blade", 30th AIAA Structures, Structural Dynamics and Materials Conference, Mobile, Alabama, April 1989.

2. Southwest Research Institute, University of Arizona, Rocketdyne, and Joao B.Dias, "Probabilistic Structural Analysis For Select Space Propulsion System Components ", 4th Annual Report, October 1988.

3. DebChaudhury, A., Rajagopal.K.R., Ho.H., and Newell.J.F., "A Probabilistic Approach to the Dynamic Analysis of Ducts Subjected to Multibase Harmonic and Random Excitation", 31st AIAA structures, Structural Dynamics, and Materials Conference, LongBeach, California, April 1990.

4. Newell, J.F., Rajagopal, K.R., Ho.H., and Cunniff.J.M., "Probabilistic Structural Analysis of Space Propulsion System Lox Post", 31st AIAA Structures, Structural Dynamics, and Materials Conference, LongBeach, California, April 1990.

5. Southwest Research Institute, University Of Arizona, Rocketdyne, and Joao B.Dias, "Probabilistic Structural Analysis Methods For Select Space Propulsion System Components", 5th Annual Report, October 1989.

TABLE I LIST OF RANDOM VARIABLES USED IN TURBINE BLADE ANALYSIS

	RANDOM VARTARIE		FEM		STANDARD
	RANUUM TARIABLE	TYPE	QUANTITIES	MEAN	DEVIATION
NU	DESCRIPTION		AFFECTED		
			HILLING	-0.087266	0.067544
1	MATERIAL AXIS		MATEDIAL	RADIANS	RADIANS
	ABOUT Z		MAIGNING		1
ĺ		MATERIAL		0.024007	0 067544
2	MATERIAL AXIS		ORTENTALION	-0.034907	0.007044
-	ABOUT Y	AXIS		RAULANS	KAULANS
			ANGLES		
	MATCOIAL AVIC	VADIATIONS		+0.052360	0.067544
3	MATERIAL AND	TANTO TONO		RADIANS	RADIANS
	ABOUT X			18.38E6 PSI	0.4595E6 PSI 1
4	ELASTIC MODULUS			(126 22F9 Pa)	(3 168F9 Pa)
		ELASTIC	E1 16770	(120.2253 .4)	(
Í			ELASIIC	0.005	0 00055
i 5	POISSON'S RATIO	PROPERTY		U.380	0.00302
-			CONSTANTS	18.63E6 PSI	
l e	SUEAD MODULUS	VARIATIONS		(128.45E9 Pa)	0.46575E6 PSI
0	SUEAK HODOLOS				(3.223E9 Pa)
!		MASS	MASS	0.805E-3	0.4938-5
7	MASS DENSITY	MASS	1 11133		
ا		VAKIAILUNS	<u>.</u>		0.14
1 8	GEOMETRIC LEAN			1 0.0	
i	ANGLE ABOUT X				
i		GEOMETRY	I NODAL		
1 0	GEOMETRIC TILT	·	ĺ	0.0	0.14
1 3			COORDINATES	1	DEGREES
ļ	ANGLE ABUUT T	I THEILING		i	i I
I			1	i 0 0	i 0.30 i
0 ו	GFOMETRIC TWIST		ļ		DEGREES I
İ	ANGLE ABOUT Z	l	Ļ		
i 11	MIXTURE RATIO	1	l		
1	I TOULD HYDROGEN/	INDEPENDENT		6.00	0.02
1	I TOUTD OXYGEN	i –	Í		
1	LIQUID UNIGEN	1040	i	Í	1 1
!			1	i 30.00 PSI	5.00 PSI
Į 12	FUEL INLEI	NIDIATIONS		(2 068E5 Pa)	i (.344E5 Pa)
1	PRESSURE	VARIATIONS	PRESSURE	1 (2.00000 / 2/	
1				1 300 00 DET	1 24 00 251
i 13	OXIDIZER INLET	DEPENDENT	I _	1 100.00 451	KO.VU FJI
1	PRESSURE	l I	TEMPERATURE	(6.894E5 Pa)	[[1.19325 Pd]
1		I LOADS ARE	1	1	
	CUEL THEFT		1	38.5* R	0.5° R
1 14	FUEL INLEI	THOPTHE DIADE	ICENTRIENIGAL	(21.39° K)	(0.278° K)
1	IEMPERATURE	LINKDING DIANE	I CHINTLOOME	1 (4)	1
1		1	1		1 339 8
1 19	OXIDIZER INLET	PRESSURE	1	1 107.U" K	1 1.00 N 1
1	TEMPERATURE	1	LOAD	(92.78° K)	(n.12a. v)
1		I TEMPERATURE	1	1	
1	UDED EESTCIENCY	1	i	1 1.00	0.008
Т н	D HELE CLETCIENCE	I AND COCED		i	
		AND SPEED		1 0237	i 0.008
1 1	7 HPFP HEAD	ļ		1 1.0007	
Ì	COEFFICIENT	l		1	
in	B COOLANT SEAL	LOCAL	1	1 1.00	1 0.1
1	LEAKAGE FACTOR	1	1	1	1
-	ECANAGE INGION	6FOMFTRY	İTEMPERATURE	1	1
1			1	i 1.0	0.5
1 19	HUI GAS SEAL				i
1	I FAKAGE FACTOR	FACTORS	L		

