NASA-TM-108703

(NASA-TM-108703)SSTAC/ARTS REVIEWN93-71873OF THE DRAFT INTEGRATED TECHNOLOGY--THRU--PLAN (ITP).VOLUME 2: PROPULSIONN93-71887SYSTEMS (NASA)218 pUnclas

29/81 0157467

SSTAC/ARTS REVIEW OF THE DRAFT INTEGRATED TECHNOLOGY PLAN (ITP)

Volume II: June 26-27

OAEI

Propulsion Systems

Briefings from the June 24-28, 1991 Conference McLean, Virginia

National Aeronautics and Space Administration Office of Aeronautics, Exploration and Technology Washington, D.C. 20546

 $\bigcirc A \models I$

.

_

SSTAC/ARTS REVIEW OF THE DRAFT ITP McLean, Virginia June 24-28, 1991

Volume II: June 26-27

Propulsion Systems

TABLE OF CONTENTS

- PR1. Space Propulsion Technology Program Overview -- William J.D. Escher
- PR2. Space Propulsion Technology Program Fact Sheets -- William J.D. Escher
- PR3. Low Thrust Propulsion -- D. Byers
- PR4. Advanced Propulsion Concepts -- Joel C. Sercel
- PR5. High-Thrust Chemical Propulsion -- S. Gorland
- PR6. Cryogenic Fluid Management -- Pat Symons
- PR7. NASA CSTI Earth-to-Orbit Propulsion -- James L. Moses
- PR8. Advanced Main Combustion Chamber Program
- PR9. Earth-to-Orbit Propulsion Turbornachinery -- L.A. Schutzenhofer/R.Garcia
- PR10. Transportation Technology -- S. Gorland
- PR11. Space Chemical Engines Technology -- Frank D. Berkopec
- PR12. Nuclear Propulsion

Ē

- PR13. Spacecraft On-Board Propulsion -- D. Byers
- PR14. Low-Cost Commercial Transport -- J. McPherson

.

-

SSTAC/ARTS REVIEW OF THE DRAFT INTEGRATED TECHNOLOGY PLAN (ITP) Space Propulsion Technology **TABLE OF CONTENTS PR1**. Space Propulsion Technology Program Overview -- William J.D. Escher **PR2**. Space Propulsion Technology Program Fact Sheet -- William J.D. Escher **PR3**. Low Thrust Propulsion -- D. Byers **PR4**. Advanced Propulsion Concepts -- Joel C. Sercel PR5. High-Thrust Chemical Propulsion -- S. Gorland PR6. Cryogenic Fluid Management -- Pat Symons **PR7**. NASA CSTI Earth-to-Orbit Propulsion -- James L. Moses PR8. Advanced Main Combustion Chamber Program Earth-to-Orbit Propulsion Turbomachinery -- L.A. Schutzenhofer/R. Garcia PR9. PR10. Transportation Technology -- S. Gorland PR11. Space Chemical Engines Technology -- Frank D. Berkopec PR12. **Nuclear Propulsion** PR13. Spacecraft On-Board Propulsion -- D. Byers **PR14**. Low-Cost Commercial Transport -- J. McPherson

Office of Aeronautics, Exploration and Technology

1

ł

SPACE PROPULSION TECHNOLOGY PROGRAM OVERVIEW

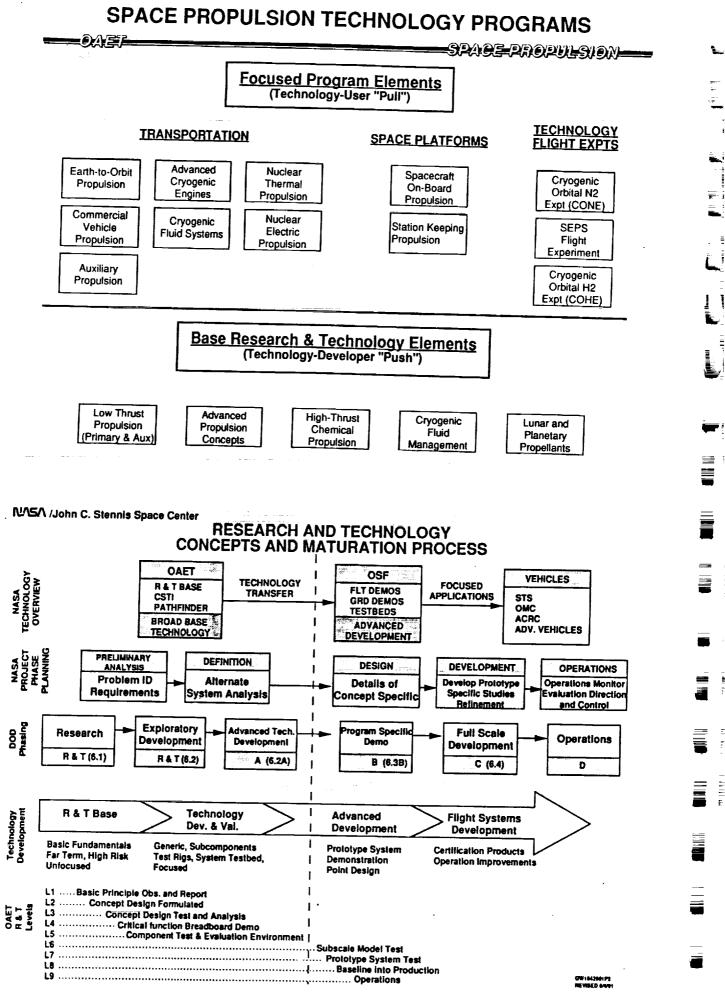
William J. D. Escher Manager, ETO & ACE Propulsion R&T Programs SSTAC/ARTS Meeting June 24-28, 1991

51-**N93-71874** 157468 P. 20

en an an an an e arean e la service de la

AGENDA

Orientation and Background


Program New Initiatives and Exemplary Augmentation Opportunities/Payoffs

Program Element Augmentation Budgets and Goals/Objectives

Base Research & Technology Elements

Focused Technology Elements

Flight Test Elements

— OAET

-9240Z=PROPULSION=

TECHNOLOGY REQUIREMENT SOURCES

NASA Office of Space Flight, Office of Space Science & Applications

e.g., OSF's "Mission User Technology Needs & Applications" Note: ETO & SCET Basic WBS Structure Match "Top 3" Items

Development-Stage and Flight Programs

e.g., NLS/STME Critical Task-by-Task Applicability Review Status: ETO/SCET 3-day Program Review in March 1991, NLS/STME Response in April 1991, Follow-up Meetings Underway at Present

Special Assessments of NASA and Its Programs

o SSTAC/ARTS & NRC/ASEB Propulsion Program Review Feedback

o Augustine and Synthesis Group Reports:

(Transportation & Propulsion Related Recommendations)

<u>Mission/Vehicle/Propulsion Planning-Visibility Studies</u> (See later chart)

OSF Technology Requirements Evaluation

NASA Program Unique Technologies

- 1 Vehicle Health Management
- 2 Advanced Turbomachinery Components & Models
- 3 Combustion Devices
 - 4 Advanced Heat Rejection Devices
 - 5 Water Recovery & Management
- 6 High Efficiency Space Power Systems
- 7 Advanced Extravehicular Mobility Unit Technologies
- 8 Electromechanical Control Systems/Electrical Actuation
- 9 Crew Training Systems
- 10 Characterization of Al-Li Alloys
- 11 Cryogenic Supply, Storage & Handling
- 12 Thermal Protection Systems for High Temperature Applications
- 13 Robotic Technologies
- 14 Orbital Debris Protection
- 15 Guidance, Navigation & Control
- 16 Advanced Avionics Architectures

Industry Driven Technologies

Signal Transmission & Reception Advanced Avionics Software Video Technologies Environmentally Safe Cleaning Solvents, Refrigerants & Foams Non-Destructive Evaluation

-Office Of Space Flight

=0aet

SPACE PROPULSION -----

SYNTHESIS GROUP

Key Propulsion-Related Findings/Recommendations

<u>General</u>

 Require Earth-to-Orbit, Interplanetary Transfer and Descent/Ascent Propulsion for Crew and/or Cargo Service

Chemical Propulsion

- o Hydrocarbon/Oxygen Propulsion for Boost-stage Applications e.g., F-1 Engines (as updated)
- o Hydrogen/Oxygen Propulsion for Space-stage Applications e.g., Upgraded J-2 Engines, NLS/STME
- o NASP X-30 ". . .should be vigorously pursued." i.e., hypersonic airbreathing
- SDIO SSTO concept "...should be carried forward to demonstrate feasibility." i.e., advanced configuration hydrogen, oxygen rockets

Nuclear Propulsion

- o Nuclear Thermal Rockets, "... with further development, are the choice propulsion technology for the interplanetary phase of the Mars mission."
- o Nuclear Electric Propulsion, "... where transit time is not an important constraint, low thrust nuclear propulsion systems are attractive because opf their very high performance levels..."

-OAET

SPAGE=PROPULSION----

NEW/ETO & SCET

INTEGRATED MISSION/VEHICLE/PROPULSION PLANNING-VISIBILITY STUDIES

Advanced Manned Transportation Systems (AMLS)

- o LaRC Vehicle Analysis Branch, Space Systems Division
- o Fully Reusable TSTO & SSTO, All-Rocket & Airbreathing

Heavy Lift Transportation Systems (HLLV)

- o GD/SRS via MSFC Program Development
- o Boost-stage Propulsion, H2/O2
- o All-rocket Candidates (SSME Ref.): IME, Plug Nozzle, Full-flow S/C, Split-Expander, etc.

Advanced Upper-Stage Systems

o Martin-Marietta/Aerojet via MSFC Propulsion Lab

o IME Focused, H2/O2 (Incl. SCET transfer, planetary applications)

-Spage-propulsion-

CASE-IN-POINT AUGMENTATION OPPORTUNITY

SUBJECT: Applying Emerging Materials Technology to a Turbopump

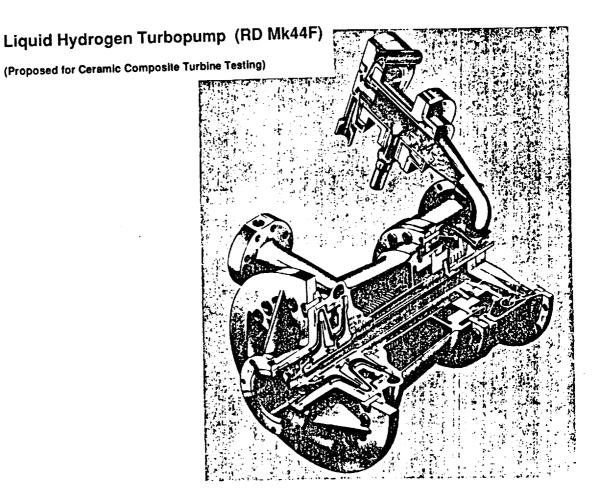
Specific Example (ETQ): Fiber-Reinforced Ceramic Matrix Composite Turbine

Engineering Benefits: C/SiC Blades survive 50 thermal shock cycles to 3300 F

Existing Program: Phase I (GE, Rocketdyne)Feasibility Study completed, Phase II (Rocketdyne) Materials Characterization, Sample Component Fabrication & Test, & Technology Implementation Plan presently underway (44-month effort)

Plan is to fab and test a representative (static) turbine nozzle ring (only)

Proposed Augmented Program:


-OAISE

Using existing LH2 Turbopump (Mk44F), fab nozzle ring and turbine wheel, checkout in hot-gas facility, then install in complete turbopump and run (LeRC)

What Does Augmentation Buy?

o Accelerates effort into full-scale subystem operating-environment evaluation

- o Leverages well timewise on other Government-sponsored work (e.g., IHPTET)
- o Provides readiness for overall engine test/flight applications by FY96
- o Contractor team willing to cost share/Government facility gains new capabilities
- o Keeps U.S. competitive internationally (vs. France's SEP, Japanese work)

----OAEI

SPACE-PROPULSION----

EXPANDING THE FOCUSED TECHNOLOGY PROGRAM PURVIEW

Example: Combined-Cycle (airbreathing/rocket) Propulsion

1990 SSTAC/ARTS Recommendation (vis-a-vis ETO Program):

"... our Group recommends that the current charter of the effort be enlarged to include combined-cycle propulsion."

Actions Taken (not necessarily totally ETO instigated):

- o Langley's Vehicle Analysis Branch has now examined airbreathing as well as all-rocket ETO systems assuming both available and improved materials availability (e.g., that accorded to NASP X-30)
- o Headquarters (ARC/Eagle) is conducting special international hypersonics propulsion activities (assessing combined-cycle work being pursued in France, Germany, U.K., U.S.S.R and Japan)
- ETO Program plans to conduct a Rocket-Based Combined-Cycle (RBCC) SSTO focused Workshop via University of Alabama in Huntsville (there) in November 1991 (FY 91 & 92 supported grant)

SPACE PROPULSION TECHNOLOGY

-OAET

-SPAQE-PROPULSION----

1111

Ξ

SPECIAL INITIATIVE (ETO shared sponsorship)

Operationally Efficient Propulsion System Study

- o 3-year assessment: Rocketdyne KSC/Cal Team (for KSC)
- o NLS/OSF-MD/OAET-RP Shared Funding (2nd Year just completed)
- o Canvassed Shuttle and ELV Launch Teams Re: "non-operability"
- Defined 25 Leading Operability Problems; Technological Remedies for each now documented
- "Rethought" ALS Boost-stage Propulsion System (as example) Arrived at IME configuration (vs. standalone engines) for improved operability (this design also is estimated to be superior in terms of reliability, complexity, weight and production costs)
- o Have now evolved a quantifiable Operability Index (OI: 0 to 1.0)
- o Plan to focus on Space-basing challenge next (SCET to track)

-OAET-

NEW/ETO & SCET

COOPERATIVE - AGREEMENT PROGRAMS w/ INDUSTRY (Low-Cost Commercial ELV Focus)

Hydrodynamic (Foil-type) Bearing Testing

- o Allied Signal/LeRC (SCET)
- o LH2 & LN2 (sim. LO2) Bearing Rig Tests (Completed)
- o Allied Signal/MSFC (ETO)
- o LO2 Materials Compatability and Rig Tests (in Planning)

Low-Cost Thrust Chamber Testing

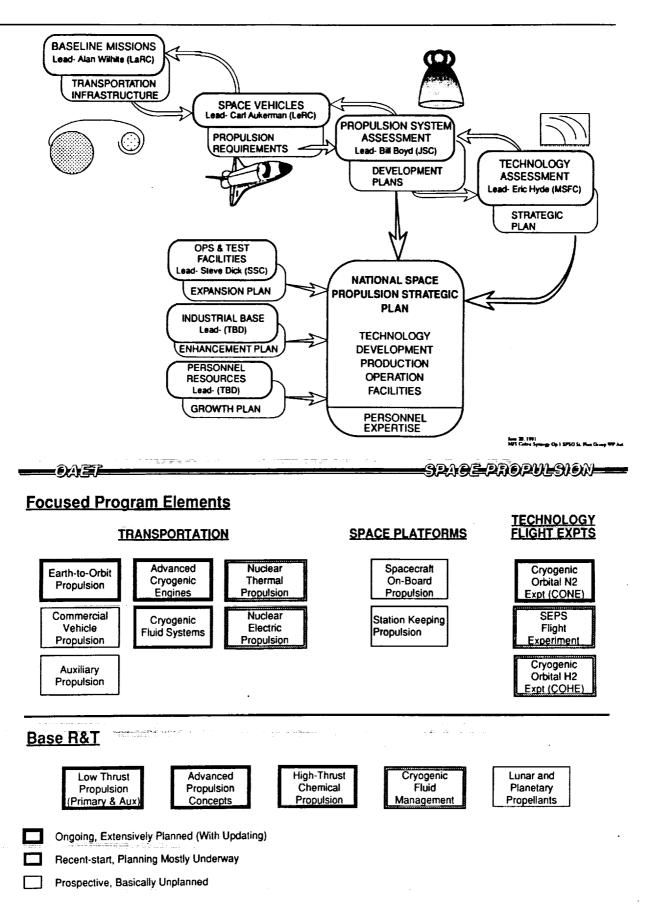
- o TRW/LeRC (ETO)
- o LH2/LO2 Operation (Hardware-build stage; Fall 1991 Testing)

