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Abstract

This paper describes and analyzes a paradigm for scheduling com-

putations on a network of multiprocessors using large-grain dataj_ow

scheduling at run time. The computations to be scheduled must fol-

low a static flow graph, while the schedule itself will be dynamic (i.e.,
determined at run time). Many applications characterized by static

flow exist, and they include real-time control and digital signal process-

ing. With the advent of computer-aided software engineering (CASE)
tools for capturing software designs in dataflow-like structures, macro-

dataflow scheduling becomes increasingly attractive, if not necessary.
For parallel implementations, using the macro-data]qow method allows

the scheduling to be insulated from the application designer and en-

ables the maximum utilization of available resources. Further, by allow-

ing multitasking, processor utilizations can approach 100 percent while

they maintain maximum speedup. Extensive simulation studies are per-
formed on _-, 8-, and 16-processor architectures that reflect the effects

of communication delays, scheduling delays, algorithm class, and mul-
titasking on performance and speedup gains.

1. Introduction

1.1. Background

Dataflow methods have been criticized because of

extraordinary schcduling and communication over-

head, difficulties in specifying (or converting to) low-
level implementations, memory management obsta-

cles, synchronization issues, and other aspects of

hardware and software complexity (refs. 1 to 7).
These problems can be significant drawbacks when

the dataflow is implemented at the instruction level

(refs. 4, 5, 8, and 9). By spreading the overhead
of the dataflow over computations on the order of

hundreds or thousands of instructions or more, the

dataflow complexity (both scheduling and commu-

nication) is no longer a limiting factor for perfor-
mance. We refer to dataflow at this level as macro-

dataflow or large-grain datafiow (refs. 1, 3, 4, 6, 7,
10, and 11). -In addition to the benefit of reduc-

ing the effect of overhead, macro-dataflow provides
a more natural means to describe applications aimed

at both parallel and serial implementations. Tile use

of computer-aided software engineering (CASE) tools

(refs. 12 to 14) for software design has become pop-

ular as a inechanism for designing software systems
according to a structured method. This method en-

tails creating fimctional decompositions in tlle form

of hierarchical levels of (tataflow diagrams. Hence,

as designers begin to use these tools exclusively, it

becomes desirable for nmltiproccssing plath)rms to
effectively and efficiently distribute the application
onto the available resources. Because of the hierar-

chical dataflow diagram structure, scheduling using

macro-dataflow techniques becomes straightforward.

One drawback of dataflow-based systems in the

past has been the problem of converting software
designs and implementations to a dataflow structure.

In fact, tools have been developed to automatically
generate dataflow diagrams from source code (refs. 7,

10, and 15). For example, in reference 7, exten-

sions to C++ permit automatic generation of the
dataflow graphs at run time (with additional over-

head). Therefore, the question remains, will the de-

signer, compiler, or run-time environment create a

more effective functional decomposition that can be
used to exploit parallelism? Wc assume that if the

programmer provides the breakdown as a natural

consequence of the design method, wc should expect

a more efficient use of resources (refs. 1 and 3).

The primary idea of dataflow scheduling (not
computation) is to put all jobs that arc ready to be

scheduled in an execution queue (EQ), and when a

processor becomes available to execute these jobs,
they arc removed from the queue and sent to the

available processor. As processors finish jobs, they
notify the scheduler that they arc available to per-

form subsequent work. Of course, as with any queu-

ing system, a queuing discipline nmst be chosen to

determine the order in which jobs in the queue arc
dispersed (e.g., whether the order is "'first-come, first-

served," "last-come, first-served," or priority based).

Most Inicro-dataflow EQ's consist of an instruc-

tion and some context information (i.e., a tag). Tags
allow dynamic schedules. A macro-dataflow sched-

uler consists of a very similar structure, but a sub-

routine location and the size are included as opposed



to a singleinstruction. This methodassumesthat
all processorshavea localcopyof the application.
If localmemorysizeis a problem,otherimplemen-
tationscanbeused,but becausethis is a high-level
analysis,wewill leavethedetailsof the implementa-
tion to subsequentpapers.Thisschedulingparadigm
makestheamountof workfor controloverheadneg-
ligiblewhencomparedwith theamountof workcon-
trolled. References11,16,and17describeanexam-
ple of an implementationof sucha paradigmusing
markedPetri-nets.