Figure 2. CDF For Effective Stress at Location A

Figure 3. CDF For Effective Stress at Location B

Figure 4. CDF For Mode 1 Frequency Using MVFO and ADMVFO

Sequence						
No.	No. Random Variable Description		Mean	CV	Dist. Type	
1)	1) Zone G – X axis, PSD power		222.0	0.73	Log Normal	
2)	Zone G – Y axis, PSD	73.5	0.808	Log Normal		
3)	Zone G – Z axis, PSD	73.5	0.808	Log Normal		
4)	Zone A - X axis, PSD	22.5	0.20	Log Normal		
5)	Zone A – Y axis, PSD		54.0	0.20	Log Normal	
6)	Zone A – Z axis, PSD		69.5	0.2	Log Normal	
7)	Oxidizer Pump Speed		2940.53	0.014	Log Normal	
8)	Fuel Pump Speed		3707.08	0.01	Log Normal	
9)	Damping		0.033	0.15	Normal	
	Zone A Main Injector					
	Oxidizer Pump Sine Amplitu	udes				
10)	X direction 1	N	0.30	0.4	Log Normal	
11)	2	N	0.30	0.15	Log Normal	
12)	4	N	1.5	0.3	Log Normal	
13)	Y direction 1	N	0.60	0.5	Log Normal	
14)	2	N	0.70	0.40	Log Normal	
15)	4	N	2.6	0.3	Log Normal	
16)	Z direction 1	N	0.5	0.45	Log Normal	
17)	2	N	0.70	0.20	Log Normal	
18)	4	N	0.70	0.20	Log Normal	
	Fuel Pump Sine Amplitudes				-	
19)	X Direction 1	N	0.35	0.3	Log Normal	
20)	Y Direction 1	N	0.80	0.35	Log Normal	
21)	21) Z Direction 1N		1.20	0.3	Log Normal	
	Zone G – Oxidizer Turbopump					
	Oxidizer Pump Sine Amplitudes					
22)	X Direction 1	N	1.35	1.0	Log Normal	
23)	2.	N	1.50	0.5	Log Normal	
24)	3	N	1.10	0.45	Log Normal	
25)	4	N	11.0	0.25	Log Normal	
26, 27)	Y&Z Direction 11	N	1.9	0.9	Log Normal	
28, 29)	21	N	1.6	0.6	Log Normal	
30, 31)	31	N	0.75	0.3	Log Normal	
32, 33)	4]	N	5.5	0.6	Log Normal	
Fuel Pump Sine Amplitudes						
34)	X Direction 11	N	0.65	0.35	Log Normal	
35, 36)	Y&Z Direction 11	N	0.45	0.4	Log Normal	
37, 38)	Y&Z Direction 21	V	0.45	0.4	Log Normal	
Note: 1) Power units are in g^2						
2) Pump speed units are in radians/second						
3) Sinusoidal amplitude units are in g						

Table 2. HPOTP Discharge Duct AnalysisRandom Variable Statistics

.

.

FIGURE 5. DUCT MODEL WITH ELBOWS, VALVES, ATTACHMENTS AND SECONDARY LINES.

FIGURE 7. LOX POST AND ITS AXISYMMETRIC FINITE ELEMENT MODEL.

Random Variable	Mean	Standard Deviation	Distribution	
Material yield stress (ksi)	175.0	8.75	Normal	
Hot-gas temperature (R)	1654.70	26.6407	Normai	
Coolant temperature (R)	191.643	4.21019	Normal	
Hot-gas flowrate (lbm/sec)	167.249	1.0928	Normal	
Coolant flowrate (lbm/sec)	929.918	4.31211	Normal	
Mixture ratio	0.948012	0.0184211	Normal	
Heat-shield-gap factor	0.47	0.235	Lognormal	
Hot-gas film coefficient	1.0	0.1	Normal	
Coolant film coefficient	1.0	0.08	Normal	

TABLE 3 RANDOM VARIABLES USED IN LOX-POST ANALYSIS

FOR THE LOX POST							
Node	Median	Mean	Standard Deviation	Coefficient of Variation			
56	0 004143	0.004821	0.0002613	0.054			
20 70	0.004145	0.008360	0.0002275	0.027			
18	0.000757	0.004175	0.0001661	0.040			
84	0.002114	0.004757	0.0001454	0.031			
117	0.002990	0.004757	0.0001473	0.038			
122	0.001180		0 0001430	0.028			
175	0.002949		0.00001.00	0.027			
181	0.002290	0.002401	0.00000400	1			

TABLE 4 SUMMARY STATISTICS FOR EFFECTIVE STRAIN RANGE

TABLE 5 SENSITIVITY* FACTORS FOR THE EFFECTIVE STRAIN RANGE FOR THE LOX POST

Durlam Variable	Node 56	Node 78	Node 84	Node 117	Node 122	Node 175	Node 181
Kandom Variable	11000 30	1.000 10	0 771	0.802	0 793	0.860	0.786
Hot-gas temperature	0.455	0.796	0.//1	0.002	0.725	0.010	0 022
Coolant temperature	0.014	0.026	0.024	0.023	0.023	0.019	0.022
	0.062	0.075	0.111	0.070	0.074	0.045	0.108
Hot-gas nowrate	0.002	0.075	0.007	0.002	0.002	0.001	0.003
Coolant flowrate	0.000	0.003	0.002	0.002	0.024	0.028	0.031
Mixture ratio	0.022	0.034	0.034	0.035	0.034	0.020	0.051
Shield and factor	0.793	0.115	0.071	0.028	0.003	0.011	0.017
Silicio-gap factor	0.200	0.587	0.620	0.590	0.603	0.507	0.605
Hot-gas film coefficient	0.399	0.507	0.020	0.024	0.026	0.005	0.052
Coolant film coefficient	0.002	0.031	0.042	0.024	0.020	0.005	
	1	1	1	1	1	and the second se	

*Range between 0 and 1. Larger values indicate a greater influence of the random variable on the response.