Turbopump Testing

- o Allied Signal/LeRC & MSFC
- o LH2 & LO2 Operation (Discussion stage)

SPACE PROPULSION TECHNOLOGY

=0aet—

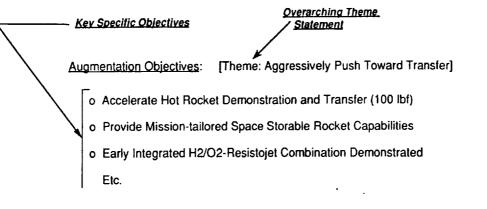

=SPAGE=PROPULSION==

SPACE PROPULSION SYNERGY GROUP

A National Level Space Propulsion Technology Developer/User Forum

- o Sustains the Considerable Momentum of the Penn State Symposium (June 1990)
- o All Propulsion-related NASA (now) and DoD (shortly) Offices and Centers aboard
- o Propulsion and Space Vehicle Industry and university community being invited in
- o Attempting a Vision of the Space Propulsion Future (e.g., via Strategic Planning)
- o Looking for "Smarter, Better" Ways of Doing Space Propulsion Business
- o Making Developers Aware of User Needs; Involving Users in Technology Planning
- o Recognition that our Space Propulsion Institutions Need Rejuvenation (How?)
- Broad cross-section of NASA/DoD with comon interests -- achieving balanced representation of technologists, systems developers and systems operators
- o Catalyst for free thinking and innovation: cultural change must be achieved

SPACE PROPULSION SYNERGY GROUP STRATEGIC PLANNING SUPPORT WORKING PANEL ACTIVITIES



PURPOSE OF AUGMENTATION FACT SHEET - FORMAT

Special Note Re: Funding (If Needed)

Responsible Centers Element Title Overall Goal Low-Thrust Propulsion (LeRC/JPL)

<u>Goal</u>: For a variety of chemical and electric propulsion applications, to develop a technological base for significantly increasing component life, reliability and performance, while decreasing potential life-cycle costs.

PROPULSION R&T BASE FUNDING

L<u>una//rianetary</u> FY95 \$2.0M FY96 \$3.1M FY97 \$4.0M

			(DI)	vi)	<u>^</u>			0.0.0
OA <i>ET</i>					SP/	JOEP	opulsk	9X)
SUB-ELEMENTS		FY1991	FY1992	FY1993	<u>FY1994</u>	<u>FY1995</u>	EY1996	<u>FY199</u>
LOW THRUST PROPULSION	Current	5.8	5.2	5.4	5.6	5.8	6.1	6.
	3X	5.8	5.2	7.0	9.8	11.0	12.5	14
	Strategic	5.8	5.2	8.0	11.0	11.0	12.5	14
ADVANCED CONCEPTS	Current	1.2	1.4	1.5	1.5	1.6	1.6	1
	ЗX	1.2	1.4	3.2	4.0	4.7	5.0	6
	Strategic	1.2	1.4	3.5	4.0	4/7	5.0	6
HIGH-THRUST CHEMICAL	Current	3.5	3.5	3.6	3.8	3.9	4.1	4
	3X	3.5	3.5	4.0	5.5	6.6	7.1	7
	Strategic	3.5	3.5	4.8	6.1	7.4	8.2	9
RYO FLUID MANAGEMENT	Current	1.5	2.6	2.0	2.1	2.2	2.2	2
	3X	1.5	2.6	2.1	2.2	2.3	2.4	2
	Strategic	1.5	2.6	2.1	2.2	2.3	2.4	2
SUB-ELEMENT TOTALS	Current	12.0	12.7	12.5	13.0	13.5	14.0	14
	ЗX	<u>12.0</u>	<u>12.7</u>	<u>16.3</u>	<u>21.5</u>	24.6	27.0	<u>30</u>
	Strategic	<u>12.0</u>	<u>12.7</u>	<u>18.4</u>	<u>23.3</u>	<u>27.4</u>	<u>31.2</u>	<u>36</u>
PROGRAM SUPPORT	Current	2.4	2.5	2.6	2.7	2.8	2.9	3
	ЗX	2.4	2.5	2.3	2.6	3.0	3.2	3
	Strategic	2.4	2.5	2.3	2.9	3.4	3.8	4
SPECIAL REQUIREMENTS	Current	0.4	1.5	2.1	2.3	2.5	2.8	3
	3X	0.4	1.5	1.8	2.1	2.5	2.7	2
	Strategic	0.4	1.5	2.3	2.5	2.9	3.0	3
TOTALS	Current	14.8	<u>16.7</u>	17.2	18.0	18.8	<u>19.7</u>	20
	3X	<u>14.8</u>	1 <u>6.7</u>	<u>20.4</u>	<u>26.2</u>	30.1	32.9	<u>36</u>
	Strategic	<u>14.8</u>	<u>16.7</u>	<u>23.0</u>	<u>28.7</u>	<u>33.7</u>	<u>38.0</u>	<u>43</u>

u -- · · · ·

R & T BASE PROGRAM ELEMENTS

0/) **=** |

 $z_{i} = z$

9746578020<u>19</u>10//----

うちゃらをうおりちりとうりのか

Low-Thrust Propulsion (LeRC/JPL)

<u>Goal</u>: For a variety of chemical and electric propulsion applications, to create a technological base toward increasing component life, reliability and performance, while decreasing program risk and life-cycle costs.

Augmentation Objectives: [Theme: Assure Readiness for Technology Transfer]

- o Accelerate Advanced Earth-storable Rocket Applications
- o Provide Mission-tailored Space Storable Rocket Capabilities
- o Develop Integrated H2/O2 propulsion systems (Vehicles & Platforms)
- o Provide Advanced Electric Platform Station-keeping Propulsion
- o Demonstrate Ion Engine readiness for SEP & Robotic NEP Flight Tests

R & T BASE PROGRAM ELEMENTS

Advanced Propulsion Concepts (LeRC, JPL)

<u>Goal</u>: For long-range, high-risk/payoff propulsion concepts of all kinds, to accelerate aggressive feasibility studies and proof-of-concept experiments to provide mission-oriented programs a firm basis of confidence to select new kinds of propulsion systems technologies for focused development.

Augmentation Objectives: [Theme: Expand Concepts, Researcher Pool]

- o Identify and Experimentally Explore High Energy-Density Propellants
- o Develop and Life Test Electrodeless Electric Thrusters
- o Demonstrate Beamed-Energy Feasibility
- o Evaluate Fusion/Anti-Proton Propulsion
- o Demonstrate Multi-MWe High-Performance Plasma Propulsion
- o Demonstrate Carbon-60 Molecular ion Propulsion

R & T BASE PROGRAM ELEMENTS

=0aze

9240E-27029L910N-

<u>High-Thrust Chemical Propulsion</u> (LeRC, MSFC, JSC)

<u>Goal</u>: In the generic analysis/design tools, combustion-device, turbo- machinery and integrated controls and monitoring arenas, to identify and explore ,through feasibility studies , code development and critical experiments , "quantum-leap" opportunities to advance the overall Earth-to-orbit and Space Chemical Propulsion state-of-the-art.

Augmentation Objectives: [Theme: Broaden, Deepen and Accelerate]

- Expand modeling efforts and code development in the subsystem areas and initiate systemslevel work, e.g., toward full engine dynamic operational simulation (Example: a Reliability Predictor)
- Explore Innovative Injector/Combustor/Nozzle Concepts and Provide for High-Fidelity Performance-Predictive Capabilities
- Innovate Advances in Turbopump Elements, Components and Subsystems Toward MajorReliability and Operability Improvements (Example: High-Temperature Superconducting Magnetic Bearings)
- Open the Way to all-pervasive Propulsion Health Mangement and Intelligent Control Capabilities (e.g., Prognostics, Sensor Self-check) including VHM Interfacing
- o Attack Non-Engine Propulsion System Problem Areas and Advocate Potential Solutions to Users

R & T BASE PROGRAM ELEMENTS

=0azi

-92465-270201-9101----

Cryogenic Fluid Management (LeRC, MSFC)

<u>Goal</u>: To Complement Focused Technology and Flight-Test Programs with Validated Analytical Models and small-scale test data to meet future subcritical cryogen storage and handling design challenges (e.g., Zero-g Venting, Years-duration Cryogen Maintenance)

Augmentation Objectives: [Complement and Underpin Focused Efforts]

- o Develop Pertinent Thermofluid Models for Subcritical Cryogens in Space and Validate with Small-scale Laboratory Experiments
- Achieve Fundamental Understanding of the Role Gravity/No-Gravity Plays in Subcritical Cryogen Containment and Handling Systems
- Make Available Improved Thermal Insulation and, if Feasible, Active Refrigeration Technologies (toward zero-loss containment)
- o Pursue New Gauging Techniques and Sensor/Network Concepts
- o Address Space-environment Subcritical Cryogenic Fluid Storage and Supply, Transfer and State-assessment Problems and Develop Hardware Solutions to be Ultimately Verified in the Cryo Fluid Systems focused Program and in adequate-scale FlightTesting (viz., CONE)

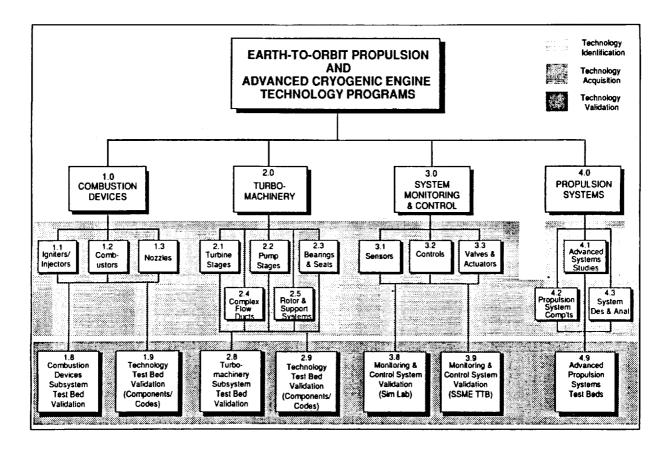
R & T BASE PROGRAM ELEMENTS

Lunar and Planetary Propellants (LeRC, JPL)

<u>Goal:</u> Provide a Verified Technological Strategy for Reaping the Large Logistical Benefits of Utilizing Indigenous Extraterretrial Energy Materials and Propellants

Augmentation Objectives: [Theme: Monitor In-Situ Resource Utilization Efforts/Initiate Work Later]

- Focus on Probable Requirements and Mission Payoffs of Indigenous Lunar and Planetary Propellants Production and Utilization
- o Identify and Critically Assess the Enabling Technologies
- o Experimentally Explore Key Production and End-use Processes (Example: Test LO2/AI "Monopropellant Slurry" in Engine)
- o Explore Ramifications of Terrestrial Energy Use of Indigenous Planetary Energy Resources (e.g., Lunar He3)


FOCUSED PROGRAMS FUNDING

(\$M)

- OAËI									
PROGRAM ELEMENT		FY1991	FY1992	EY1993	FY1994	FY1995	FY1996	FY1997	
ETO PROPULSION	Current	21.8	28.7	33.9	25.1	26.4	27.6	28.8	
	3X	21.8	28.7	33.9	25.1	26.4	27.6	28.8	
	Strategic	21.8	28.7	33.9	35.4	36/9	42.7	45.1	
COMMERCIAL VEHICLE PROPULSION	Current 3X Strategic	0.0 0.0 0.0	0.0 4.2 0.0	0.0 10.0 12.0	0.0 17.0 15.0	0.0 23.0 44.1	0.0 29.0 57.7	0.0 28.8 47.1	
AUX PROPULSION	Current	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	3X	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Strategic	0.0	0.0	0.0	2.3	5.4	10.9	15.9	
ADV CRYO ENGINE	Current	4.0	9.0	12.6	13.2	14.0	14.7	15.4	
	3X	4.0	9.0	14.9	16.7	19.6	20.2	28.0	
	Strategic	4.0	9.0	15.0	24.0	31.0	45.8	42.4	
CRYO FLUID SYSTEMS	Current	1.5	0.0	0.0	0.0	0.0	0.0	0.0	
	3X	1.5	0.0	7.4	10.0	10.3	10.8	10.0	
	Strategic	1.5	0.0	8.5	11.0	11.3	11.8	11.0	
NUCLEAR THERMAL	Current	0.5	5.0	13.0	22.0	39.0	50.3	52.6	
	3X	0.5	5.0	13.0	22.0	39.0	50.3	52.6	
	Strategic	0.5	5.0	13.0	22.0	39.0	50.3	83.0	
NUCLEAR ELECTRIC	Current	0.0	2.0	6.0	15.9	23.0	26.0	27.2	
	3X	0.0	2.0	6.0	15.9	23.0	26.0	27.2	
	Strategic	0.0	2.0	6.0	15.9	23.0	26.0	45.0	

FOCUSED PROGRAMS FUNDING (Cont'd)

			• • •	,				
Q^{					<u> </u>) C =279)PULS)6	
PROGRAM ELEMENT		FY1991	<u>FY1992</u>	<u>FY1993</u>	<u>FY1994</u>	<u>FY1995</u>	<u>FY1996</u>	<u>FY1997</u>
STATION-KEEPING PROPULSION	Current 3X Strategic	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 2.9	0.0 0.0 4.4	0.0 0.0 3.6	0.0 0.0 0.9	0.0 0.0 0.0
S/C ON-BOARD PROP	Current	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	3X	0.0	0.0	1.0	3.0	4.3	1.2	0.0
	Strategic	0.0	0.0	1.2	3.0	4.3	1.2	0.0
CONE FLT EXPT	Current	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	3X	0.0	0.0	3.3	14.8	23.5	26.0	27.2
	Strategic	0.0	0.0	3.4	19.4	24.6	25.0	14.5
SEPS FLT EXPT	Current	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	3X	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Strategic	0.0	0.0	6.3	11.6	11.5	7.6	0.9
COHE FLT EXPT	Current	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	3X	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Strategic	0.0	0.0	0.0	0.0	0.0	3.6	17.0
TOTALS	Current	27.8	<u>44.7</u>	<u>65.5</u>	7 <u>6.2</u>	<u>102.4</u>	<u>118.6</u>	<u>124.0</u>
	3X	27.8	<u>44.7</u>	<u>83.7</u>	117.5	<u>163.1</u>	<u>182.1</u>	<u>194.3</u>
	Strategic	27.8	<u>44.7</u>	102.2	164.0	234.7	283.5	<u>321.9</u>

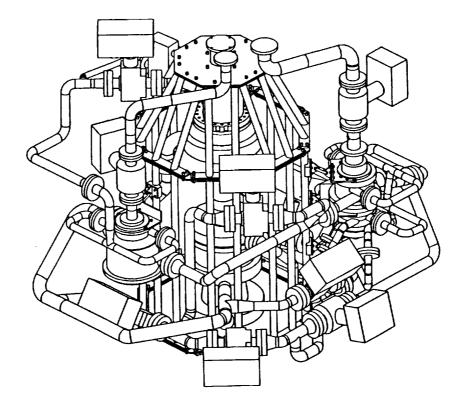
Work Breakdown Structure

-OAFF

Earth-to-Orbit (ETO) Propulsion Technology (MSFC, LeRC)