Anotherdrawbackof eitheramicro-or a macro-
dataflowis that enoughparallelizationmust be
presentin acomputationtokeeptheEQfrombecom-
ing emptysothat the processorsremainbusyat all
times.Forasingleuserona multiprocessornetwork,
it isadifficulttaskto keepall theprocessorsbusybe-
cause most computations involve a significant serial

fraction (i.e., a percentage of the computations that
must be done serially). Introducing multitasking to

the macro-dataflow environment provides completely

independent threads of work that may be done in

parallel. A macro-dataflow system that runs several
tasks may be viewed as a system running a standard

dataflow task, which has several times the ability to

be parallelized. Therefore, by adding tasks to the
system, we can increase the percentage of the total

work that can be parallelized (i.e., the parallel frac-

tion). This addition of tasks makes it less likely that

the EQ will become empty.

Further, another problem can occur using multi-

tasking when some tasks have more parallelization

than do others. If one task has a larger number of
processes which can be scheduled in parallel, these

processes tend to dominate the EQ, while tasks that

have a smaller number of processes which can be par-

allelized are left waiting in a long line to be scheduled.
To avoid this scenario, the scheduler must allocate

processors to tasks with a probability that is at least

proportional to the amount of inherent parallelism in
the tasks to be executed.

One final point is that the statistic of 100-percent

processor utilization can be misleading. Although

a processor may have work to do at all times,

some parts of this workload will involve waiting for

input/output (I/O) operations to be completed. One
solution to this problem is to schedule more than

one process to each processor (i.e., called multi-

programming). The processor then can perform a

context switch, during an I/O operation, to a sub-

sequent job. When the I/O operation is completed,

the processor switches back to the original job. Al-
though multiprogramming adds a small amount of

overhead at the local processor (i.e., switch time), it

is apparent that the effective utilization of the pro-
cessor will increase.

1.2. Problem Statement

The purpose of this paper is threefold: (1) to con-
duct a performance analysis of the macro-dataflow

scheduling method just described using common

workload structures as benchmarks, (2) to show how

multitasking can be used to increase processor uti-
lization, and (3) to describe how CASE tools natu-

rally lend themselves to this type of scheduling.

Specifically, this paper discusses three suites of

experiments. The first set uses the fork-join problem

to determine the effects of problem size on achiev-
able speedup and processor utilization. Speedup is

defined as the ratio of the latency on a single pro-

cessor system to the latency on a multiprocessor sys-
tem. Processor utilization is the fraction of time that

a processor is busy doing useful work. The second set
of experiments also uses the fork-join problem to re-

veal the effects of adding a multitasking capability to

the scheduler. Finally, the third set of experiments
reveals the effect of various scheduling and communi-

cation overheads on the performance of the scheduler

for three classes of problems: the fork-join, the binary

tree, and the diamond-shaped graph.

Section 2 describes the approach used to achieve

the prescribed goals. Section 3 describes in detail
the experiments performed. Section 4 presents the

simulation results obtained and the analysis of them.

Finally, section 5 presents the conclusions that can
be drawn.

2. Approach

2.1. Macro-Dataflow Scheduler Model

From a computational view, macro-dataflow is

purely data driven (ref. 7). However, viewed as

a scheduling mechanism, macro-dataflow is driven

both by the data and by the processor availability.

By forcing processor availability to drive the sched-

ule, we can optimize both speedup and processor
utilization.

For this analysis, the model that we evaluate con-

sists of two "first-come, first-served" queues that are

responsible for distributing work across an ideal net-

work with no communication delays. (However, in
section 4.4, we will show the effect of adding com-

munication delays.) The first queue contains those

jobs (processes) which are ready to be executed,
and the second queue contains identifiers represent-

ing those processors that are available to do work.
Both queues are updated as the processors complete

the jobs and become idle. As long as neither queue

becomes empty, the network operates at 100-percent
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efficiency.Asdescribedearlier,thisapproachmodels
amultitaskingcapabilityandreducestheprobability
of havinganemptyqueue.

