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Numerous components operating in reusable space propulsion systems such as the

Space Shuttle Main Engine (SSME) are exposed to high pressure gaseous hydrogen

environments. Shown (Figure l.O) is the SSME Powerhead. Flow areas and passages

in the fuel turbopump, fuel and oxidizer preburners, main combustion chamber and

injector assembly contain high pressure hydrogen either high in purity or as

hydrogen rich steam. As can be seen, this includes many components such as turbine

disks and blades, impellers, housings, ducts, etc. Accurate constitutive and

damage material models applicable to high pressure hydrogen environments are
therefore needed for engine design and analysis. Existing constitutive and cyclic

crack initiation models have been evaluated only for conditions of oxidizing

environments. The purpose of this effort (Figure 2.0) is to evaluate these models

for applicability to high pressure hydrogen environments.

Material behavior is known to be significantly affected by high pressure hydrogen

environments (Figure 3.0). For the materials typically employed in rocket engine

applications, hydrogen environment embrittlement is most severe near room

temperature (Ref. l). Tensile ductility and notched bar ultimate tensile strength

reductions are typically reduced by the hydrogen environment. The room temperature
embrittlement effects increase with increasing pressure (Ref. 2). Although the

room temperature tensile properties of the superalloys are relatively insensitive
to strain rate effects, hydrogen environment embrittlement is strain rate

sensitive. Low cycle fatigue lives, especially crack initiation lives, are also

reduced by the hydrogen environment (Ref. 3). Thermal activation and time

dependent deformation (creep) also become important as temperature increases

(Ref. 4). Indications are that the presence of hydrogen can accelerate creep

effects by enhancing dislocation mobility (Ref. 5).

The program flow chart (Figure 4.0) is shown for each material. Constitutive

modeling effort precedes life modeling. Therefore constitutive test results can be

utilized to provide a preliminary projection of crack initiation results, ductility

normalized, (Ref. 6) as well as identify target test values for c, E, E,

etc. During life testing, specimen constitutive response will be measured to

provide an added database for constitutive model verification including any
modifications. The experimental phase will begin with the selected isotropic

material, followed by the anisotropic material. Both helium and hydrogen testing

will be performed to obtain contrasting inert and aggressive environment test
results.

Alloy and material model selections as well as test conditions have been defined.

Currently, existing data is being surveyed and compiled to provide initial

estimates for model constants and to guide test details. Inconel 718 was selected

as the isotropic material due to its extensive usage on the SSME, its

susceptibility to Hydrogen Environment Embrittlement (HEE) and the existence of

service-related hydrogen assisted cracking. PWA 1480 was selected as the single

crystal material, due mainly to its development for potential usage on the SSME as

a blade material and its known susceptibility to HEE. The nominal properties of
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these two materials are presented (Figure 5.0) along with the test specimen
geometry (Figure 6.0). The maximumtest temperatures and pressures (Figure 7.0)
correspond to maximumusage on the SSME. Due to the knownenhancedHEEeffects at
room temperature ambient temperature testing shall also be performed.

Recent emphasis on constitutive model development has concentrated on unified
viscoplastic models wherein plastic, creep and relaxation strains are treated as
one strain component, the inelastic strain. Constitutive model characterization
tests (Figure 8.0) will be carried out at both room and elevated temperature in
helium and hydrogen environments. The Walker model was chosen for the isotropic
material, Inconel 718 and Walker's anisotropic model was selected for PWA1480
(Figure 9.0, Refs. 7, 8, 9). A modification based on Valanis' material time scale
has been developed in-house to extend these rate dependent models into the rate
independent (low temperature) regime (Figure lO.O).

Recent crack initiation model development has emphasized life prediction in
oxidizing environments under such loading complexities as thermomechanical fatigue,
cyclic creep, multiaxial and variable amplitude loading. For assessment in a
hydrogen environment, the total strain version of strain range partitioning
(TS-SRP) (Refs. lO, ll) was selected for constant amplitude loading conditions.
Isothermal testing will be performed to determine the four basic inelastic strain-
range life relations, PP, PC, CP, CC as well as the elastic strain-range life
relation (Figure ll.O). Due to the preponderance of thermal gradient driven strain
cycling of SSMEhardware, the most important non-isothermal loop types to consider
are out-of-phase PP and PC. To better simulate the impact of thermal mechanical
fatigue (TMF), out-of-phase bithermal testing will be performed in PP cycling
(Figure 12.0). Reasonable estimates of strain cycle history relative to TMFcan be
obtained where free thermal expansion strains can be easily subtracted From the
total strain.

Cumulative damagewill be assessed via the advanced NASA-developedmodels, Damage
Curve Approach (Figure 13.0) and Double Linear DamageRule (Ref. 12). The nature
of these models is to accumulate damagenonlinearly with high-low load sequences
being more damaging than low-high. Isothermal tests will be run to provide
baseline data and a bithermal LCFtest followed by HCFis planned as a verification
experiment.

The experimental program as proposed shall include uniaxial monotonic, cyclic (both
isothermal and bithermal), creep and relaxation tests to investigate the
applicability of these chosen models and to provide a basis for necessary
modifications (Figure 14) arising from model deficiencies should they occur.

*Work performed under NASAcontract NAS3-26130
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