Special Note: Augmentation refers to "Strategic" funding plan; "X " is presently identical to "Current"

<u>Goal</u>: For all Engine Subsystem areas to Provide Advanced Test-Validated Analysis and Design Tools, Materials and Fabrication Processes, and Hardware/Software-Specific New Technologies such that Next-generation ETO Propulsion Systems can be more promptly and systematically developed at significantly lower risk and cost, while being more reliable and operable than current systems, all without compromising performance


Augmentation Objectives: [Theme: Expand the Time-Horizon and Purview]

- Increase the Relevance and "Technology Products" Contribution of the Combustion Device, Turbomachinery and ICHM work-areas to both Ongoing and Planned New ETO (+ in-space) Propulsion Systems
- Redouble Program efforts to mechanize Large-scale Experimental Subsystem Validation Thrusts in Combustion Devices and Turbomachinery areas; complete/operate MSFC "SimLab" (ICHM)
- Expand Program purview into the "beyond-engine" Propulsion System Arena, e.g., Technology for both Ground and Flight components such as zero-leak connections and disconnects (Poor-operability "pull")
- Increase Program technical coverage to include promising non-traditional propulsion systems, e.g., Hybrid and Combined-cycle (airbreathing/rocket) Propulsion (requires systems studies)

FOCUSED PROGRAM ELEMENTS

	- Qayes			SION-
. <u></u>	<u>Advanced C</u> (LeRC, MSF	Cryogenic Engines (Spa C)	ce Chemical Engine Technology,	SCET)
	<u>Goal</u> : "Restore association with	to Health" this just-initiated and the FY 1991/92 SEI-program bu	l ambitious Program which was funding-decima Idgets as actually realized (vs. planned).	ated in
- ····		incement by entire propulsion co	· · ·	
	o Hestore / (Contem)	AE IB contract/government-facili plate a second AETB?)	ty operations to earlier pace and level-of-effort	
		(already developed for release) ay-advancement program effort	promptly establish a component/subsystem	
 	o Initiate ef	forts on integrated modular engi	ne (IME) versions of SCET applications	
	o Better syr Cryogeni	nergize Program taskwork with E c Fluid Systems, ETO, Nuclear 1	Base R&T and non-SCET program elements, e Thermal Propulson Programs	.g.,
	ter and the second s			•

SPACE CHEMICAL ENGINE TECHNOLOGY (SCET) PROGRAM [Advanced Cryogenic Engine]

=0aef

-924.02-2702U1-910N---

Commercial Vehicle Propulsion (MSFC, LeRC, JSC)

Note: Presently worked under CSTI Booster and ETO, and SCET Programs

<u>Goal</u>: Responsively to COMSTAC recommendations to NASA, to meet Commercial ELV technology needs both near term (existing technology/services) and for new-design low-cost systems (advanced technology)

Augmentation Objectives:

[Theme: Work both *immediate* retrofit-type engineering and out-year new-design enabling technologies]

Immediate/Near-Term (1-3 years to transfer)

- o Analysis and Design Tools, Fabrication Processes
- o Low Pc Thrust Chambers (e.g., advanced ablatives)
- o Low-Costs, simplified Turbopumps & Pressurization

Longer Term (4-7 years to transfer)

- o IME, Advanced Nozzles, Expander-cycle at High Thrust
- o Hybrid Solid/Liquid Propulsion for Booster and Upper-stages

oaei

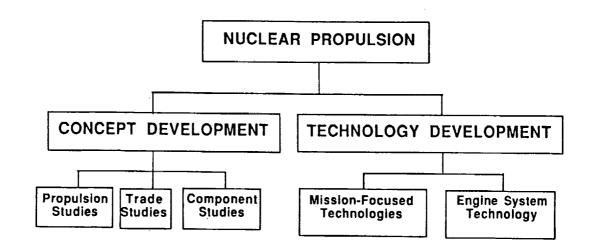
9248=2702UL910N-

COMSTAC KEY PROPULSION NEEDS

(Commercial Space Transportation Advisory Committee)

- 1. Low Cost Liquid Booster Engines LO2/LH2 (New Expander Cycle)
- 2. Low Cost Liquid Booster Engines Hydrocarbon (Evolutionary)
- 3. Hybrid Propulsion Strap-On Boosters WithTransition to High Regression Rate Non-Oxidized Fuel
- 4. Advanced Low Cost LO2/LH2 Upper Stage Engine (30-50K Lbs Thrust)
- 5. Advanced Low Cost LO2/LH2 Upper Stage Engine (100-200K Lbs Thrust
- 6. Leak Free Tubing and Ducts
- 7. Low Cost Pressure Fed Engine & Turbopump Technology
- 8. Clean Burning Solid Motor Technology
- 9. Improved LOX/RP-1 and Storable Derivative Engine Components

-SPACE-PROPULSION-


Cryogenic Fluid Systems (LeRC, MSFC)

<u>Goal</u>: Closely coordinating with all NASA and other Government related efforts, develop test-verified cryogenic fluid containment and handling technologies as required for extended spaceflight as, and when needed for development.

Augmentation Objectives: [Theme: Maximizing Collateral Support, Achieve Needed Technology Readiness for Spaceflight and Surface-based Systems]

- o Develop to the technology-readiness stage advanced Cryogenic Insulation systems (e.g., "thick MLI", MLI + foam)
- o Perfect both one-g/zero-g subcritical Fluid Transfer and zero-g control techniques
- Accurately model Cryo-fluid slosh characteristics for operating systems and develop design criteria for effective slosh-control techniques
- Establish generically applicable Cryo-servicing Facility design criteria and hardwareacquisition guidelines
- Document comprehensive Thermal and Pressure-control, Liquid Supply and Handling, and fluid-transfer design/operating guidelines (Dependent on successful conclusion of CONE and CONE flight tests)

NUCLEAR PROPULSION WBS

FOCUSED PROGRAM ELEMENTS

0/15/-----

Nuclear Thermal Propulsion (NTP) (NASA*, DOE, DoD)

*NASA Center Involvement: LeRC, MSFC, JSC

Special Note: Except 1997+, "Strategic", "3X" and "Current" funding plans for NTP are identical

<u>Goal</u>: Capitalizing on the significant national NTP hardware-demonstrated background (e.g., NERVA), a multi-agency technology investment, seeking out innovative approaches, will develop a state of technology readiness for initiating the development of an NTP system for human missions to Mars.

<u>Augmentation Objectives</u>: [Theme: National program, building heavily on past achievements and current innovation, will achieve a viable system]

- o Achieve a safe, reliable and high-performance nuclear propulsion system technology base predicated on past accomplishments
- o Seek innovative approaches for improving the NTP S.O.A.
- o Achieve a Government + Public consensus supporting the safe use of Nuclear Propulsion in space as being feasible/acceptable
- o (NASA) Coordinate with DOE and DoD (including appropriate Agency and National Laboratories) to maximize use of total national expertise and physical resources (e.g. test facilities)
- o Conduct a phased, focused NTP technology development and verification program which remains flexibly responsive to Mars precursor and manned missions

0) () SI

6) *\S*

SPACE-PROPULSION-

Nuclear Electric Propulsion (NTP) (NASA*, DOE, DoD)

*NASA Center Involvement: LeRC, JSC, JPL

Special Note: Except 1997+, "Strategic", "3X" and "Current" funding plans for NTP are identical

<u>Goal</u>: Capitalizing on the significant national hardware-related ongoing nuclear space power efforts (e.g., SP-100), a multi-agency technolgoy investment, seeking out innovative approaches, will develop a state of technology readiness for initiating the development of an NEP system for missions to Mars

<u>Augmentation Objectives</u>: [Theme: National program, building heavily on current space nuclear power and innovation, will achieve a viable system]

- Achieve a safe, reliable and high-performance nuclear electric propulsion system technology base predicated partly on ongoing developments
- o Seek innovative approaches for improving the NEP S.O.A.
- o Achieve a Government + Public consensus supporting the safe use of Nuclear Propulsion in space as being feasible/acceptable
- (NASA) Coordinate with DOE and DoD (including appropriate Agency and National Laboratories) to maximize use of total national expertise and physical resources (e.g. test facilities)
- o Conduct a phased, focused NEP technology development and verification program which remains flexibly responsive to Mars precursor and manned missions

FOCUSED PROGRAM ELEMENTS

92495-270201-910n-

Spacecraft On-Board Propulsion (LeRC, JPL)

Goal: Provide Dual-mode (NTO/N2H4) Propulsion for Planetary Missions

Augmentation Objectives: [Theme: Readiness for Planetary Missions]

o Demonstrate dual-mode "hot rocket" and advanced tankage

Station-keeping Propulsion (LeRC, JSC)

Goal: Provide Integrated H2/O2 + Resistojet Capabilities for Platforms

Augmentation Objectives: [Theme: Enable logistics, operations benefits]

- o Demonstrate H2/O2 Thrustors & Low-pressure electrolysis
- o Demonstrate Single Resistojet for Waste water and gas

Auxiliary Propulsion (JSC, LeRC)

Goal: Provide Integrated (common-propellant supply) auxiliary propulsion

Augmentation Objectives: [Theme: System & Operations simplification]

- o Demonstrate radiation-cooled Earth- & Space Storable thrustors
- o Provide complete-system technologies for integrated system

TECHNOLOGY FLIGHT EXPERIMENTS

-OAET

Cryogenic Orbital Nitrogen Experiment (CONE) (LeRC, MSFC)

<u>Goal</u>: Acquire low-g Flight Data needed for Design Tool validation for LO2 and LN2 Pressure-control, Liquid Acquisition and Transfer-system transportation and platform applications; extrapolate to at least partially validate LH2 applications

Augmentation Objectives: [Theme: LN2 & LO2 Flight-data Validation]

- o Assess effectiveness of passive pressure control
- o Acquire low-g data for active pressure control system
- o Demostrate 100:1 reduction in mixer power (active control)
- o Demonstrate effective zero-g liquid acquisition devices (LAD)
- o Demonstrate no-vent fill, and rapid venting and safing
- o Explore zero-g tank chilldown, LAD efficiency and autogenous pressurization
- o Extrapolate to pressure-control, LAD and transfer of LH2

TECHNOLOGY FLIGHT EXPERIMENTS

----OAET

-Space=Propulsion===

Cryogenic Orbital Hydrogen Experiment (COHE) (LeRC, MSFC)

<u>Goal</u>: Acquire low-g Flight Data needed for Design Tool validation for LH2 Pressure-control, Liquid Acquisition and Transfer-system transportation and platform applications

Augmentation Objectives: [Theme: LH2 Systems Flight-Data Validation]

- o Validate predictive analysis tools for liquid withdrawal (LADs)
- o Establish criteria and efficiency of no-vent fill
- o Demonstrate effectiveness of insulation systems & components
- o Demonstrate capability to meet system-safety criteria
- o Provide test-proven autogenous pressurization in transfer
- o Demonstrate flight-qualified mass guaging in zero-g operation
- o Establish effectiveness of passive pressure-control

TECHNOLOGY FLIGHT EXPERIMENTS

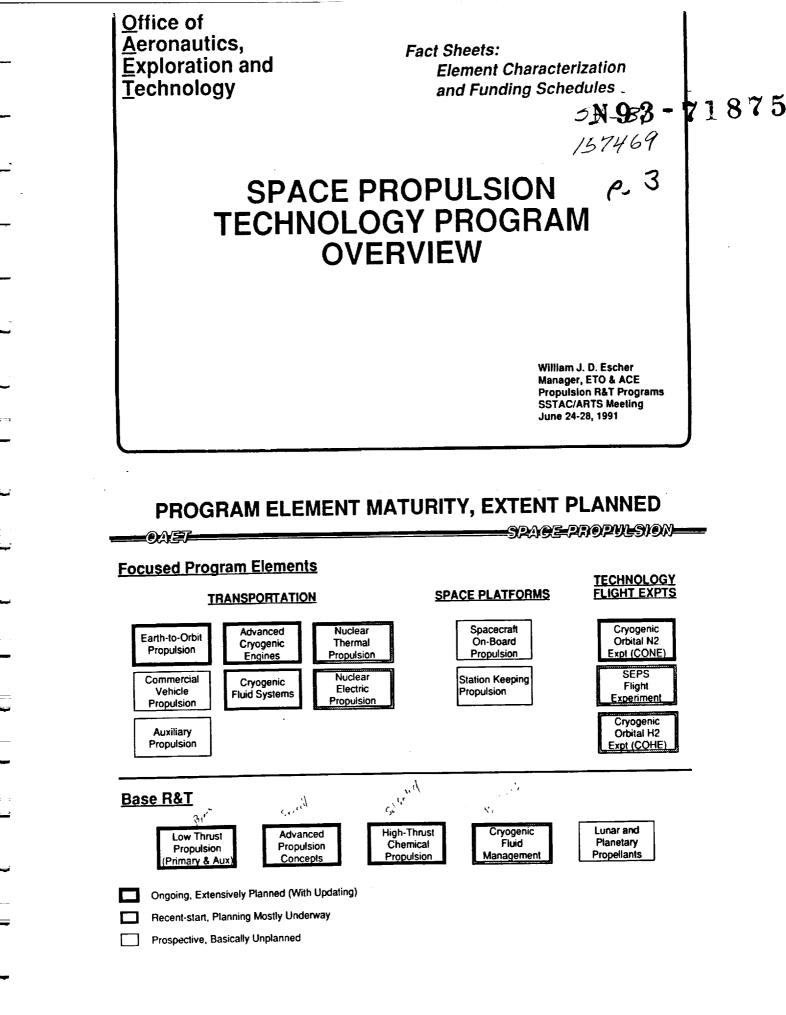
-OAE

Spage-propulsion-----

Space=propulsion=

SOLAR ELECTRIC PROPULSION (LeRC, JPL)

Goal: Demonstrate Feasibility of SEP via Flight Test


Augmentation Objectives: [Theme: Evolutionary Risk/Cost to Acceptance]

- o Launch on Delta ELV
- o APSA PV Panels (1-2 kWe) with Two Propulsion Types
 - "Derated" Xenon Ion Thrustor and Low-Power H2 Arcjet
 - Subscale Cryo H2 Container (Mod. Orbiter PSRA Tank
- o Planned Schedule/Costs through Launch
 - Ion: 42 Months, \$8.1M
 - Arcjet 48 Months, \$14.7M

oaei

REVIEW QUESTIONS

- o is the program content/approach correct?
- o Is the level of investment correct?
- o Given the available funding are the priorities correct?
- o Is the user interface being properly coordinated?
- o Are the efforts being property coordinated?
- o Are the participants correct?
- o Is the R&T Base content innovative enough to provide improved capability for future user/mission applications?
- o Does the R&T Base activity maintain or enhance NASA's technical capabilities?