Fora moreaccuratemodel,wewill studytheef-
fectsof communicationandschedulingdelaysonsys-
temperformance.This analysiswill aid usto eval-
uatealternatemethodsof schedulingwork, routing
messages,andimplementingqueues.

Asstatedinsection1.1,I/O needsto beaddressed
forfurtherutilizationimprovement.Severalindepen-
dentjobscouldbegivento a singleprocessorand,in
effect,multiprogrammedto keepall processorsop-
eratingat full speed.The modelfor I/O and the
techniquesto multiprogramtaskshavenotyet been
created.

A high-levelsystemdesignandsimulationenvi-
ronmentwasusedto effectivelyanalyzetheschedul-
ingparadigm.Thisenvironmentwasprovidedbythe
ArchitectureDesignandAssessmentSystem(ADAS)
toolset(ref.18).Thistoolsetenablesahigh-levelde-
scriptionofboththearchitectureandtheapplication
workloads,the discrete-eventsimulationof system
activity,andthe acquisitionof performance-related
datato facilitatetheanalysis.

2.2. Algorithm Description

To evaluate a wide range of applications, a

concise method of workload description was neces-

sary. Because work must be partitioned at the sub-

routine (process) level for a macro-dataflow sched-

uling paradigm, a simple dataflow diagram suffices

(e.g., as shown in fig. 1). This diagram represents
the processes (P0, ..., P6) to be executed and the

order in which they must be executed. Other dia-
grams can be generated to represent specific prob-

lems (e.g., fork-join or binary tree). These dataflow

diagrams then can be converted to an ASCII repre-

sentation with the following format (in which -1 is

a terminator):

Number-of-tasks: 1

Number-of-processes: 7
PO-duration: 0.574

PO-sends-to: I 2 3 -i

Pl-duration: 0.983

Pl-sends-to: 4 -I

P2-duration: 0.317

P2-sends-to: 4 -I

P3-duration: 4.583

P3-sends-to: 5 -I

P4-duration: 2.441

P4-sends-to: 6 -i

P5-duration: 7.092

P5-sends-to: 6 -1

P6-duration: 0.139

P6-sends-to: -1

This conversion is done for the set of tasks which

comprises a single workload. The resulting ASCII file

contains both precedence information and complex-

ity approximations for each process within each task.

The code that is responsible for simulating the activ-

ity of the system reads this file at startup to become
aware of the work that it must perform.

The workload description (either the dataflow
diagrams or the ASCII file representation) can be

generated from the source code itself or as mentioned

in section 1, from a CASE tool specification of the

application. For simulation purposes, approximate

process durations can be calculated from either a

single-processor implementation or the instruction
counts along with the benchmark instruction times.

Because this is a high-level analysis of the paradigm,

precision (or accuracy) is not a real issue at this

point. In fact, by varying process durations, we can
show the sensitivity of the overall performance to

different granularities.

I

\J //

L/
I Task 0

Figure 1. Sample dataflow diagram for single task.
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t Scheduler
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Figure 2. ADAS model of macro-dataflow scheduler (with eight processors).
=L =

2.3. ADAS Architecture Model

As stated, the qucuc opcration will be simulated

using thc ADAS toolset. This toolset was first dcvel-

oped at the Research Triangle Institute (RTI) and is

now marketed by Cadrc Tcclmologics, Incorporated.

Thc vcrsion used for this analysis runs on a Sun work

station. The ADAS toolsct allows a system designer
to evaluate alternative architectures with respcct to

system performance and behavior.

An ADAS model consists of nodes, arcs, and to-

kens. Tokens are abstract cntitics (which can contain

data) which travcrse through a dataflow diagram and
stimulate activity during the simulation. As tokcns

pass through nodes in the dataflow diagram, some

fimction is performed, and thc token is either ab-

sorbed or sent out along onc of the arcs emanating
from the node.

This ADAS toolsct requires a dataflow graph
model that represents the operation of the macro-
dataflow scheduler and its interaction with the nmlti-

proccssor that it controls (fig. 2). To allow behav-

ioral sinmlation of an ADAS model, a functional

description of each node in the graph is required.

