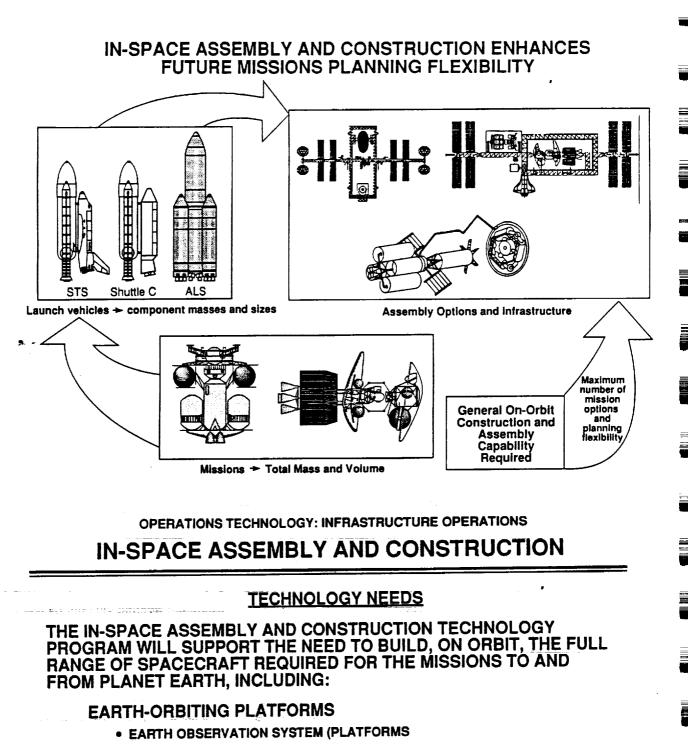
OPERATIONS =

IN-SPACE ASSEMBLY AND CONSTRUCTION TECHNOLOGY PROJECT SUMMARY

INFRASTRUCTURE OPERATIONS AREA OF THE OPERATIONS TECHNOLOGY PROGRAM

59-81 157519 P- 12

N93-71843


June 26, 1991

Office of Aeronautics, Exploration and Technology National Aeronautics and Space Administration

Washington, D.C. 20546

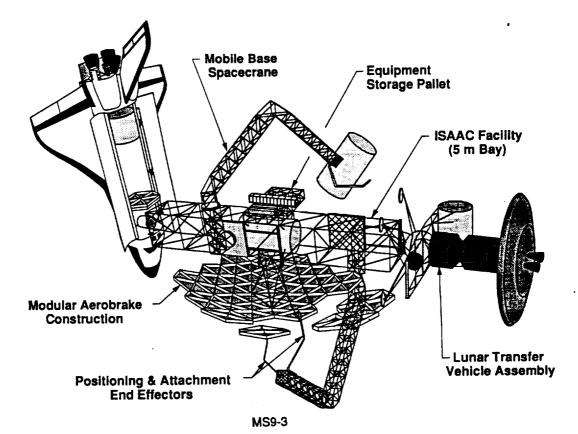
OPERATIONS TECHNOLOGY

In-Space Assmbly and Construction				
h <u>aan in 1997 (1997)</u>	SCHEDULE			
OBJECTIVES	 1993 Automated panel installation on truss Complete welding vacuum facility 			
Programmatic				
Develop and Demonstrate an In-Space Assembly and Construction Capability for Large and/or Massive Spacecraft	• 1994 Demonstrate precise 2-D crane positioning			
	•1995 Demonstrate automated "orbital" welding			
	• 1997 Controlled slewing of 3-D space crane			
	• 1998 Precise positioning of large component			
	• 1999 Automated construction of curved antenna			
RESOURCES	PARTICIPANTS			
• 1991 \$ 0.3M	Langley Research Center			
• 1992 \$ 0.0M	Space crane Positioning control			
• 1993 \$ 2.0M	Passive damping Active damping			
• 1994 \$4.0M	Suspension systems Automated construction			
• 1995 \$ 7.0M	Marshall Spaceflight Center			
• • • • • • • • • • • • • • • • • • • •				
• 1996 \$8.0M	Automated welding			

- PRECISION RADIOMETER & ANTENNAE
- EVOLUTIONARY SPACE STATION

LUNAR TRANSFER VEHICLES

- AEROBRAKE CONSTRUCTION
- SPACECRAFT COMPONENT ASSEMBLY


MARS TRANSFER VEHICLES

- SPACECRAFT COMPONENT ASSEMBLY
- NTR: BACKBONE TRUSS & RADIATOR CONSTRUCTION, UTILITIES WELDING
- SEP: SOLAR ARRAY CONSTRUCTION