FOCUSED PROGRAMS FUNDING (\$M)

Э **л** Г

:

. -

					 \$PA	os-pro	EY1995 EY1996 EY1997 26.4 27.6 28.8 26.4 27.6 28.8 36/9 42.7 45.1 0.0 0.0 0.0 23.0 29.0 28.8 44.1 57.7 47.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 14.0 14.7 15.4 19.6 20.2 28.0 31.0 45.8 42.4 0.0 0.0 0.0 11.3 11.8 11.0 39.0 50.3 52.6 39.0 50.3 52.6 39.0 50.3 83.0 23.0 26.0 27.2 23.0 26.0 27.2)))
PROGRAM ELEMENT		EY1991	EY1992	FY1993	FY1994	FY1995	FY1996	EY1997
ETO PROPULSION	Current 3X Strategic	21.8 21.8 21.8	28.7 28.7 28.7	33.9 33.9 33.9	25.1 25.1 35.4	26.4	27.6	28.8
COMMERCIAL VEHICLE PROPULSION	Current 3X Strat egic	0.0 0.0 0.0	0.0 4.2 0.0	0.0 10.0 12.0	0.0 17.0 15.0	23.0	29.0	28.8
AUX PROPULSION	Current 3X Strategic	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 2.3	0.0	0.0	0.0
ADV CRYO ENGINE	Current 3X Strategic	4.0 4.0 4.0	9.0 9.0 9.0	12.6 14.9 j)15.0	13.2 16.7 24.0	19.6	20.2	28.0
CRYO FLUID SYSTEMS	Current 3X Strategic	1.5 1.5 1.5	0.0 0.0 0.0	4 ⁻¹ 0.0 7.4 8.5	0.0 10.0 11.0	10.3	10.8	10.0
NUCLEAR THERMAL	Current 3X Strategic	0.5 0.5 0.5	5.0 5.0 5.0	13.0 13.0 13.0	22.0 22.0 22.0	39.0	50.3	52.6
NUCLEAR ELECTRIC	Current 3X Strategic	0.0 0.0 0.0	2.0 2.0 2.0	6.0 6.0 6.0	15.9 15.9 15.9	23.0	26.0	27.2

FOCUSED PROGRAMS FUNDING (Cont'd)

0\/ <i>5</i> /								19M		
PROGRAM ELEMENT		<u>FY1991</u>	FY1992	<u>FY1993</u>	EY1994	FY1995	FY1996	FY1997		
STATION-KEEPING PROPULSION	Current 3X Strategic	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 2.9	0.0 0.0 4.4	0.0 0.0 3.6	0.0 0.0 0.9	0.0 0.0 0.0		
S/C ON-BOARD PROP	Current	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	3X	0.0	0.0	1.0	3.0	4.3	1.2	0.0		
	Strategic	0.0	0.0	1.2	3.0	4.3	1.2	0.0		
CONE FLT EXPT	Current	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	3X	0.0	0.0	3.3	14.8	23.5	26.0	27.2		
	Strat egi c	0.0	0.0	3.4	19.4	24.6	25.0	14.5		
SEPS FLT EXPT	Current	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	3X	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Strategic	0.0	0.0	6.3	11.6	11.5	7.6	0.9		
COHE FLT EXPT	Current	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	3X	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Strategic	0.0	0.0	0.0	0.0	0.0	3.6	17.0		
TOTALS	Current	<u>27.8</u>	<u>44.7</u>	65.5	76.2	<u>102.4</u>	<u>118.6</u>	<u>124.0</u>		
	3X	27.8	<u>44.7</u>	83.7	117.5	163.1	182.1	<u>194.3</u>		
	Strategic	27.8	<u>44.7</u>	102.2	164.0	234.7	283.5	<u>321.9</u>		

đ

PROPULSION R&T BASE FUNDING

_ (ψινι))	M	(\$	
----------	---	---	-----	--

. .

. .

.

: =

-

-1 Berri

OAEI			(ψN	/ŋ	<u></u> 92/	Y ol- Pri	DPULSK	
SUB-ELEMENTS		FY1991	FY1992	EY1993	FY1994	<u>FY1995</u>	EY1996	<u>FY1997</u>
LOW THRUST PROPULSION	Current	5.8	5.2	5.4	5.6	5.8	6.1	6.3
	3X	5.8	5.2	7.0	9.8	11.0	12.5	14.5
	Strategic	5.8	5.2	8.0	11.0	11.0	12.5	14.5
ADVANCED CONCEPTS	Current	1.2	1.4	1.5	1.5	1.6	1.6	1.7
	3X	1.2	1.4	3.2	4.0	4.7	5.0	6.0
	Strategic	1.2	1.4	3.5	4.0	4/7	5.0	6.0
HIGH-THRUST CHEMICAL	Current	3.5	3.5	3.6	3.8	3.9	4.1	4.3
India mandar one more	3X	3.5	3.5	4.0	5.5	6.6	7.1	7.4
	Strategic	3.5	3.5	4.8	6.1	7.4	8.2	9.2
CRYO FLUID MANAGEMENT	Current	1.5	2.6	2.0	2.1	2.2	2.2	2.3
CATOT COLD MANAGEMENT	3X	1.5	2.6	2.1	2.2	2.3	2.4	2.5
	Strategic	1.5	2.6	2.1	2.2	2.3	2.4	2.5
SUB-ELEMENT TOTALS	Current	12.0	12.7	12.5	13.0	13.5	14.0	14.6
DOD CEEMENT TO THE	3X	12.0	12.7	<u>16.3</u>	21.5	24.6	27.0	30.4
	Strategic	12.0	12.7	18.4	<u>23.3</u>	<u>27.4</u>	<u>31.2</u>	<u>36.2</u>
PROGRAM SUPPORT	Current	2.4	2.5	2.6	2.7	2.8	2.9	3.0
	3X	2.4	2.5	2.3	2.6	3.0	3.2	3.6
	Strategic	2.4	2.5	2.3	2.9	3.4	3.8	4.4
SPECIAL REQUIREMENTS	Current	0.4	1.5	2.1	2.3	2.5	2.8	3.0
SPECIAL NEGOLITEMENTO	3X	0.4	1.5	1.8	2.1	2.5	2.7	2.9
	Strategic	0.4	1.5	2.3	2.5	2.9	3.0	3.3
TOTALS	Current	14.8	16.7	17.2	18.0	18.8	19.7	20.6
IVIALO	3X	14.8	16.7	20.4	26.2	<u>30.1</u>	32.9	<u>36.9</u>
	Strategic	14.8	16.7	23.0	28.7	<u>33.7</u>	<u>38.0</u>	43.9

LOW THRUST PROPULSION

N93-71876

157470 P-18

INTEGRATED TECHNOLOGY PLAN

EXTERNAL REVIEW

JUNE 26, 1991

LOW THRUST PROPULSION

AGENDA

APPLICATIONS

OBJECTIVE

STATE-OF-ART MISSION IMPACTS

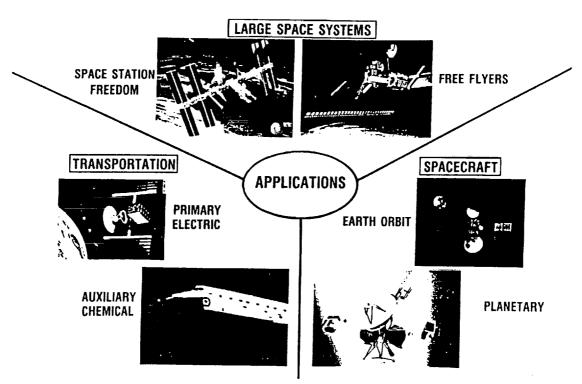
EARTH SPACE

- PLANETARY

PROGRAM

APPROACH

- CONTENT


= "STRATEGIC"

= "CURRENT"

ADVANCED TECHNOLOGY BENEFITS

SUMMARY

LOW THRUST PROPULSION

SPACE PROPULSION TECHNOLOGY DIVISION

Lewis Research Conter

_

LOW THRUST PROPULSION

PROVIDE TECHNOLOGIES FOR A BROAD RANGE OF FUTURE SPACE SYSTEMS

- SPACECRAFT —PLANETARY
- -EARTH-ORBITAL
- LARGE SPACE SYSTEMS --SPACE STATION
 - -TENDED
- VEHICLES
 - -EARTH-TO-ORBIT
 - -ORBIT TRANSFER

CD-90-47460

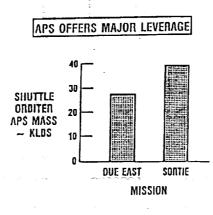
STATE-OF-ART

LOW THRUST PROPULSION

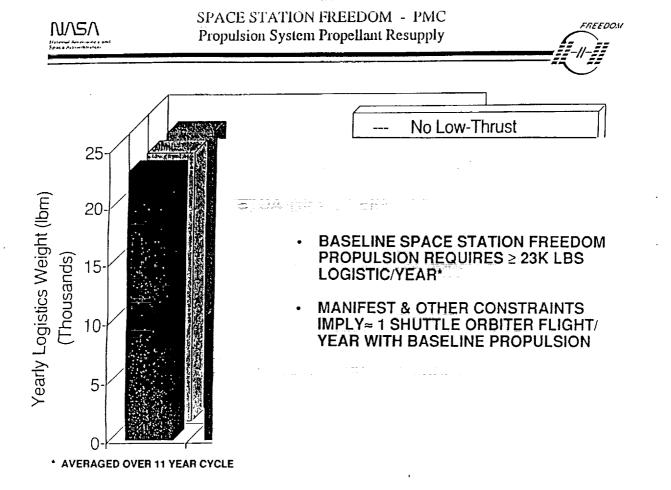
MISSION IMPACTS

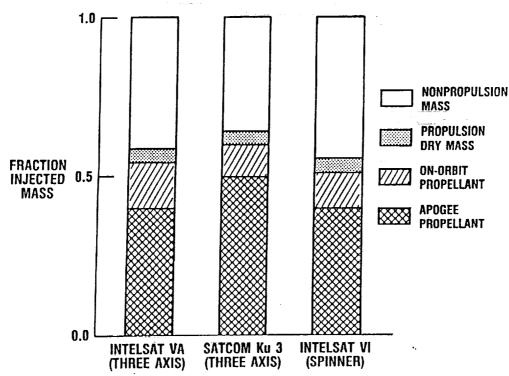
- LOW EARTH ORBIT (LEO):
 - ORBITER APS
 - SPACE STATION
- **GEOSYNCHRONOUS (GEO):**
 - TRANSFER ORBIT (GTO)

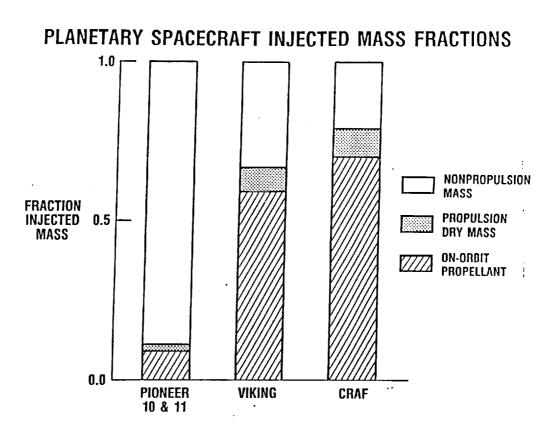
entrane composition definisce and the second composition of

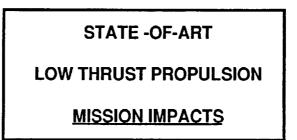

- SATELLITES
- PLANETARY

1


1


LOW THRUST PRIMARY AND AUXILIARY PROPULSION

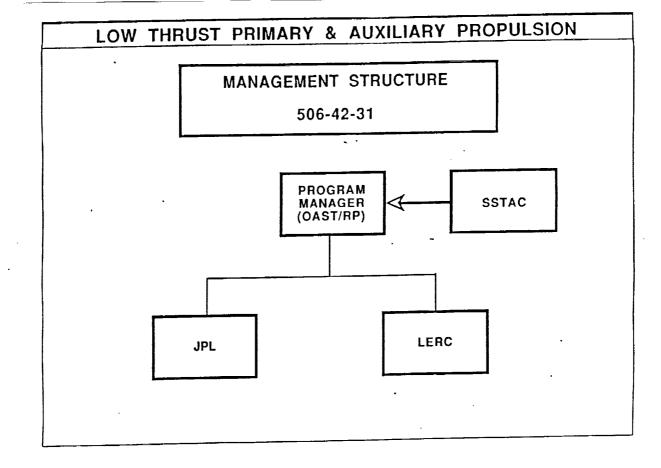


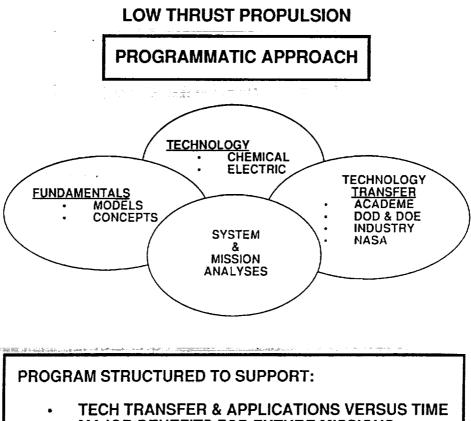

- APS MASS IS 11.4% TO 10.6% OF ORBITER

GEOSYNCHRONOUS TRANSFER ORBIT MASS FRACTIONS FOR RECENT COMMUNICATIONS SATELLITES

<u>LEO</u>

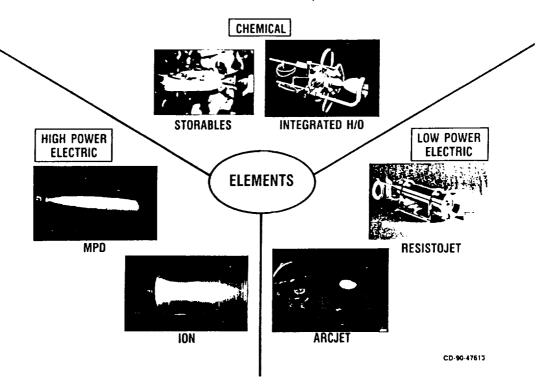
- 12-19% OF ORBITER DELVERED MASS (> 50% OF PAYLOAD)
- ~ ORBITER/YEAR FOR SPACE STATION LOGISTICS

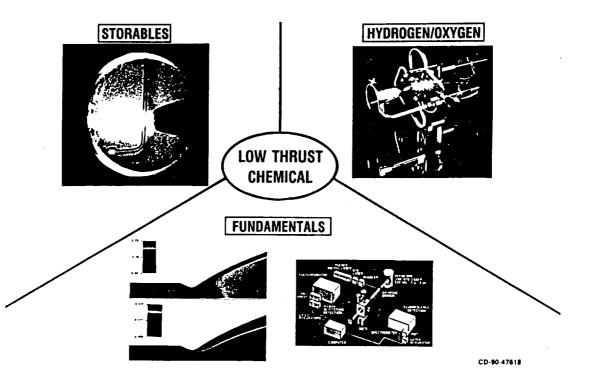

<u>GEO</u>


- 55-65% OF MASS DELIVERED TO GTO
- ON-ORBIT LIFE LIMITER

PLANETARY

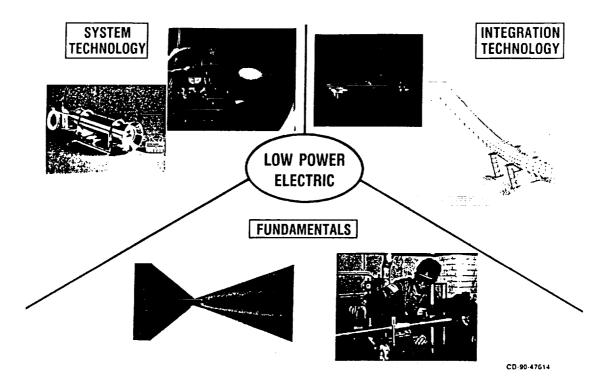
• OVER 80% OF INJECTED MASS FOR PLANNED MMII MISSIONS

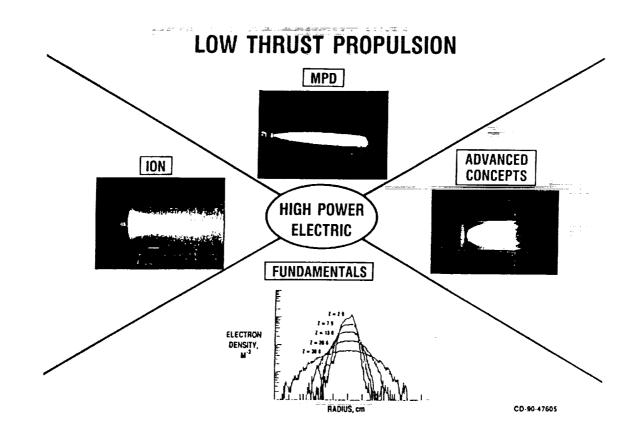

IN-SPACE FRACTIONAL MISSION PENALTIES REDUCED ONLY BY IMPROVED IN-SPACE PROPULSION



MAJOR BENEFITS FOR FUTURE MISSIONS

LOW THRUST PROPULSION


LOW THRUST PROPULSION



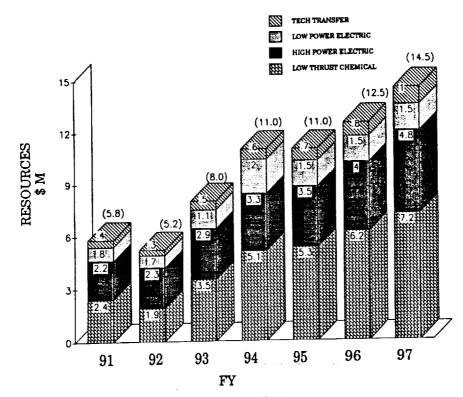
LOW THRUST PROPULSION

....