This description can be written in either the C or

Ada languages to represent how data (tokens) prop-
agate throughout the model. Once this code is writ-

ten and its behavior has been verified, simulation of

the model can be performed. The following section
describes the functionality of each node in the model.

2.3.1. SpawnProcess node. At initialization,

the code associated with thc SpawnProcess node
reads thc ASCII file that reprcsents the work to bc

done an(] Sends the initial process of cvcry task to the

schcdulcr. Thcsc tokcns contain a task identifier, a

proccss identifier, and thc proccss duration. Aftcr
initialization, this node waits for input from the

proccssors to determine when a process has been

completed. Once a process is completed, this node

sends any subsequent proccsses that only dcpcnd on
that. process to the scheduler. This scenario continues

until all tasks have been completed, at which time no

outputs are generated and the simulation terminates.

2.3.2. Scheduler node. The scheduler node

contains two queues. The JobList queue contains
processes, sent from the SpawnProcess node, which

are ready to bc scheduled. The PEready queue

contains the processor identifiers of all processors

that are idle at the current time. (Initially, all

4



processorsareidle.) Aslongasbothqueuesarenot
empty,a processis removedfromtheJobListqueue
andsentto theprocessorthat isidentifiedat thetop
of thePEreadyqueue.

2.3.3. Delay nodes. The delay nodes simu-

late the communication delay associated with trans-

mitting a process description to a processor. These
nodes simply hold the processes for an amount of

time that is proportional to the size of the process

and the communication bandwidth. By varying the

communication bandwidth attribute, we can deter-
mine the effect of alternate interprocessor connection

topologies and routing methods on performance.

2.3.4. Processor nodes. The processor nodes

simulate the delay associated with actually executing
the process. These nodes hold the processor for an

amount of time that is proportional to the duration

of the process which is specified in the token. The

duration value has been calculated for a specific

processor. To observe the effect of selecting different
processors, we can scale this number by a factor

that represents the change in speed of the alternate

processor. After completing the execution of the
process, the SpawnProcess node is notified. Also,

the PEready queue in the scheduler node is updated

to reflect a new idle processor.

2.4. Simulation and Analysis

After describing the functionality of the nodes us-

ing the C language, the CSIM facility of the ADAS
toolset can be used to simulate the execution of the

scheduler-multiprocessor model. Input variables for

each simulation are both workload related (e.g., type,

size, granularity, structure, and iteration count) and

architecture related (e.g., scheduling overhead, in-
terprocessor communication overhead, and processor

throughput). During and after the simulations, the

following indices are recorded: task latencies, proces-

sor utilizations, network (e.g., bus) utilization, aver-
age queue sizes, and speedup gains.

During the analysis phase, the results of the sim-
ulation studies were plotted to show the effects of

changes in input parameters as well as in work-

load type. The specific phenomena that we wish
to observe include the effect of communication and

scheduling delays on speedup, the maximum speedup

achievable using this large-grain dataflow scheduling
paradigm, the processor utilization as a functidn of

algorithm size, and the benefit of adding multitasking

and multiprogramming capabilities to the scheduler.

Experiments

For the experiments performed to date, threc

classes of workloads have been used: fork-join algo-

rithms (i.e., problems), binary tree algorithms, and

diamond-shaped algorithms (figs. 3 to 5). These
applications are diverse in structure and, hence,

place different stresses on the scheduling process.

Also, they are widely acccpted benchmarks for multi-

processing systems because they represent a large

segment of computationally intensive problem sets.

The first experiments use the fork-join class of

algorithms (e.g., fig. 3) to show the effects of problem

size and multitasking. Process durations are chosen

from a normal distribution. The fork and the join

(top and bottom, respectively) process durations
have a mean of 0.5 and a standard deviation of

20 percent; the durations of the processes between

the fork and the join have a mean of 4.0 and a

standard deviation of 25 percent. Communication

and scheduling delays are set to zero. The workload
is executed for 100 iterations, and the results are

averaged.

I

Figure 3. Fork-join algorithm example (with width of four
processes).