IN-SPACE ASSEMBLY AND CONSTRUCTION

TECHNOLOGY CHALLENGES/APPROACH TECHNOLOGY DEVELOPMENT CHALLENGES: REDUCE LIMITATIONS ON SPACE VEHICLE SIZES AND CONFIGURATIONS IMPOSED BY LIMITED ETO LAUNCH CAPABILITY AND/OR ON-ORBIT OPERATIONS REQUIREMENTS • SPECIFIC CHALLENGES INCLUDE: - ACCURATELY POSITION LARGE SPACECRAFT COMPONENTS - ASSEMBLY TWO OR MORE LARGE COMPONENTS TO FORM SPACECRAFT - CONSTRUCT DISCRETE SINGLE-POINT JOINTS - CONSTRUCT DISCRETE MULTI-POINT JOINTS - CONSTRUCT CONTINUOUS "LINE" JOINTS - AUTOMATE ASSEMBLY AND CONSTRUCTION OPERATIONS - ANALYZE AND SIMULATE ALL ASSEMBLY AND CONSTRUCTION OPERATIONS TECHNOLOGY DEVELOPMENT APPROACH SURVEY MISSIONS FOR ISAAC NEEDS AND REQUIREMENTS • DEFINE FUNDAMENTAL GENERIC CAPABILITIES NEEDED DEFINE FOCUS PROBLEMS AND ASSOCIATED EXPERIMENTS DEVELOPE METHODS AND HARDWARE FOR ACCOMPLISHING ISAAC PROCESSES PERFORM EXPERIMENTS WHICH VALIDATE ISAAC METHODS

IN-SPACE ASSEMBLY AND CONSTRUCTION FACILITY CONCEPT

OPERATIONS TECHNOLOGY: INFRASTRUCTURE OPERATIONS

IN-SPACE ASSEMBLY AND CONSTRUCTION

-

STATE-OF-THE-ART ASSESSMENT

- GENERAL ASSESSMENT: EXTENSIVE NEUTRAL BUOYANCY EXPERIENCE IN SIMULATED ZERO-G CONSTRUCTION OF LARGE SPACE TRUSSES. VERY GOOD CORRELATION WITH FLIGHT DATA (ACCESS). NO EXPERIENCE IN THE AREAS OF ON-ORBIT ASSEMBLY (AUTOMATED) OR AUTOMATED (TELEROBOTIC) CONSTRUCTION
- DETAILED ASSESSMENT:
 - NO VALIDATED DESIGN-FOR-CONSTRUCTION METHODS
 - NO SYSTEM EXISTS FOR RAPIDLY & PRECISELY POSITIONING LARGE/MASSIVE SPACECRAFT COMPONENTS (FOR ASSEMBLY)
 - CONCEPTS EXIST FOR LIGHTLY MECHANICAL LOADED JOINTS (ACCESS, SSF), HOWEVER, NO CONCEPTS EXIST FOR HEAVILY LOADED JOINTS
 - LIMITED EXPERIENCE WITH ZERO-G WELDING (SKYLAB, SOVIET UNION), HOWEVER, NO EXPERIENCE WITH AUTOMATED ZERO-G VACUUM WELDING FOR CONSTRUCTION OR ASSEMBLY APPLICATIONS ON ORBIT

OPERATIONS TECHNOLOGY: INFRASTRUCTURE OPERATIONS IN-SPACE ASSEMBLY AND CONSTRUCTION

STATE-OF-THE-ART ASSESSMENT

DETAILED ASSESSMENT (CONCLUDED):

 AUTOMATED CONSTRUCTION OF A LIGHTLY LOADED TRUSS IN A HIGHLY STRUCTURED ENVIRONMENT WITH NO ON-ORBIT EFFECTS INCLUDED (ASAL). NO EXPERIENCE WITH AUTOMATED ASSEMBLY OR CONSTRUCTION IN AN UNSTRUCTURED ENVIRONMENT INCLUDING PATH PLANNING, COLLISION AVOIDANCE, AND FACILITY INFRASTRUCURE FLEXIBILITY.

