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The wrought cobalt-base alloy, Haynes 188 is used in high

temperature, high thermal stress aerospace components. Some

applications include combustor liners for gas turbine engines and

liquid oxygen carrying tubes within the Space Shuttle Main Engine.

Typically, during the engine start up and shutdown transients,

these components are subjected to multiaxial states of stress.

Fatigue life estimation under multiaxial stress states is necessary

for safe and reliable operation of these components. In order to

develop elevated temperature multiaxial fatigue life prediction

models, a multiaxial fatigue data base is required. To satisfy

this need, an elevated temperature experimental program on Haynes

188 which consists of axial, torsional, inphase and out-of-phase

axial-torsional fatigue experiments has been designed. As a part

of this experimental program, elevated temperature axial and

torsional fatigue experiments were conducted under strain-control

on thin-wall tubular specimens of Haynes 188 in air.

The tensile ductility of Haynes 188 exhibits a minimum around

760 °C [i]. Since ductility governs low-cycle fatigue behavior,

the axial and torsional fatigue experiments were conducted at 760

"C. The thin-wall tubular specimens were heated to the test
temperature with induction heating. The thermal gradient in the

gage section of the specimen was kept to within 1% of the test

temperature. Axial and torsional strains were measured by a

commercially available high temperature extensometer. A data

acquisition and control program developed specifically for axial-

torsional fatigue tests was used to conduct the axial and torsional

tests on a servo-hydraulic testing machine [2]. Test data were

acquired at logarithmic intervals by the computer. Failure of the

specimen was defined as a 10% drop in the peak axial or torsional

loads referenced to a previously recorded cycle ....

The axial and torsional fatigue life data were used to

determine the elastic, plastic and total life relationships for

Haynes 188 at 760 "C. Cyclic axial and shear engineering stress-

engineering strain curves were also determined from the data

acquired by the computer. The fatigue lives obtained from the
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t_rsionai_fatigue e_iments were compared against the predictions

of three multiaxial fatigue life parameters. The following

parameters were evaluated for this material: i) yon Mines

Equivalent Strainrange, 2) Multiaxiality factor of Manson-Halford

[3], and 3) Modified Smith-Watson-Topper axia[4]--iConstants for the
three parameters were derived from the fatigue life data

generated also with thin-wall tubular specimens. The Fatemi-Socie

parameter [5] which represents both the axial and torsional fatigue

data by a single life relation was also evaluated for its

applicability to Haynes 188 at 760 "C. The predictive and

correlative capabilities of all parameters are presented.
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Tensile Elongation Versus Temperature

Haynes 188
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Cyclic Stress Amplitude Versus Cyclic Strain Amplitude for
Haynes t88 at 760 °C
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Cyclic Shear Stress Versus Cyclic Shear Strain lbr
Haynes 188 at 760 °C
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Axial Strainrange Versus Cycles to Failure for Axial Tests on

Haynes 188 at 760 °C
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Shear Strainrange Versus Cycles to Failure for

Haynes 188 at 760 °C
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Von Mises Equivalent Strainrange Versus Cycles to Failure

for Haynes 188 at 760 °C
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Manson-Halford Parameter Versus Cycles to Failure for

Haynes 188 at 760 °C
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Fatemi-Socie Parameter Versus Reversals to Failure

for Haynes 188 at 760 °C
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Modified Smith-Watson-Topper Parameter Versus Reversals
to Failure for Haynes 188 at 760 °C
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Comparison of Fatigue Life Models
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