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The wrought cobalt-base alloy, Haynes 188 is used in high
temperature, high thermal stress aerospace components. Some
applications include combustor liners for gas turbine engines and
liquid oxygen carrying tubes within the Space Shuttle Main Engine.
Typically, during the engine start up and shutdown transients,
these components are subjected to multiaxial states of stress.
Fatigue 1ife estimation under multiaxial stress states is necessary
for safe and reliable operation of these components. In order to
develop elevated temperature multiaxial fatigue life prediction
models, a multiaxial fatigue data base is required. To satisfy
this need, an elevated temperature experimental program on Haynes
188 which consists of axial, torsional, inphase and out-of-phase
axial-torsional fatigue experiments has been designed. As a part
of this experimental program, elevated temperature axial and
torsional fatigue experiments were conducted under strain-control
on thin-wall tubular specimens of Haynes 188 in air.

The tensile ductility of Haynes 188 exhibits a minimum around
760 °C [1]. Since ductility governs low-cycle fatigue behavior,
the axial and torsional fatigue experiments were conducted at 760
*C. The thin-wall tubular specimens were heated to the test
temperature with induction heating. The thermal gradient in the
gage section of the specimen was kept to within 1% of the test
temperature. Axial and torsional strains were measured by a
commercially available high temperature extensometer. A data
acquisition and control program developed specifically for axial-
torsional fatique tests was used to conduct the axial and torsional
tests on a servo-hydraulic testing machine [2]. Test data were
acquired at logarithmic intervals by the computer. Failure of the
specimen was defined as a 10% drop in the peak axial or torsional
loads referenced to a previously recorded cycle. . '

The axial and torsional fatigque life data were used to
determine the elastic, plastic and total life relationships for
Haynes 188 at 760 °'C. Cyclic axial and shear engineering stress-
engineering strain curves were also determined from the data
acquired by the computer. The fatigue lives obtained from the
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torsional fatigue expériments were compared against the predictions
of three multiaxial fatigue life parameters. The following
parameters were evaluated for this material: 1) von Mises
Equivalent Strainrange, 2) Multiaxiality factor of Manson-Halford
(3], and 3) Modified Smith-Watson-Topper (4]. Constants for the
three parameters were derived from the axial fatigue life data
generated also with thin-wall tubular specimens. The Fatemi-Socie
parameter [5] which represents both the axial and torsional fatigue
data by a single life relation was also evaluated for its
applicability to Haynes 188 at 760 °C. The predictive and
correlative capabilities of all parameters are presented.
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Tensile Elongation Versus Temperature

nes 188
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Cyclic Stress Amplitude Versus Cyclic Strain Amplitude for
Haynes 188 at 760 °C
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Cyclic Shear Stress Versus Cyclic Shear Strain for
Haynes 188 at 760 °C
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Axial Strainrange Versus Cycles to Failure for Axial Tests on

Haynes 188 at 760 °C
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Shear Strainrange Versus Cycles to Failure for
Haynes 188 at 760 °C
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Von Mises Equivalent Strainrange Versus Cycles to Failure
for Haynes 188 at 760 °C
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Manson-Halford Parameter Versus Cycles to Failure for
Haynes 188 at 760 °C
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Fatemi-Socie Parameter Versus Reversals to Failure
for Haynes 188 at 760 °C
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Modified Smith-Watson-Topper Parameter Versus Reversals
to Failure for Haynes 188 at 760 °C
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Comparison of Fatigue Life Models
Torsional Fatiguc Data of Haynes 188 at 760 °C
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