OPERATIONS TECHNOLOGY: INFRASTRUCTURE OPERATIONS IN-SPACE ASSEMBLY AND CONSTRUCTION

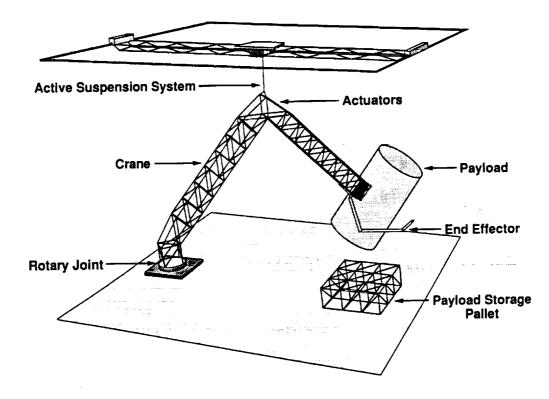
POSITIONING AND CONSTRUCTION DEVICES PERFORMANCE OBJECTIVES

PERFORMANCE	CURRENT S.O.A. (RMS)	LUNAR	MARS
Manipulator Reach	15 m	30 m	100 m
Component Mass	14,500 kg (ret.) 30,000 kg (dep.)	75, 000 kg	150,000 kg
Placement Accuracy	± 2 inches	±1 inch	±1 inch
Tip Force	15 lbf	50 lbf	150 lbf
Damping	< .5%	> 5.0% (5 modes)	> 5.0% (5 modes)
Max. tip velocity (14,500 kg, 2 ft. stop)	0.2 ft/sec	0.4 ft/sec	0.6 ft/sec
Maintenance Interval	After each flight	> 1year	> 1 year
Required environment	Highly structured taught points	Unstructured path planning	Unstructured path planning
Operation	Teleoperated	Telerobotic	Telerobotic

SPACE CRANE

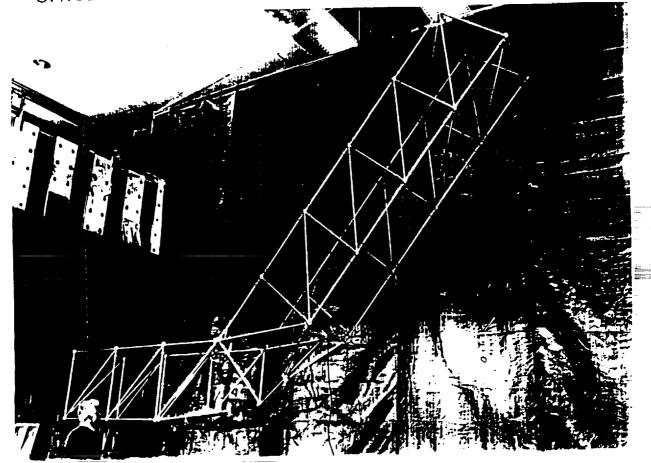
The Capability to Position and Control Spacecraft Components Precisely and Safely During Assembly Will be Achieved by Developing a Structural Space Crane Type Arm, Having Multiple Articulating Joints for Dexterity, and that can Ultimately be Operated in an Automated Mode