The subsequent experiments use all three work-

load classes (fork-join, binary tree, and diamond-

shaped) to show the effect of scheduling and commu-
nication overhead. Fork-join process durations are

chosen in the same manner as just described. Process

5



Figure4.Binarytreealgorithmexample.

6

I I

..... I

I

Figure 5. Diamond-shaped algorithm example.

durations for the binary tree and the diamond-

shaped algorithms are chosen from a normal distri-
bution with a mean of 1.0 and a standard devia-

tion of 10 percent. Communication and scheduling

overheads range from 0 to 50 percent of the dura-

tion of the process being communicated or scheduled.
Again, the workloads are executed for I00 iterations,

and the results are averaged.

4. Simulation, Results, and Analysis

4.1. Problem Size Effects for Fork-Join

Class of Problems

The initial suite of experiments was aimed at

studying the effect of problem size on speedup or

task latency for a given multiprocessor architecture.
For these experiments, we assume that no scheduling

or Communication overhead exists. Figure 6 shows

the results of experiments that were run using the

fork-join algorithm with increasing width (fan-out).
The fork-join algorithm is used because it represents

the most general class of problems encountered in

parallel applications.
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Figure 6. Speedup gains for fork-join algorithm.

The four curves in figure 6 represent speedup

gains for three multiprocessor architectures as well

as for the optimal case in which one has an infinite

number of parallel processors. Maximum speedup

is calculated using Amdahl's Law (ref. 19), which
states that the most speedup achievable depends on

the amount of inherent parallelism in the application.

The maximum speedup Smax is calculated using

T8
sm. = -- (1)

Tcp

where Ts is the time to execute the work in serial

(sequentially) and Tcp is the time to execute the
critical path. The critical path in this sense is

the path through the dataflow graph that takes the

longest to execute. Note that there is another factor

constraining speedup which is equal to the number
of processing elements in the architecture (i.e., for a

16-processor system, we can never exceed a speedup

of 16). We denote this maximum speedup Spmax.

For the four-processor architecture, speedup re-

mains close to 3.5 as the parallel fraction grows. (Re-

member, the parallel fraction is that percentage of

the problem which can be done in parallel.) Now, we

can introduce another measure E, which will cap-
ture the efficiency of the scheduling paradigm to uti-

lize the available processing power. The term E is
defined as

S
E = -- (2)

Spmax

where S is the speedup observed during the simu-

lation. For example, in figure 7, the scheduling ef-
ficiency E of a single fork-join task with a width of

32 processes will be 0.875, 0.854, and 0.762 for the 4-,

8-, and 16-processor architectures, respectively. Ob-

viously, by increasing the amount of parallelism in

the load, we can increase these efficiencies. However,

the important observation here is that regardless of

the load size, the efficiency of the scheduler will be

high as long as the width of the fork is at least as
large as the number of processors (fig. 7). Further,

by implementing multitasking, we will show in the

next section that even for small tasks, high single-

task efficiency can be achieved.

.9

.8

i
7" /

"=' / / o .p,ocessors
•4E-" _ / • 8processors

0 5 10 15 20 25 30 35

Task width

Figure 7. Efficiency of scheduler for fork-join algorithm.

4.2. Multitasking for Fork-Join Class of
Problems

Next, we observe the effect of implementing multi-
tasking into our scheduling paradigm. Again, we
assume the ideal situation in which we have no
schedule or communication overheads and we can

generate speedup figures that are annotated with the

multitasking data (figs. 8, 9, and 10). In addition, all
tasks that make up a multitask job have equal width.

The data from the four-processor configuration

(fig. 8) show us that we can maintain a near-constant

speedup for a given number of tasks, regardless of
how much inherent parallelism exists within each

task, as long as the intratask parallelism is approx-

imately equivalent across the tasks. For example,

the curve representing the speedup for two tasks in

figure 8 flattens after an intratask width of four pro-

cesses. The speedup remains at or near 2.0. While
the per-task efficiency is only 50 percent, the pro-

cessors are doing twice as much work compared with



thesingle-taskschedulingthat hasa 78-percent effi-

ciency. This implementation is not necessarily good.
Actually, by putting the two tasks together (concate-

nation) and running them as a single larger task,

we could get the 78-percent efficiency (S = 3.1) be-

With 16 processors, we can maintain speedup with
a larger number of tasks as well as with tasks of in-

creased complexity.