÷.

PR3-8

TECHNOLOGY TRANSFER


MECHANISMS/EFFORTS

- SPACE ACT AGREEMENT (NASA/INDUSTRY)
 - FOUR IN PLACE
 - THREE IN NEGOTIATION
- BAILMENT AGREEMENT (NASA/INDUSTRY)
 - ONE IN PLACE
- MOA (INTRA AGENCY)

.

- TWO IN PLACE
- "OUTREACH" (ACADEME & DOE)
 - FIVE ARCJET SYSTEMS PROVIDED
 - ION SYSTEMS IN FAB

LOW THRUST PL_PULSION " STRATEGIC " PROGRAM (1)

(1) ASSUMES PROPOSED NEP & DEEP SPACE PLATFORM PROPULSION FOCUSED PROGRAMS

LOW THRUST PL. PULSION "CURRENT "PROGRAM (1)

(1) ASSUMES PROPOSED NEP & DEEP SPACE PLATFORM PROPULSION FOCUSED PROGRAMS

LOW THRUST PROPULSION

"STRATEGIC" VERSUS "CURRENT" PROGRAM

LOW THRUST CHEMICAL

	PROGRAM		
TECHNOLOGIES	"CURRENT"	"STRATEGIC"	
EARTH-STORABLE			
NTO/MMH	VALIDATE 100LBF ROCKET FOR MMII	VALIDATE 100LBF ROCKET FOR MMII COMPLETE 15LBF ROCKET VALIDATIOI APOGEE VERSION DEMO	
NTO/N2H4	(1)		
SPACE STORABLE LOX/N2H4 LOX/HC	• ROCKET DEMO	ROCKET VALIDATION VEHICLE APS ROCKET DEMO	
INTEGRATED H/O		RAD-COOLED ROCKET VALIDATION VEHICLE APS PROGRAM INITIATED	

"STRATEGIC" PROGRAM ENABLES AGGRESSIVE SPACE STORABLE AND INTEGRATED H/O LOW THRUST CHEMICAL PROGRAMS

(1) ASSUMED FOCUSED PROGRAM

LOW THRUST PROPULSION

"STRATEGIC" VERSUS "CURRENT" PROGRAM

LOW POWER ELECTRIC

	PROGRAM		
TECHNOLOGIES	"CURRENT"	"STRATEGIC"	
ARCJET >600s, 1-2kW <1KW & 2-5KW	ROCKET VALIDATION	ROCKET, PPU, & GASSIFIER VALIDATION SYSTEM TECHNOLOGY VALIDATIONS	
DERATED" ION	• THRUSTER DEMO	THRUSTER/PPU DEVELOPMENT	
"HALL THRUSTER"	• TECHNOLOGY EVALUATION	TECHNOLOGY EVALUATION	

"STRATEGIC" PROGRAM ENABLES SECOND GENERATION ARCJET AND STATIONKEEPING ION OPTIONS

LOW THRUST PROPULSION

"STRATEGIC" VERSUS "CURRENT" PROGRAM

HIGH POWER ELECTRIC (1)

	PROGRAM		
TECHNOLOGIES	"CURRENT"	"STRATEGIC"	
SEPS	THRUSTER VALIDATION	SYSTEM VALIDATIONS THRUSTER PPU THERMAL & PROP. MGT. INTERFACES SYSTEM INTEGRATION INITIATED	
NEPS (ROBOTIC)	THRUSTER DEMO'S	SYSTEM R&T INITIATED	

"STRATEGIC" PROGRAM ENABLES SEP & ROBOTIC NEPS SYSTEM R&T

(1) MW CLASS NEPS FOCUSED PROGRAM ASSUMED

SPACECRAFT ON-BOARD PROPULSION (LERC, JPL)

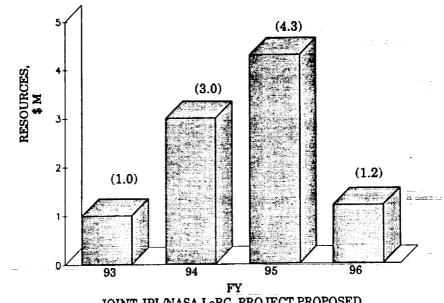
- GOAL: PROVIDE DUAL-MODE (NTO/N2H4) PROPULSION FOR PLANETARY MISSIONS
- AUGMENTATION OBJECTIVE: [ASSURE DUAL MODE PROPULSION READINESS] DEVELOP DUAL MODE HOT ROCKET

 - DEVELOP ADVANCED TANKAGE

STATIONKEEPING PROPULSION (LERC, JSC)

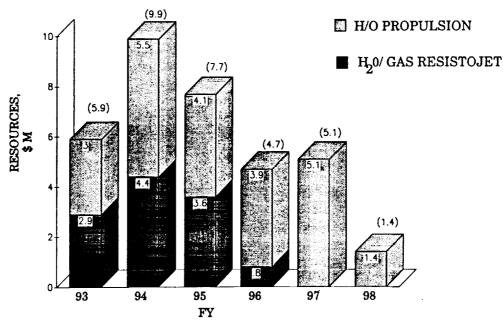
- GOAL: PROVIDE INTEGRATED H/O & RESISTOJET SPACE STATION PROPULSION
- AUGMENTATION: [ENABLE LOGISTICS OPERATIONS BENEFITS FOR SPACE STATION] DEVELOP H/O ROCKETS DEVELOP LOW PRESSURE ELECTROLYSIS DEVELOP SINGLE RESISTOJET FOR H₂O & WASTE GAS

AUXILIARY PROPULSION (JSC, LERC)

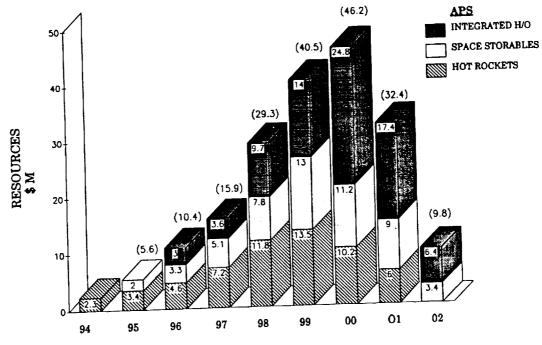

GOAL: PROVIDE ADVANCED AUXILIARY PROPULSION FOR EARTH LAUNCH VEHICLES

AUGMENTATION GOAL: [PROVIDE EVOLUTIONARY HI PERFORMANCE OPERATIONALLY EFFICIENT AUXILIARY VEHICLE PROPULSION] PROVIDE RAD COOLED EARTH & SPACE STORABLE PROPULSION

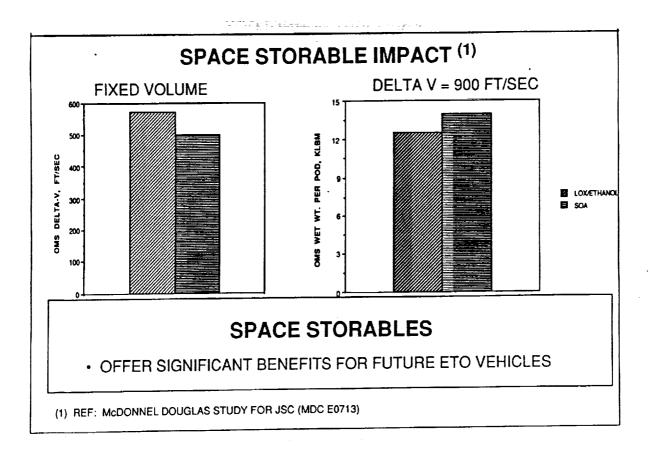
PROVIDE INTEGRATED H/O PROPULSION



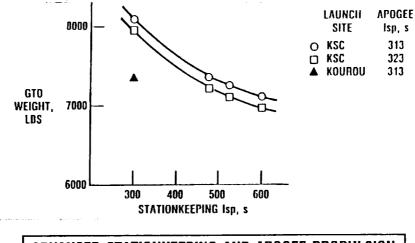
たちまたい いたことがし 通知


JOINT JPL/NASA LeRC PROJECT PROPOSED

FOCUSED TECHNOLOGY SPACECRAFT ON-BOARD PROPULSION SPACE STATION FREEDOM "STRATEGIC"

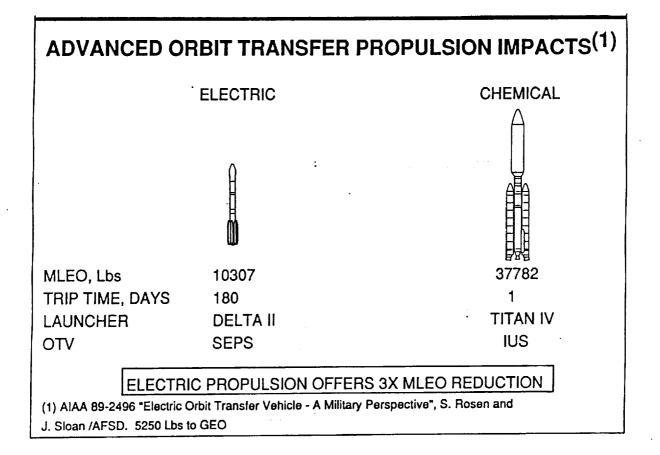

FOCUSED ____CHNOLOGY TRANSPORTATION

AUXILIARY PROPULSION "STRATEGIC"



FY

	Current Baseline	Potential Baseline
Propulsion Element Upmass	1 flight per year	1 flight per <i>5</i> years
Ground Processing (Man-Hours)	\$200 K/Year	\$200 K/ 5 Years
Dedicated SSF Hazardous Processing Facility	\$50 Million	N/A


ON-BOARD PROPULSION IMPACTS(1)

ADVANCED STATIONKEEPING AND APOGEE PROPULSION • REDUCE GTO REQUIREMENTS • MITIGATE LAUNCH SITE IMPACTS

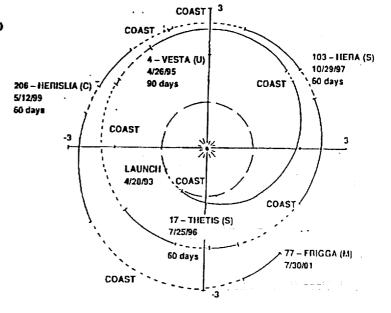
(1) 15 YEAR GEO LIFE, 3500 LBS EOL WEIGHT

CD-90-47467

JPL

ADVANCED PROPULSION FOR THE MARS ROVER SAMPLE RETURN MISSION

Significant Launch Mass Reductions Are Possible Using Electric Propulsion


40000 HLV PAYLOAD TO LEO (kg) PAYLOAD E DRY MASS Electric Propulsion D PROPELLANT **Reduces the LEO** 30000 Launch Mass by 18 to 42 Percent 20000 A 300-kW SEP System **Provides the Best** 10000 **Trip Time Performance** Centaur Injection 0 Is Replaced With Ц NEP SEP CENTAUR Low-Thrust Escape ົທ 00-kW 00-kW 300-kW

JPL

STATUS OF ELECTRIC PROPULSION FOR PLANETARY MISSIONS

MBAR TRAJECTORY WITH SOLAR ELECTRIC PROPULSION ENABLES FIVE ASTEROID RENDEZVOUS PER MISSION

- FIVE ASTEROIDS CAN BE VISITED ON THE SAME MISSION WITH ELECTRIC PROPULSION; ONLY ONE ENABLED WITH NTO/MMH
- EXAMPLE ASTEROID TOUR INCLUDES:
 - 4 VESTA (90 days)
 - 17 THETIS (60 days)
 - 103 HERA (60 days)
 - 206 HERISLIA (60 days)
 - 77 FRIGGA (TO EOM)

NEP MISSION VS BALLISTIC - KEY EXPECTED IMPROVEMENTS FLIGHT TIME PAYLOAD MASS SCIENCE

1) NEPTUNE ORBITER/PROBE

ξ n

1 E.

1 1 1

100120

- SHORTER FLIGHT TIME 11 YRS VS > 18 YRS
- TRITON SCIENCE ORBITER MISSION VS 41 FAST FLYBYS (4-5 KM/S)
- RING SCIENCE POSSIBLE TO SPIRAL INWARD TO RING ZONE
- ATMOSPHERE SCIENCE OBSERVATION FROM CLOSE (E.G. 3 R_N)
 ORBIT

2) PLUTO ORBITER/PROBE

- ORBITER MISSION VS FAST (13 KM/S) FLYBY FOR BALLISTIC MISSION
- SPIRAL INWARD AS LOW AS DESIRED
- RENDEZVOUS WITH CHARON
- DEPLOY NEPTUNE LANDER OR PROBE
- SHORTER FLIGHT TIME, 10.5 YEARS
- NEP IS ENABLING (BALLISTIC MODE TAKES > 36 YRS TO DO ORBITER)
- 3) JUPITER GRAND TOUR
 - ORBITER MISSION FOR CALLISTO, GANYMEDE, EUROPA AND IO (IF RADIATION PROBLEM CAN BE TACKLED)
 - DEPLOYMENT OF SOME LANDERS OR PENÉTRATORS

NEP MISSION VS BALLISTIC - KEY EXPECTED IMPROVEMENTS (CONTINUED)

- 3) MULTIPLE ASTEROID RENDEZVOUS
 - MINIMUM OF SIX RENDEZVOUS WITH <u>PREFERRED</u> ASTEROIDS (SIZE, TYPE) VS ONE MAJOR TARGET PLUS ONE OR TWO SMALL TARGETS OF OPPORTUNITY
 - ON AN AVERAGE OF ONE RENDEZVOUS EVERY TWO YEARS VS ~ ONE EVERY 4 YEARS
- 4) JUPITER POLAR ORBITER
 - ADVANTAGE EXISTS IN LARGE PAYLOAD POTENTIAL FOR MULTI-SPACECRAFT FIELDS AND PARTICLES EXPERIMENTS
- 5) COMET NUCLEUS SAMPLE RETURN
 - BETTER PERFORMANCE AND ACCESSIBILITY TO LARGER NO. OF COMETS (MORE OPPORTUNITIES)
 - PRESERVATION OF SAMPLE
 - LOWER APPROACH SPEED WHEN RETURNING TO EARTH $(V \approx = 0 \text{ km/s})$
 - IF ALLOWED TO SPIRAL BACK INTO EARTH THEN ORBITAL SAMPLE RECOVERY INSTEAD OF HIGH VELOCITY (V∞=15km/s) DIRECT ENTRY

: -+

•

Ī.