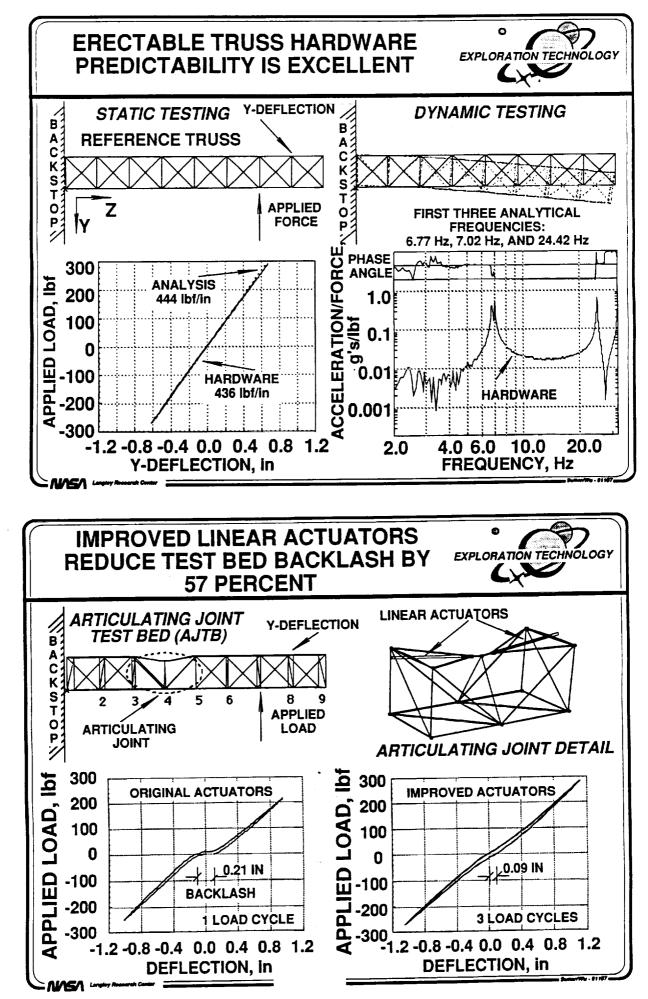
FEATURES


- Strength to Move and Control Large Spacecraft Components Safely
- Passive and Active "Stiffness" to Maintain a Stable and Secure Position
- Highly Controllable Large Angle Motion with Dynamic Control for Stable Trajectories
- Passive and Active Vibration Damping to Achieve Required Precision

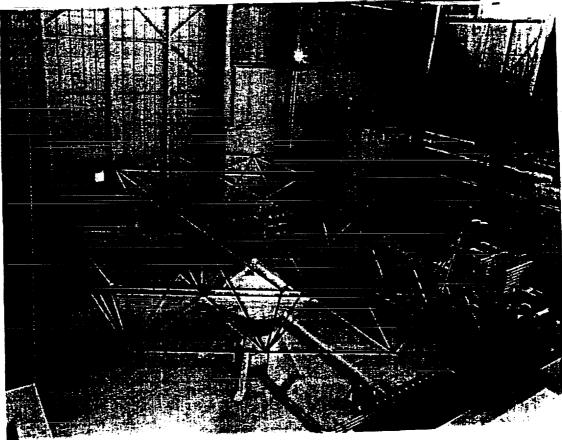
Reconfigurable/Adaptable Geometry to Reduce the Amount of Required
 On-Orbit Infrastructure

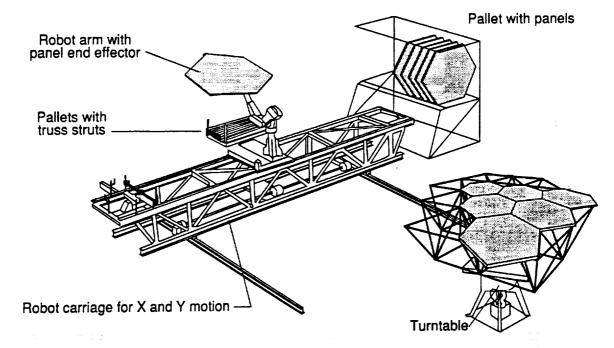
- Scaleability (Larger or Smaller Sizes) for a Variety of Applications
- Robustness and Reuseability for Long Life




SPACECRAFT COMPONENT POSITIONING AND ASSEMBLY TEST-BED

_

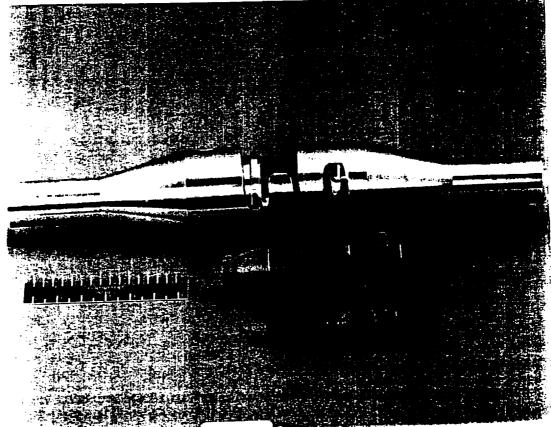

SPACE CRANE ARTICULATING JOINT TEST BED FABRICATED



MS9-7

AUTOMATED STRUCTURES ASSEMBLY LABORATORY

AUTOMATED CONSTRUCTION TECHNOLOGY DEVELOPMENT & DEMONSTRATION TEST-BED


OPERATIONS TECHNOLOGY: INFRASTRUCTURE OPERATIONS IN-SPACE ASSEMBLY AND CONSTRUCTION

JOINING METHODS PERFORMANCE OBJECTIVES

PERFORMANCI REQUIREMENT		LUNAR	MARS
Strength	2000 lbf (SSF)	Up to 50,000 lbf	Up to 150,000 lbf
Connection time	0.3 min/strut (ACCESS)	0.3 - 5.0 min/strut (mechanical) Welding: TBD	0.3 - 5.0 min/strut (mechanical) Welding: TBD
Durability	> 5years (SSF)	> 5 years	> 10 years
Connection method	Manned EVA (ACCESS, SSF)	Automated/EVA (mix)	Automated/EVA (mix)

in i

ERECTABLE JOINT FAMILY AVAILABLE FOR EFFICIENT AEROBRAKE TRUSS DESIGN

WELDED JOINTS - CLASSIFICATION (Basic Advantages)