12 r

causc the speedup remains almost constant as the t • Maximum speedup .•

task complexity increases. 10_ O 1 task
1 • 2 tasks

The real payoff for implementing a multitasking [ 13 4 tasks

scheduler becomes evident when there is not suffi- 8 t • 0tasks
cient parallelism in a single task to effectively use the =_ |

processing power that is available. When this Occurs, _ 6 I" .if

we can increase the parallel fraction by permitting _ _ t7"

multiple tasks to run concurrently. For example, fig- 4_ /_ A

ure 8 shows that when the intratask parallelism is | _ -

low (with a width of two processes), we achieve al- 2 [
most the same speedup whether we execute one or r _-[] _' []

two tasks (S = 1.630 and 1.615, respectively). This [ _ -" -"
speedup is also very near the maximum speedup that 0 5 10 1'5 20
is achievable (Smax = 1.640). Task width

t 2 p _--_] Figure 9. Multitasking speedup gains for fork-join algorithm
[ • Maximum speedup _ / (with eight processors).

10 / 0 1 task / /
r • 2tasks _ / 12

[ [] 4 tasks _ / )=
81" • 8 tasks _ / • Maximumspeedup /

o. I. ./ / 10 0 1 task / /-
/ / / • 2 tasks / /

6 I" _ / [] 4 tasks / /

¢'_J", t _ / 8 &§tasks //

2 6

I- , //
0 5 10 I'5 20 4 _ []

Task width

Figure 8. Multitasking speedup gains for fork-join algorithm 2 _ A A l

(with four processors).

0 5 1'0 15 20

This behavior is even more apparent in the 8- Taskwidth

and 16-proce§§or systems (figs. 9 and i0) Notice Figure 10. Multitasking speedup gains for fork-join algorithm
in figure 9, when there is a small inherent paral- (with 16 processors).
lelism (with a width of two processes), we achieve
nearly the same speedup (S = i:63, 1.57, and 1.46,
respectively) whether we execute one, two, or four Another way to view the benefit of multitasking

tasks. This again is near the maximum achievable is to look at the processor utilizations with respect

speedup (Smax = 1.64). Further, with more process- to the speedup gains and the amount of total work
ing power, intratask parallelism can increase and still that can be done (figs. 11, 12, and 13).

sustain similar: spee(lup: Figure 9=shows that even if In figure 11, notice that either one or two "nar-

the width is fouf]hr6cesses, we _anexecute ofi¢; or row" (with a width of two processes) tasks can
two tasks concurrently and maintain speedup (S = be completed without overutilizing the processors

2.92 and 2.64, respectively) near the maximum level (40 and 80 percent, respectively), thereby maintain-

(Smax = 2.945). Figure 10 further reveals this trend, ing the speedup gain shown in figure 8. However,

8
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Figure 11. Average processor utilizations for fork-join algorithm (with four processors).
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Figure 12. Average processor utilizations for fork-join algorithm (with eight processors).
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Figure 13. Average processor utilizations for fork-join algorithm (with 16 processors).

once the processors dobecome overutilized (with four

or eight tasks), multitasking no longer helps on a

four-processor system. Again, this observation sup-

ports the data in figure 8. We conjecture that for

small systems, it is best to use multitasking only
for tasks that have a small parallel fraction (width).

For tasks with a large parallel fraction, the nature of
the dataflow scheduler will optimize the achievable

speedup if the tasks are done sequentially and not

concurrently.

"fatness" of tasks can increase and maintain speedup

as long as the utilization is not too high.

All this information supports Amdahl's Law that
speedup is constrained by parallel fraction, and it

also shows the effect of limited processing power on

the attainable speedup. Perhaps the most reveal-

ing e;cidence of the relationship between these two
determinants (the parallel fraction and the available

resources) is shown in figures 14 and 15.