.....

- ESSENTIAL FOR SPACE MISSIONS
 - EARTH SPACE
 - PLANETARY
- PREDOMINANT LAUNCH & SPACE VEHICLE "PAYLOAD"
- HI LEVERAGE TECHNOLOGIES DEFINED
 - INITIAL TRANSFERS ACHIEVED
- BROAD & MAJOR BENEFITS ASSURED WITH SUPPORT:

SPACECRAFT

<u>م</u>

- PLATFORMS
- TRANSPORTATION

N93-71877

ADVANCED PROPULSION CONCEPTS

Presented to the Integrated Technology Plan External Review

54-81 157471 P- 18

JPL

June 26,1991

· · · · : : :

Joel C. Sercel

Advanced Propulsion Systems Group Jet Propulsion Laboratory

ADVANCED PROPULSION CONCEPTS

1

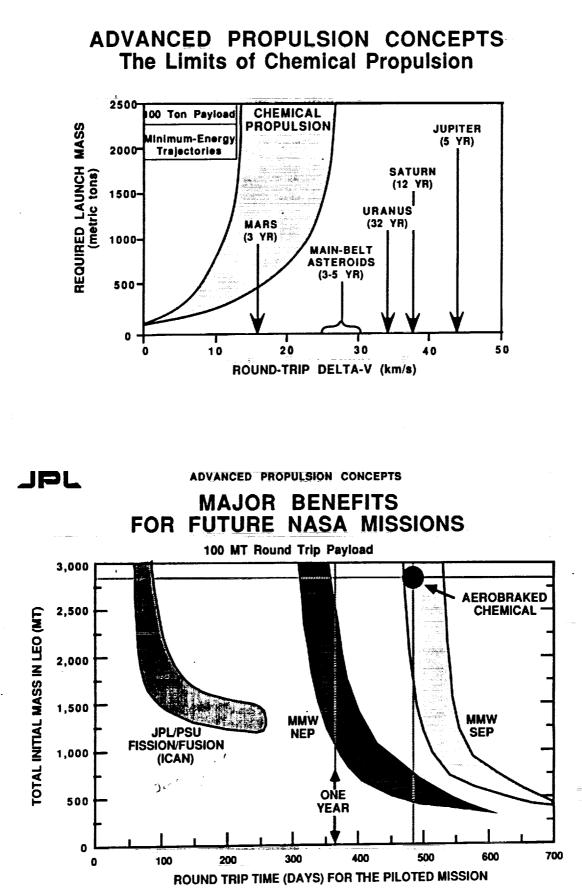
OBJECTIVES

t d

i -

_

-


SCHEDULE

	1991 COMPLETE FIRST ECR PLASMA ENGINE THEORY
PROGRAMMATIC	1992 MEASURE CARBON-60 ION PROPERTIES
ESTABLISH THE FEASIBILITY OF PROPULSION	1992 TEST 25-KW ELECTRODELESS ROCKET
TECHNOLOGIES FOR VASTLY EXPANDED SPACE ACTIVITY	1993 TEST SUPERSONICALLY-HEATED HWAVE ROCKET
	1994 RESOLVE KEY PLASMA PLUME PHYSICS ISSUES
TECHNICAL	1995 TEST SUSTAINED MW-CLASS PLASMA ROCKET
REVOLUTIONARY PERFORMANCE SOUGHT:	1996 PROVE LIFE/PERFORMANCE OF C-60 ION ENGINE
 ~1kg/kW specific mass 	1996 SUSTAIN CONFINEMENT OF ATOMIC HYDROGEN
 Specific impulse tailored to mission requirements 	1997 APPLY MICRO-FISSION DEMONSTRATION TO ICAN
Ability to use in-situ resources	FISSION/FUSION PROPULSION FEASIBLITY ISSUES
Round-trips to Mars in months	004+ LABORATORY SCALE ATOMIC HYDROGEN ROCKET
 Round-trips to outer planets in 1 to 2 years 	004+ 10 MW-CLASS PLASMA ENGINE & S.S. µWAVE ROCKET
 The capability for robotic missions beyond the solar system 	004+ ICAN SYSTEM PROOF-OF-CONCEPT
	004+ 100 kW GROUND-TO-SPACE PHASE CONJUGATE BEAM

RESOURCES (\$M)

PARTICIPANTS

NE
ON THRUSTER
HEATED MICROWAVE ROCKET
LASMA ROCKET
PLASMA PHYSICS
SION (ICAN) PROPULSION
YSICS RESEARCH
S ·
-
C
AROCKET
INTERACTIONS
ROCKETS
OR PROPULSION
1

_

=

PENN STATE ION-COMPRESSED ANTIMATTER-CATALYZED NUCLEAR (ICAN) PROPULSION

~1000 µm

~100 µm

VEHICLE

GOLD PUSHER

DRIVERS

GOLD PUSHER SHIELD

U / DT

CORE

GOLD SHIELD

P

DT CORE

MAGNETIC

NOZZLE FIELD LINES

PELLET

PLASMA

CONCEPT DESCRIPTION

JPL

- Uranium (or Pu) enriched DT (or D-He3) pellet is compressed using a megajoule-class light ion (Li) driver
- At the time of peak compression, the target is bombarded with a small number (~10^8) ~ of antiprotons to catalyze fission
 ABLATED
- The fission energy release triggers a high-efficiency fusion burn to heat the propellant
- The resulting expanding plasma is deflected by a magnetic nozzle to produce thrust

RECENT RESULTS FROM PENN STATE FISSION/FUSION (ICAN) WORK

- THE TECHNOLOGY FOR A 10 GW SYSTEM MAY BE FEASIBLE IN 2010 TIME FRAME ...GIVEN ADEQUATE RESOURCES
- ANTIPROTON QUANTITIES REQUIRED ACHIEVABLE
 - 10^8 ANTIPROTONS PER PELLET CAN BE PRODUCED NOW IN TEN MIN. AT CERN
 - SOLID ANTI-H2 STORAGE NOT NEEDED
- RADIATION FLUENCE MAY BE MUCH LOWER THAN FUSION PROPULSION
- ≈100 DAY ROUND-TRIP TO MARS
- AFOSR INITIATIVE TO DEMONSTRATE SCIENTIFIC FEASIBLITY OF MICRO-FISSION IN FIVE YEARS (\$3.5M LEVERAGED THUS-FAR)

JPL

ADVANCED PROPULSION CONCEPTS

PENN STATE FISSION/FUSION (ICAN) WORK Program Goals

<u>THIS YEAR</u>

DEVELOPED MICRO-FISSION AND FISSION/FUSION CONCEPTS THROUGH DETAILED PELLET MODELING

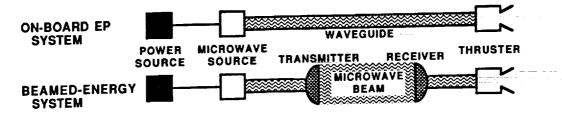
CONVINCED AFOSR TO ESTABLISH INITITIVE TO PROVE SCIENTIFIC FEASSIBLITY IN ~5 years

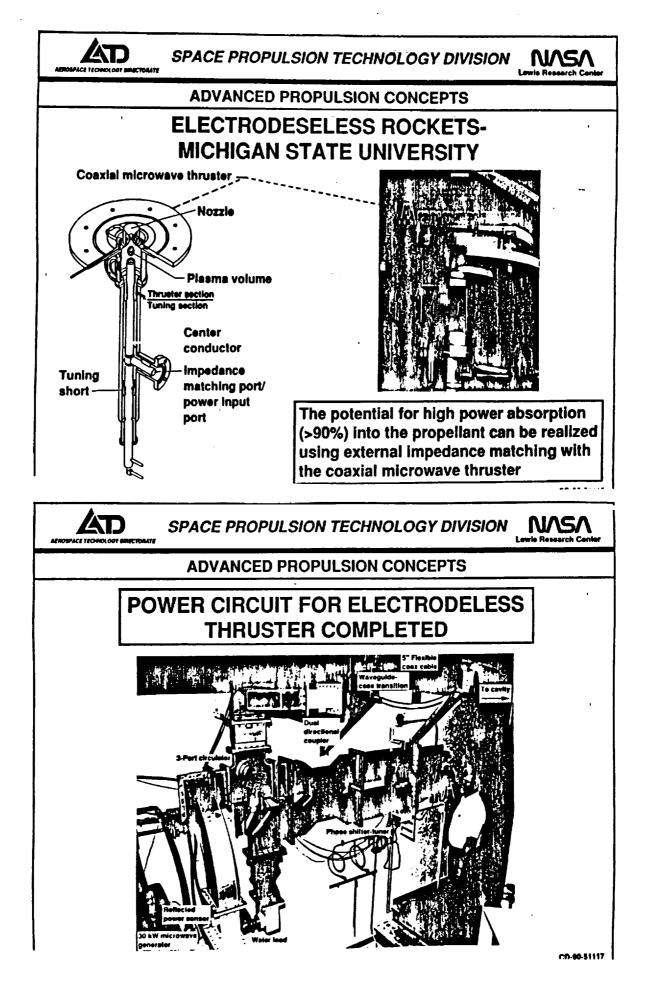
NEXT YEAR

CONTINUE THEORETICAL RESEARCH TO ADDRESS MINIMIZING RADIATION FLUENCE FROM PROPULSION SYSTEM (D-HE3 FUEL)

IMPROVED MODELS OF UP-COMING EXPERIMENTS AT SHIVA STAR

DETAILED EXPERIMENTAL DESIGN AND PLANNING

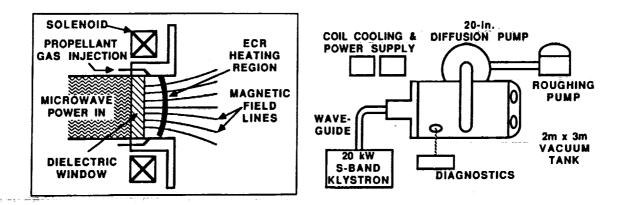

FUTURE YEARS


ADDRESS CRITICAL TECHNOLOGIES IN SUPPORTING SUBSYSTEMS

CONTINUE TO DEVELOP CONCEPT TO ESTABLISH FEASIBILITY FOR FLIGHT IN 2010-2020 TIME FRAME

JPL ELECTRODELESS ELECTRIC PROPULSION THRUSTERS

- May dramatically improve EP thruster life by eliminating electrodes
 and their associated erosion
- Absorb microwave energy into propellant
 - Examples
 - Electron-Cyclotron Resonance Thruster (JPL)
 - Microwave Electrothernal Rockets (LeRC & JPL)
 - Variable-Isp Plasma Rocket (MIT)
- May be able to use extraterrestrial-produced propellants (e.g., O2)
- Can be used as an electric propulsion system (with on-board microwave source) or as a beamed-energy system (with a remote microwave transmitter)



ADVANCED PROPULSION CONCEPTS

ELECTRON-CYCLOTRON **RESONANCE (ECR) PLASMA ENGINE**

- Recent Work
 - Quasi 1-D Plasma Model
 - Axisymmetric Magnetic Nozzle Model
 - Completed assembly of test facility and preliminary experiments
- Near-term plans
 - Optimize magnetic field configuration Automate experimental facility
- Future plans Optimized devices
- Improve theoretical models
- Higher power levels
- Alternate propellants

ADVANCED PROPULSION CONCEPTS

ELECTRODELESS ELECTRIC THRUSTERS **Program Goals**

THIS YEAR

COMPLETE ECR PLASMA ENGINE BASIC PHYSICS RESEARCH WITH GO/NO-GO DECISION

NEXT YEAR

TEST 25-KW ELECTRODELESS ROCKET CONCEPT

INITIATE DEVELOPMENT OF HIGH-EFFICIENCY AND/OR HIGH THRUST ECR DEVICE (CONTINGENT ON DECISION)

FUTURE YEARS

Caracterization and the second s

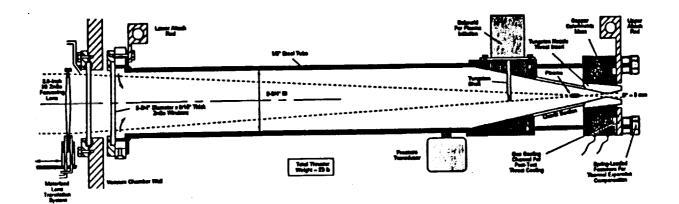
DEMONSTRATE APPLIED-FIELD ELECTRODELESS DEVICES AT HIGH SPECIFIC IMPULSES AND EFFICIENCIES

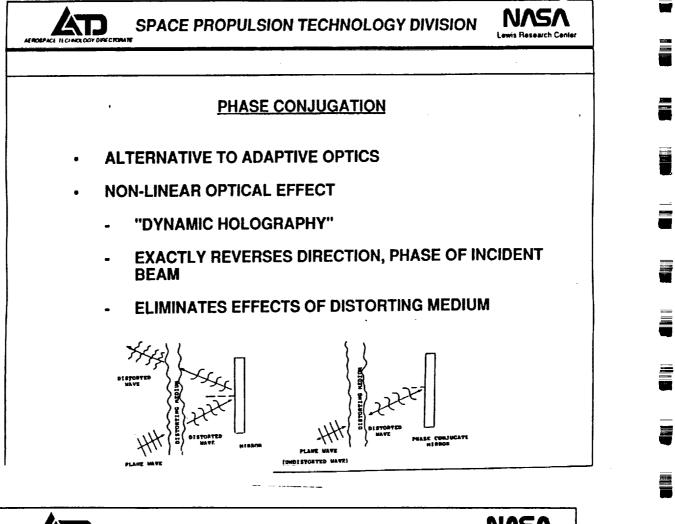
BEAMED ENERGY PROPULSION

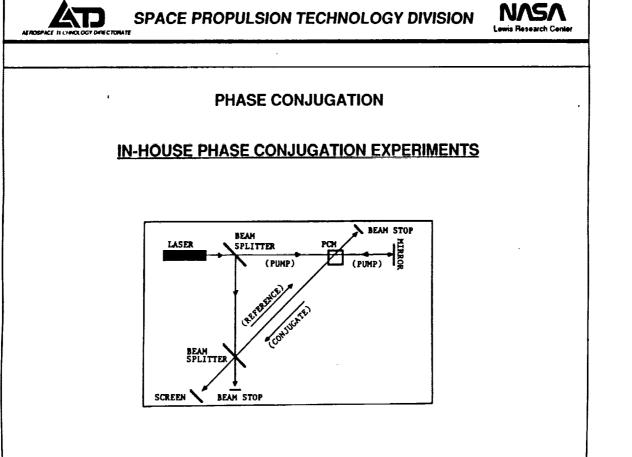
- Improve propulsion system performance by removing the power source from the vehicle
 - Locate the source (laser) on ground or in orbit
- Various combinations of source, source location, and propulsion system possible
 - Near-visible vs microwave
 - · Ground-based vs space-based transmitter
 - Direct (thermal) thruster vs indirect (beam -> electric) EP thruster
- · All concepts limited by transmission capability

= 1.0 atm

- Atmospheric effects for ground-based lasers
- Diffraction effects for long distances (probably)


Compusition Sciences, inc. Space Propulsion Division


Thruster Layout


5

- Specific Impulse = 600 700 sec
- Pressure
- Plasma Efficiency = 35%
- Overall Efficiency = 20%