TUBULAR STRUT

- High Strength, Low Mass
- Low Dimensional Accuracy Requirements
- Simple Welding Mechanism

• PIPES/DUCTS

- Hermetic Seal
- Simple Welding Mechanism
- SKIN/TANK

- Hermetic Seal

- SEMI-MONOCOQUE STRUCTURES
 - High Strength, Low Mass
 - Low Dimensional Accuracy Requirements

REPAIR/CONTINGENCY (Manual) - Flexibility

OPERATIONS TECHNOLOGY: INFRASTRUCTURE OPERATIONS

1

IN-SPACE ASSEMBLY AND CONSTRUCTION

CURRENT PROGRAM: ACCOMPLISHMENTS

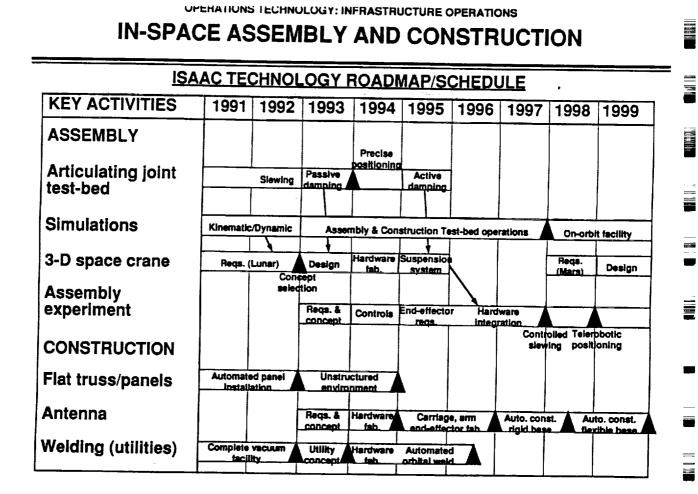
ACCOMPLISHMENTS

- Load/displacement testing of 1st and 2nd generation space crane linear actuators completed
- Space crane maximum allowable tip velocity established using strut buckling loads
- 1st. generation heavily loaded 4-inch diameter erectable aerobrake joint developed
- Automated construction of the complete 102-member flat tetrahedral truss structure successfully completed
- Vacuum plasma welding experiments conducted
- Aerobrake hexagonal heatshield panel construction tests completed

OPERATIONS TECHNOLOGY: INFRASTRUCTURE OPERATIONS IN-SPACE ASSEMBLY AND CONSTRUCTION

CURRENT PROGRAM: FY 91/92 PLANS

FY 91/92 PLANS (FUNDING FOR FY 92 = \$0)


- Perform space crane kinematic and dynamic simulations
- Upgrade space crane articulating joint test hardware and perform dynamic tests
- Redesign heavily-loaded erectable joints and perform static tension failure tests
- Demonstrate automated installation of flat antenna panels onto flat truss
- Complete welding vacuum manipulation facility

OPERATIONS TECHNOLOGY: INFRASTRUCTURE OPERATIONS IN-SPACE ASSEMBLY AND CONSTRUCTION

OTHER DEVELOPMENT EFFORTS

- LaRC BASE R&T
 - EVA construction of precision curved truss with panels
 - Automated Structures Assembly Laboratory (ASAL)
- NO OTHERS

_

CONCLUDING REMARKS

- Design-for-Construction/Assembly Must be Emphasized From the Very Beginning of the Spacecraft Design Process
- Having a Basic Generic Set of In-Space Assembly and Construction Capabilities Available Will
 - Give Mission Planners and Spacecraft Designers a Great Deal of Flexibility
 - Minimize the Amount of In-Space Infrastructure and Resources Required to Build Spacecraft on Orbit
- Spacecraft Design Costs can be Reduced by Using Available and Developed ISAAC Capabilities, Methods, and Hardware