Ideally, through the use of multitasking, we would The solid lines in figure 14 represent workloads

like to keep the levels (i.e., the number of entries) ..... with different degrees of multitasking. In figure 15,

of both queues (i.e., JobList and PEready) close eac-h_lndividual workload is shown along with its pro-
to equal. Maintaining near-equal levels in these ject_ons -(the das_Ked lines) onto a two-dimensional

two queues minimizes the amount of idle time for grid. We can seet_atby introducing multitasking to

each processor. If the queue containing the ready an _underutlIized system, we can effectively increase

jobs backs up, the processors become overutilized; the parallel fraction and, thus, do more work at the
same level of speedup. Multitasking becomes ineffi-whereas, if the queue containing the idle processor

identifiers backs up, the processors are underutilized, cient (in terms of the effective speedup) only when
the processmgThis ideal level should be no more than the number " power constraint is exceeded (with

of processors in the system, a utilization of approximately 100 percent) and the
speedup deteriorates. Of course, this situation as-

Figures 12 and 13 reveal the effect of adding pro- sumes that the tasks are of near-equal complexities.

cessing power (8- and 16-processor systems). Note, in If this is not the case, the scheduler could use pri-
these cases, _¢narrow" tasks can be executed concur- orities or weighting factors to preclude "fairness" to-

rently to effectively utilize all processor bandwidth ward allocating work to resources. From figure 15,

and maintain speedup (figs. 8 and 9). Also, the we see that to get the most work done at the highest

10
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Figure 14. Benefits of multitasking (with 16 processors).
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speedup, we should use a width of approximately 32,

16, 8, and 4 processes for 1, 2, 4, and 8 tasks, re-

spectively. These guidelines allow us to avoid over-
utilization while we maintain speedup.

4.3. Scheduling Overhead Effects

This suite of experiments will attempt to show
the effects of scheduling delays. We will use all three

workload classes discussed in section 3 (e.g., fork-

join, binary tree, and diamond-shaped problems).
These simulations were all run on the 16-processor
architecture model.

The data in figure 16 were taken while simulating
a single task of each type. All three tasks have the

same order of complexity (i.e., the fork-join, binary
tree, and diamond-shaped problems have 258, 511,

and 529 processes, respectively). The differences,

with respect to the scheduler, are the amount of com-

munication that must take place and the number of
instantiations of the scheduling mechanism required.

Two interesting phenomena can be observed in

figure 16. First, note the initial flatness of each

curve. Both the binary tree and the diamond-shaped

algorithms can maintain a near-constant speedup as
long as the scheduling overhead is less than 8 percent;

beyond that, the speedup drops off in an exponential

decay. The fork-join application can incur up to

20 percent overhead while losing only about 6 percent

of its speedup (13.7 down to 12.5) before it too begins

to exponentially decay.

This near-constant behavior at small overheads

is due to the number of scheduling events Se that

must occur during the execution of a specific algo-
rithm. For the macro-dataflow scheduler described,

Se is equal to the number of levels in the dataflow

representation of the workload. For asymmetrical

dataflow graphs, Se would be the number of pro-

cesses in the longest path through the graph. The
larger the Se, the more work the scheduler must do

and, hence, the more effect that the scheduling over-

head will have on the speedup. The curves shown

in figure 16, although having similar complexity (the
number of processes), have different values of Se. For

example, Se for the fork-join problem will always be

just three; those for the binary tree problem will be

log2 n (where n is the number of processes at the

top of the tree), and those for the diamond-shaped

problems will be 2n - 1 (where n is the number of

processes at the center level of the diamond).

11



12 12

10 10

2 0

(a) 1-task processor.

I ,. - -" ! .7.-- 1"-;- -,_ c,- -_ _,
-,-k!-.'.; , I

._ 1 i --,'/ t ..-I-5-;. ' -,--'_' .I--;" .f ._--, _.L_: ,-.,-c-,"_--_4 g)

- -" ;-" - " - " j 0

(b) 2-task processor.

14_ 14 14 _ 14

(c) 4-task processor. (d) 8-task processor.
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Figure 16. Speedup gains and scheduling overhead with 16
processors).