- Mass Flow = 0.1 g/sec
- Throat D* = 3 mm
- Thrust = 0.5 N

ADVANCED PROPULSION CONCEPTS BEAMED ENERGY PROPULSION Program Goals

LASER ROCKET

BUILD & DIRECTLY TEST A 10 kW LASER ROCKET (AT U. of ILL.) • ANCHOR THERMAL & PERFORMANCE MODLES

DIRECTLY EVALUATE THRUST VS GEOMETRY & CONDITIONS

DESIGN AND FABRICATE A 100 kW LASER ROCKET

PHASE CONJUGATE OPTICS

CONTINUE IN-HOUSE LeRC PHASE CONJUGATION EXPERIMENTS

- 3,4 WAVE MIXING
- LOW POWER HeNe LASER
- BaTiO3 PHOTOREFRACTIVE CRYSTALS

WORK TOWARD 100 KW GROUND-TO-SPACE DEMONSTRATION

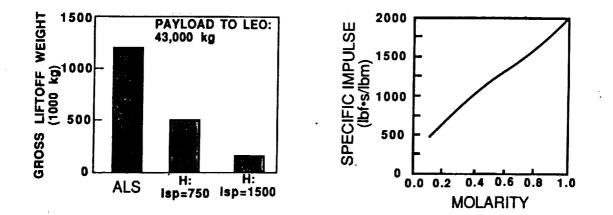
ADVANCED PROPULSION CONCEPTS

Lerc Multimegawatt Plasma Rocket Program

JOINT DOE-NASA PROGRAM INITIATED WITH LOS ALAMOS

- LEVERAGES FUSION REACTOR PROGRAM BY USING 100 MW SPHEROMAK TECHNOLOGY
- HAVE DEMONSTRATED OPERATION AT 10 MW
- WILL ESTABLISH POWER BALLANCE AND SCALING CHARACTERISTIC OF LARGE SCALE (0.5m) ROCKETS OPERATED WITH EXTERNAL MAGNETIC FIELDS

PROGRAM GOALS


- 1995: DEMONSTRATE SUSTAINED MW-CLASS PLASMA ROCKET
- 1998-2003: DEMONSTRATE SUSTAINED 2 MW PLASMA ROCKET
- BEYOND 2004: DEMONSTRATE 10 MW PLASMA ROCKET

Lerc Atomic Hydrogen Rocket Program

CONCEPT:

FREE RADICAL ATOMIC HYDROGEN IS STORED IN A SOLID MATRIX OF MOLECULAR HYDROGEN UNDER HIGH MAGNETIC FIELD AND LOW CRYOGENIC TEMPERATURE

ADVANCED PROPULSION CONCEPTS

LeRC ATOMIC HYDROGEN ROCKET Program Goals

APPROACH

CONTRACT WORK AT LLNL, U. of HAWAII, AND OAK RIDGE LeRC SYSTEMS ANALYSIS AND VEHICLE STUDIES

1995

IDENTIFY ATOMIC HYDROGEN CONFINEMENT TECHNIQUE

1996

DEMONSTRATE SUSTAINED CONFINEMENT

BEYOND 2004

TEST LABORATORY SCALE ATOMIC HYDROGEN ROCKET

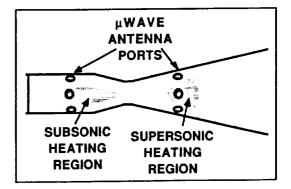
E

ADVANCED PROPULSION CONCEPTS

SUPERSONICALLY-HEATED MICROWAVE ELECTROTHERMAL ROCKET

CONCEPT:

MICROWAVE ENERGY IS COUPLED TO A GAS IN SUPERSONIC FLOW DOWNSTREAM OF THE THROAT - A "MICROWAVE AFTERBURNER"


POTENTIAL BENEFITS:

MAY CIRCUMVENT HEATING LIMITS TO ROCKET PERFORMANCE • 2X IN SPECIFIC IMPULSE

2X IN EFFICIENCY

HISTORY:

A QUALITATIVE EXTENSION OF LeRC, P.S.U., and M.S.U. MICROWAVE ROCKET RESEARCH

SUPERSONICALLY-HEATED µWAVE ROCKET Program Goals

YEAR ONE

VERIFY THEORETICAL CONCEPT BENEFITS BY MODELING:

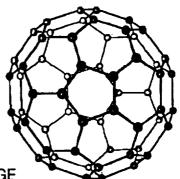
- SUPERSONIC HEATING REGION
- VISCOUS EFFECTS
- ENERGY TRANSFER KINETICS AND GAS EXPANSION

YEAR TWO

- MODIFY JPL APPARATUS TO DEMONSTRATE S.S. HEATING
- INVESTIGATE DIFFERING ANTENNA SCHEMES AND ENGINE PERFORMANCE

FUTURE YEARS

- DEVELOP FLIGHT-LIKE NEAR-TERM SYSTEMS
- DEVELOP ADVANCED CONCEPT ENGINES
- STUDY APPLICATION TO OTHER ROCKET SYSTEMS


ADVANCED PROPULSION CONCEPTS CARBON-60 ION PROPULSION

CONCEPT:

BUCKMINSTERFULLERENE IS SUBLIMATED, IONIZED AND ELECTRO-STATICALLY ACCELERATED TO PRODUCE THRUST

POTENTIAL BENEFITS:

• FIRST CLUSTER PROPULSION CONCEPT TO PROMISE HIGH PROP. UTILIZATION, MONO-MASS DISTRIBUTION, MINIMAL FRAGMENTATION, LARGE ION MASS, AND LOW IONIZATION ENERGY

- HIGH EFFICIENCY EVEN IN 1000 3000 s RANGE
- DRAMATICALLY RELAXED GRID SPACING AND DISCHARGE CURRENT FOR ULTRA-HIGH-POWER ION ENGINES

ADVANCED PROPULSION CONCEPTS

CARBON-60 ION PROPULSION Program Goals

YEAR ONE

VERIFY THEORETICAL CONCEPT BENEFITS BY MEASURING:

- IONIZATION CROSS SECTIONS
- VAPOR PRESSURE CURVES
- FRAGMENTATION EFFECTS

YEAR TWO

ADDRESS PRACTICAL DEVELOPMENT ISSUES

- SELECT BEST IONIZATION/ACCELERATION SCHEMES
- MEASURE CHARGE-TO-MASS DISTRIBUTIONS
- INVESTIGATE CONDENSATION AND SPUTTERING

FUTURE YEARS

- DEVELOP FLIGHT-LIKE NEAR-TERM SYSTEMS
- DEVELOP ADVANCED CONCEPT ENGINES
- EXAMINE HIGHER-MASS CARBON CLUSTERS

JPL

JPL

U.S. ADVANCED PROPULSION RESEARCH

Mission Studies - Magnetic Nozzles Fusion ET Propellant Production · Dense Plasma Focus · Moon : JSC ECR Plasma Engine - Microwave Thruster - Cluster Ion · Mars : U. of Arizona, Old Domin. U. Carbon-60 Engine Field Propulsion Beamed Energy **Optics Analysis** Concepts Solar Salls Supersonic µWave · World Space Found. Rocket Solar Thermal High-Energy Density **Chemical Propeliants Propulsion Thruster** Mass Drivers - University Research Metallized Propellants · Coaxial : SSI High-Energy Density • ET Resource Thrusters Propellants • PSU - Fission/Fusion Chemical Hybrid · 02/CO Antimatter + CIT - University Research - Magnetic Nozzies OSU - Magnetic for ICF - Computational Nozzias RPI **Plasma Physics**

• MIT - Tandem Mirror Plasma Engine

 Brown U. - H2 Magnetic Lervitation

- · U. III. Laser Thruster
- U. Hawaii Atomic Hydrogen

LeRC

Air Force

- · Rall Guns : SDIO · Ram Accel. : U. of Wash.
 - Laser Propulsion · Lasers : SDIO, LLNL, LANL · Thrusters : U. of Tenn.,

Others

- Fusion
 - U. of Illnois
 - · AFOSR
 - LLNL
- Antimatter · LANL
 - · Penn State U.

Note: Does not address fission research

ADVANCED PROPULSION CONCEPTS SUMMARY

TECHNICAL CHALLENGE:

STATE-OF-THE-ART AND EMERGING PROPULSION TECHNOLOGIES DO NOT MEET THE REQUIREMENTS FOR MANY AMBITIOUS 21st CENTURY SPACE MISSIONS. FOR EXAMPLE. BIOMEDICAL CONSIDERATIONS MAY RULE OUT TRIPS TO MARS WITH FLIGHT TIMES GREATER THAN ONE YEAR - HENCE APC MAY BE REQUIRED EVEN FOR SEI

TECHNOLOGY MANAGEMENT APPROACH:

- IN-HOUSE SYSTEMS STUDIES (BENFIT V.S. TECHNOLOGY NEEDS)
- IN-HOUSE PROOF-OF-CONCEPT RESEARCH (EXPERIMENTS AND THEORY)
- CONTRACTED RESEARCH (ESPECIALLY EXPERIMENTS AND THEORY AT UNIVERSITIES)

PAYOFF: REVOLUTIONIZE SPACE TRAVEL

- ROUND-TRIPS TO MARS IN A FEW MONTHS
- PILOTED ROUND-TRIPS TO OUTER PLANETS IN 1 TO 2 YEARS
- ROBOTIC MISSIONS BEYOND THE SOLAR SYSTEM

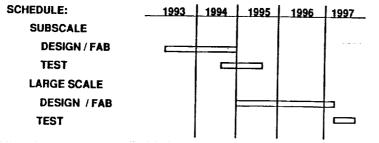
RATIONALE FOR AUGMENTATION:

- MAY BE THE MOST IMPORTANT TECHNOLOGIES FOR 21st CENTURY SPACE ACTIVITES
- CURRENT PROGRAM FUNDING IS SUBCRITICAL 3x PLAN IS VITAL

RELATIONSHIP TO FOCUSED ACTIVITIES AND OTHER PROGRAMS:

- · CONNECTIONS TO PROGRAMS SUCH AS SEI MADE VIA SYSTEMS STUDIES AND MEETINGS RESEARCH COMPONENT OF THIS PROGRAM STILL NEW
- HAS LEVERAGED SIGNIFICANT PROGRAMS FROM OTHER AGENCIES:
- i.e. JPL'S SUPPORT OF ICAN AT PENN STATE RESULTED IN A \$3.5M AFOSR
 - INITIATIVE TO DEMONSTATE FEASIBILITY OF MICRO-FISSION

ADVANCED PROPULSION TECHNOLOGY


TITLE: ADVANCED HIGH THRUST EXPANDER CYCLE THRUST CHAMBER TECHNOLOGY

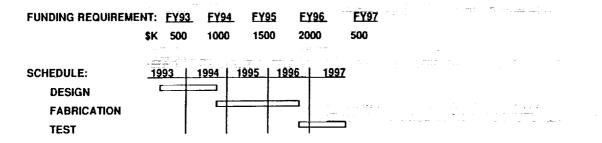
OBJECTIVE: INVESTIGATE AND VERIFY AT LARGE SCALE THE TECHNOLOGIES NEEDED TO ALLOW OPERATION OF AN 02/H2 EXPANDER CYCLE THRUST CHAMBER AT HIGH THRUST LEVELS

APPROACH: SUPPLIMENT EXPANDER CYCLE WORK TO EXPLORE ALTERNATE HEAT TRANSFER ENHANCEMENT APPROACHES FOR HIGH THRUST APPLICATIONS. PURSUE SUBSCALE INVESTIGATIONS TO CHARACTERIZE THE APPROACHES. SELECT THE MOST PROMISING FOR VERIFICATION AT LARGE SCALE. TESTING TO BE DONE AT THE MSFC TEST CELL 116.

憲法・12年6日 フィットりょうよう

FUNDING REQUIREMENT: <u>FY93</u> <u>FY94</u> <u>FY95</u> <u>FY96</u> <u>FY97</u> \$K 500 1500 3000 3000 2500

and the second states of the


APPLICATION: APPLICATIONS FOR HIGH THRUST EXPANDER CYCLE ENGINES INCLUDE UPPER STAGES, ORBIT TRANSFER, INTERPLANETARY TRANSFER VEHICLES

ADVANCED PROPULSION TECHNOLOGY

TITLE: LARGE SCALE PLATELET CHAMBER DEMONSTRATION

OBJECTIVE: VALIDATE FORMED PLATELET COOLING LINER CONSTRUCTION IN A LARGE SCALE COMBUSTION CHAMBER

APPROACH: SUPPLIMENT EXISTING WORK UNDER CONTRACT NAS8-37456 TO CONSTRUCT A LARGE SCALE THRUST CHAMBER AND TEST FIRE THE CHAMBER TO VERIFY THE PLATELET DESIGN APPLICATION. CHAMBER SIZE WILL BE BASED ON A DESIGN THAT IS COMPATIBLE WITH USING AN EXISTING HIGH THRUST METHANE INJECTOR (750KLB). THE TESTS WILL EMPLOY O2/H2 AT A THRUST LEVEL OF ABOUT 450 KLB. THE CHAMBER STRUCTURE WILL BE BASED ON EITHER CASTING TECHNOLOGY BEING DEVELOPED UNDER THE ADVANCED MAIN COMBUSTION CHAMBER ACTIVITY OR A GENERAL WORKHORSE CONSTRUCTION APPROACH. TESTING WILL BE CONDUCTED AT THE MSFC TEST CELL 116.

APPLICATION: APPLICATIONS FOR FORMED PLATELET CONSTRUCTION INCLUDE ANY ROCKET ENGINE NEW DEVELOPMENT OR EXISTING ENGINE MODIFICATION WHICH CAN BENEFIT FROM LOW HOT WALL TEMPERATURES IN THE RANGE OF 400°F TO 700°F.

ADVANCED CAST HOT GAS MANIFOLD FOR HIGH PRESSURE TITLE: PREBURNER CYCLE ENGINES

DEMONSTRATE TECHNOLOGY NECESSARY FOR **OBJECTIVE:** DEVELOPMENT OF A LOW COST, HIGH RELIABILITY HOT GAS MANIFOLD.

APPROACH:

- -

2.3

- SELECT THE SSME AS A DESIGN POINT:
 - **DESIGN COMPONENT IN-HOUSE** .
 - **STRUCTURAL & DYNAMIC ANALYSIS**
 - THERMAL ANALYSIS
 - PROCUREMENT STRUCTURAL CASTING
 - MANUFACTURE AND ASSEMBLY IN-HOUSE
 - TEST AND VERIFICATION IN-HOUSE

SCHEDULE:

- **DESIGN AND ANALYSIS**
- PROCUREMENT OF STRUCTURAL CASTING
- MANUFACTURE & ASSEMBLY .
- **TEST & VERIFICATION**

- JUNE 91 JAN 92 **JAN 92 - JAN 93** JAN 93 - JAN 94
- JAN 94 DEC 94

COST: 4 M

ADVANCED GAS GENERATION FOR MULTI-PHASE OPERATION TITLE: (O2/H2 PROPELLANTS)

OBJECTIVE: DEVELOPMENT AND DEMONSTRATION OF A O2/H2 GAS GENERATOR WHICH IS STABLE AND HAS HIGH PERFORMANCE UNDER "ANY " OPERATION CONDITION OR PROPELLENT PHASE.

APPROACH:

- USE INJECTOR DESIGN CODES TO SELECT POTENTIAL . CANDIDATES
- EVALUATE CANDIDATE ELEMENT CONCEPTS AT THE MSFC .• COMBUSTION PHYSICS LABORATORY FACILITY (COLD FLOW SCREENING)
- POTENTIAL CANDIDATES WILL BE HOT FIRE TESTED AT .• TS 116 PREBURNER POSITION.