These data reveal that for certain classes of work-

loads, the effect of scheduling overhead on speedup

can be minimal. Also, they show that scheduling

overhead can have a serious effect (exponential de-

cay) on speedup once it gets beyond a certain thresh-
old. However, up to this threshold, speedup can be
maintained near a constant.

With the simplistic nature of this macro-dataflow

scheduling paradigm (i.e., a queue), we feel that the

expected overhead would be low (less than 5 percent)

which, according to these data, would allow us to

maintain the speedup achievable with no overhead.

4.4. Communication Overhead Effects

We now look at the effects of interprocessor com-

munication delays. Here, we use the same three
workload classes that were used in section 4.3: a

fork-join problem with 258 processes, a binary tree

problem with 511 processes, and a diamond-shaped
problem with 529 processes; all these workloads exe-

cute on the 16-processor architecture model. A much

12



moreconsistentbehaviorcanbeseen(fig. 17). For
eachclassof workload,a periodof near-constant
speedup(with anoverheadof lessthan 7 percent)
exists,whichis followedby anexponentialdecayin
thespeedupgain.

The differencesin speedupherearedueto the
amountof communication which must be done by

each class of algorithm. This amount is directly

proportional to the number of edges in the dataflow

diagram that represents the workload, as shown in
the following table:

Workload Edges

Fork-join ....... 2(n - 2)

Binary tree ...... 2(n- 1)

Diamond shaped . . 2(n - v_)

Here n is the number of processes in the workload.

These data (fig. 17) show that for tasks with near-
equivalent complexity (i.e., the number of processes),

the fork-join problem will perform best (S = 13.667),

followed closely by the binary tree problem (S =

13.05), and then the diamond-shaped problem (S =

9.798). Notice that these data reflect our conjecture
about the number of edges because, for this case, the

numbers of edges are 512,510, and 1012 for the fork-

join, binary tree, and diamond-shaped problems,

respectively. In general, the fork-join problem will

have 2(n - 2) edges (the fewest), the binary tree
problem will have 2(n - 1) (just two more), and the

diamond-shaped problem will have 2(n - v/K).

14

12

10

4

2

o3

"_t .... Fork-join
_ Binarytree

..... _ ---- Diamondshaped

' ' 2b " 3b " " sb
Communicationoverhead,percent

60

Figure 17. Speedup gains and communication overhead (with
16 processors).

Therefore, we believe that for values of n much

greater than v _, the behavior of the three workloads

will be similar. However, for small values of n, the

effect will be much more significant.

It is apparent from this analysis that the com-

munication overhead has a greater effect on perfor-

mance than does the scheduling delay, which is due
in part to the nature of the macro-dataflow paradigm

for scheduling work (i.e., near optimal). This effect

also occurs because the number of edges will be much

larger than the number of scheduling events for most

large problems. Therefore, although we have shown

the efficiency of this scheduling paradigm, we are still
faced with finding ways to implement fast reliable
communication.

5. Conclusions

This paper presents a performance analysis of

a macro-dataflow mechanism that can optimally

schedule work onto a set of distributed processors

using large-grain dataflow representations of the
workload as input. With the emergence and ac-

ceptance of computer-aided software engineering

(CASE) tools, whose underlying structure for soft-

ware designs is functional decomposition into data-

flow diagrams, generation of this input form becomes
straightforward.

Performance analysis results, obtained via simula-
tion, are presented which reveal the effects of problem

size and class on speedup and processor utilizations.

Also shown are the benefits of including a multi-

tasking capability to increase the effective paral-

lel fraction of the workload. By adding the multi-

tasking capability, we show that more work can be
done with the same speedup gain while increasing

the processor utilizations.

Finally, we present quantitative data that show

the effects of scheduling and communication over-

heads. In both cases, a period of constant speedup

exists (as the overhead increases), which is followed
by an exponential decay in the speedup. The rate of

this decay depends on the parameters that determine

the amount of scheduling (the number of scheduling
events) or the communication (the number of edges)

that must take place for a given workload. Note that
one of the salient features of macro-dataflow is a re-

duced number of required communication and sched-
uler events.

Future work will include looking at the multi-

programming of individual processors to reduce the
effect of large input/output delays, investigating the

implementation issues, and further analyzing the

performance of specific applications.
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