SCHEDULE:

- CANDIDATE SELECTION JUNE 91 JUNE 92 COLD FLOW SCREENING JAN 93 JUNE 93
- ٠
- HOW FIRE EVALUATION JAN 94 JUNE 94

COST: 1M

TITLE: ADVANCED MAIN COMBUSTION CHAMBERS CYCLE LIFE DEMONSTRATIONS

OBJECTIVE: DEMONSTRATE THE CYCLE LIFE CAPABILITY OF PROMISING CONCEPTS FOR ADVANCED CHAMBER DESIGN

- VACUUM PLASMA SPRAYED LINERS
- PLATELET LINERS .
- LIQUID METAL DIFFUSION BONDED LINER (REDUCED . MATERIAL PROPERTIES)
- HIGH ASPECT RATIO COOLANT CHANNELS EDM FORMED
- **GRADATED OXIDATION RESISTANT (BLANCHING)** • METALLIC COATING (VACUUM PLASMA SPRAYED) GLIDCOP (MATERIAL) LINER POWDER METAL

APPROACH: FABRICATE "40K THRUST" SUBSCALE CHAMBERS AND TEST FOR 100+ THERMAL CYCLES EACH AT TS116 AT MSFC.

SCHEDULE: SIX MONTH TEST SERIES EACH

COST:

* CURRENTLY SCHEDULED

Ī

. **7**

1

COMBUSTION STABILITY FOR HYBRID ROCKET ENGINES

LIQUID-SOLID HYBRID ROCKET ENGINES MAY BE SUBJECT TO COMBUSTION INSTABILITIES RELATED TO LIQUID OXIDIZER FEED LINES, COMBUSTION PROCESSES, AND FLOW PROCESSES.

DATA ARE REQUIRED ON THE OXIDIZER ATOMIZATION PROCESSES, BURNING RATES, FLOW ENHANCEMENT OF BURNING RATES, EFFECTS OF SUSPENDED DROPLETS AND PARTICLES, VORTEX SHEDDING EFFECTS, AND OTHER COMBUSTION CHAMBER PROCESSES.

COMBUSTION STABILITY MODEL CAN BE DEVELOPED AND VALIDATED USING THE DETAILED PHYSICAL DATA.

COST - ABOUT \$200k PER YEAR (2 YEARS)

ADVANCED DIAGNOSTICS FOR COMBUSTION AND FLOW

LASERS AND OTHER OPTICAL EQUIPMENT ARE REQUIRED TO SUPPORT MEASUREMENTS RELATED TO COMBUSTION STABILITY AND COMBUSTION PHYSICS AND CHEMISTRY. THREE DIMENSIONAL PHASE DOPPLER PARTICLE ANALYSIS CAPABILITY IS REQUIRED FOR ATOMIZATION, EVAPORATION, AND DROPLET BURNING STUDIES.

DATA WILL BE USED FOR COMBUSTION AND COMBUSTION STABILITY MODEL VALIDATION, AND FOR DESIGN STUDIES ON PROTOTYPE INJECTOR ELEMENTS.

COST - ABOUT \$200k PER YEAR (3 YEARS)

PERFORMANCE ANALYSIS FOR HIGH TEMPERATURE ENGINES

CURRENTLY USED ROCKET ENGINE PERFORMANCE ANALYSIS MODELS REQUIRE UPGRADING TO DEAL WITH HIGH TEMPERATURE WORKING FLUIDS SUCH AS THOSE IN NUCLEAR POWERED ENGINES FOR A MARS MISSION. SPECIFICALLY, UPDATED CHEMISTRY DATA ARE NEEDED.

COST - \$100k (1 YEAR)

TITLE: INJECTOR / MAIN COMBUSTION CHAMBER WALL COMPATIBILITY OPTIMIZATION STUDIES

OBJECTIVE: EVALUATE INJECTOR EFFECTS ON CHAMBER WALL COMPATIBILITY TO DESIGN FOR INCREASED CHAMBER LIFE.

APPROACH: BY USING EXISTING "40K" CALORIMETER HARDWARE, EVALUATE THE EFFECT ON WALL HEAT FLUX & RESULTING WALL TEMPERATURE ON THE FOLLOWING

- LOX COAX SWIRL vs. LOX COAX SHEAR ELEMENT
- OUTER ROW ELEMENT SCARFING
- OUTER ROW ELEMENT CANTING (INBOARD)
- FILM COOLING vs. MIXTURE RATIO BIAS
- OUTER ROW WALL GAP

SCHEDULE :

- HARDWARE FABRICATION ONE YEAR
- TESTING & DATA EVALUATION ONE YEAR

COST: 1M

INTEGRATED TECHNOLOGY PLAN

FOR THE CIVIL SPACE PROGRAM

N93-71878

S5-81 157472 P, 13

SPACE R&T BASE: PROPULSION

HIGH THRUST CHEMICAL

S. Gorland

6/26/91

		SPACE R&T BAS	
tutional ca developme systems to transfer an TECHNICAL Validated o cryogenic Full 3D coo heat transf Design me for combus Reduced O Higher ene	ATIC technology base and pability for continue ent of advanced space support launch, up id ascent/descent er design and analytica turbopump bearings des for turbopump in	ed advances in the ce propulsion per stage, orbit ngines. Il codes for a and seals. Internal flow and gnostic capabilities rease life, safety.	MILESTONES - (BASE PROGRAM) FY93 - Demonstrate metallized RP-1 performant FY94 - Complete 3D Pump Code Development FY94 - Complete H/O Stability Model FY94 - Complete Subscale testing of Ceramic Brush seals. FY95 - Complete assessment of cryogenic magnetic bearings. FY96 - Complete combined cycle analysis. FY96 - Complete atomic hydrogen engine/feed system fabrication. FY97 - Complete generation of tribomaterials date base for turbopump bearings.
			PARTICIPANTS
RESOURCE	PLANNED	3X GUIDELINE	LEWIS RESEARCH CENTER
FY91	3.5	3.5	
FY91 FY92	3.5 3.5 3.6		LEWIS RESEARCH CENTER
FY91 FY92 FY93 FY94	3.5 3.5 3.6 3.8	3.5 3.5 4.8 6.1	LEWIS RESEARCH CENTER
FY91 FY92	3.5 3.5 3.6	3.5 3.5 4.8	LEWIS RESEARCH CENTER

SPACE R&T BASL PROPULSION

LUNAR AND PLANETARY PROPELLANTS

NEEDS

1

- Reduce cost of SEI missions
- Validate performance potential of In-situ propellants
- Demonstrate compatibility between production and propulsion systems

CHALLENGE/APPROACH

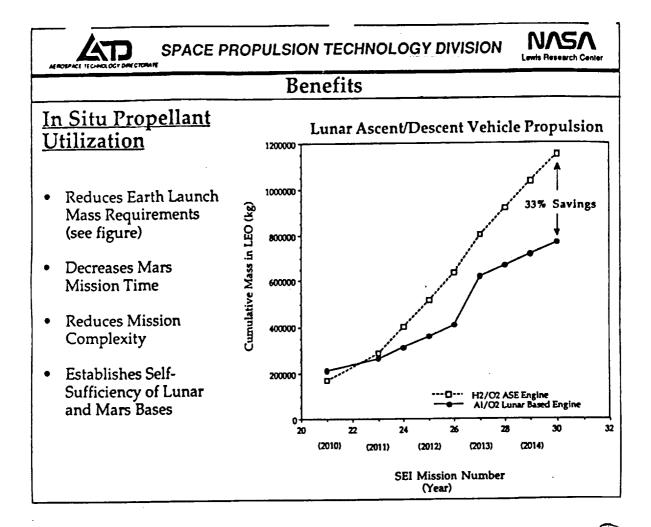
- Develop propulsion technology for engines that operate on propellants produced at the moon and Mars
- Insure engines operate with high degree of reliability and autonomy

BENEFITS

- Significantly reduce Earth launch-to-orbit mass requirements
- Increase self-sufficiency of planetary bases
- Significantly reduce trip-time for manned Mars missions

SPACE R&T BASL 'ROPULSION HIGH THRUST CHEMICAL

1


LUNAR AND PLANETARY PROPELLANTS

CURRENT PROGRAM

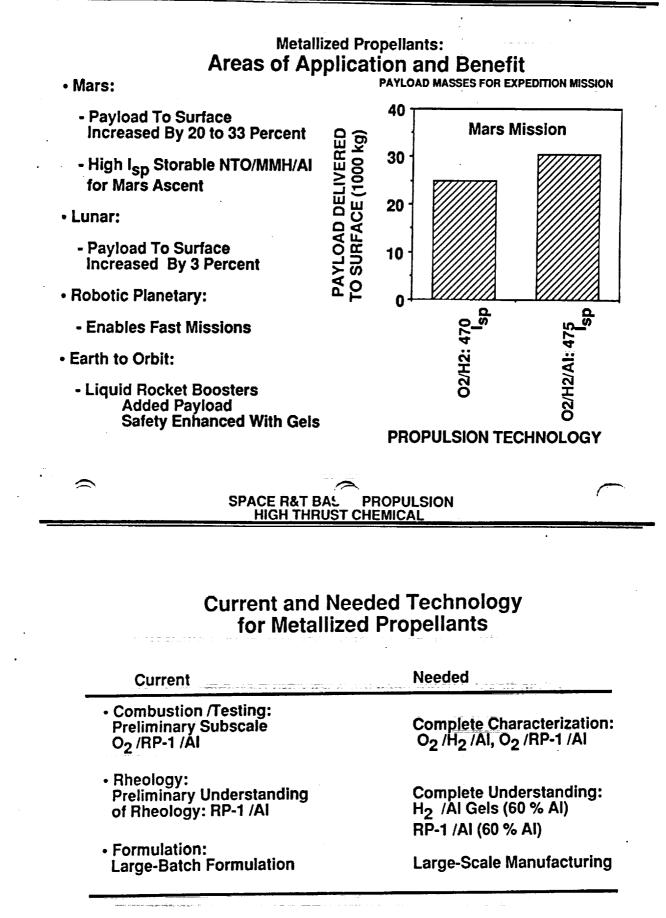
- Complete Carbon Monoxide/Oxygen sub-scale combustion experiments
- Identify technology issues for dual-fuel engine design
- Define Metal/oxygen monopropellant hazard classification
- Establish Metal/Oxygen monopropellant formulation

AUGMENTED PROGRAM

- Validate Sub-Scale Metal/Oxygen monopropellant combustion
- Demonstrate Carbon Monoxide/Oxygen engine at large scale
- Demonstrate capability for Large-batch production of Metal/Oxygen monopropellant

SPACE R&T BAS⊾ PROPULSION HIGH THRUST CHEMICAL

Metallized Propellants:


Metallized Propellants Offer

Higher Specific Impulse and Higher Propellant Density Safer Propellants (Gelled)

Significant Performance Increases Are Possible

Higher Delivered Payload Lower Initial Mass in LEO

Oxidizer +	Fuel +	Metal
02	H ₂	AI
0 ₂	Hydrocarbon	AI
N204	ММН	AI

PR5-4

COMBUSTION

TECHNOLOGY REQUIREMENTS

- Develop Atomization, Supercritical Vaporization, Mixing Models
- Develop Damping Device Models
- Develop Diagnostics To Make Measurements in The Combustor
- Develop Performance & Stability Database

TECHNOLOGY CHALLENGES

- Designing High Performance Stable Engines
- Reducing The Amount Of Development & Qualification Testing

BENEFITS

- Reduced Engine Weight
- Increased Engine Design Margin
- Reduced Engine Development Time

SPACE R&T BASE: PROPULSION HIGH THRUST CHEMICAL

AUGMENTED PROGRAM

INJECTOR ATOMIZATION CHARACTERIZATION - Develop Supercritical Spray Combustion Model

ROCKET ENGINE COMBUSTION DIAGNOSTICS - Develop Devices To Measure Rocket Combustor Fluid Properties

NEW STABILITY RATING TECHNIQUES

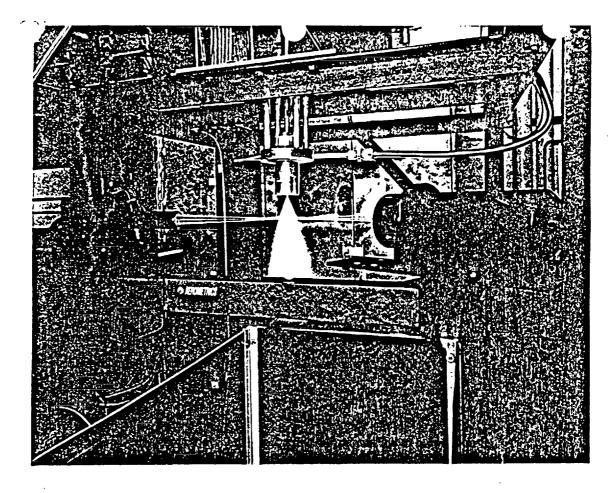
- Develop High Energy Frequency Controlled Technique

PERFORMANCE & STABILITY DATABASE - Create Standardized Reporting Format & Database

· Oreate otenediaizes reporting i onnat a par

INTEGRATED BAFFLE/CAVITY MODEL

- Develop Hub Baffle & Baffle/Cavity Interaction Model


CURRENT PROGRAM

SHEAR COAXIAL INJECTOR ATOMIZATION CHARACTERIZATION

- Compare Cold Flow & Hot Fire Atomization Measurements
- Verify Existing Models & Develop New Model If Appropriate

INJECTOR/CHAMBER FREQUENCY COUPLING INVESTIGATION

- Investigate LOX Tube Resonance Coupling Instability
- Create Validation Database For Model & CFD Code Development

SPACE R&T BASL ROPULSION HIGH THRUST CHEMICAL

TURBOMACHINERY CODES/TOOLS

<u>NEEDS</u>

- Model secondary flows in the turbomachinery of liquid propellant rocket engines.
- Integrate these models into current design techniques

CHALLENGE/APPROACH

- Reduce the prohibitive CPU time of numerical simulation
- Use approximation techniques until the availability of massively parallel processing

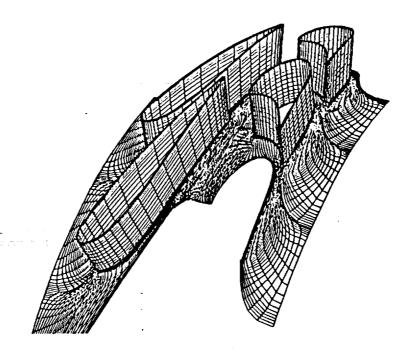
BENEFITS

- Improved turbomachinery reliability, performance and life
- Decreased time and cost of development

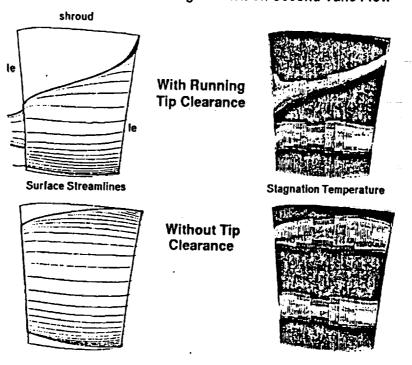
SPACE R&T BASE ROPULSION HIGH THRUST CHEMICAL

TURBOMACHINERY CODES/TOOLS

CURRENT PROGRAM


 Develop alternative approaches to numerically simulate 3D, unsteady viscous flow in space turbopumps to better predict aerothermal loads and component efficiencies

AUGMENTED PROGRAM


-

- Develop parallel processing capability for turbine design
- Develop deep throttling capability for space turbopumps
- Complete unsteady model for analysis of complete pump stage
- Verify aerodynamic performance for unique, space propulsion turbine blades

SPACE CHEMICAL PROPULSION PROGRAM Advanced Expander Test Bed (AETB) Hydrogen Turbine (First Stage)

Pratt & Whitney SSME HPFTP Second Vane Suction Side Effect of First Blade Leakage Vortex on Second Vane Flow

SPACE R&T BASE TOPULSION HIGH THRUST CHEMICAL

BEARINGS

TECHNOLOGY NEEDS:

- Validated design codes and methodologies
- Advanced materials and coatings
- Improved bearing and bearing damper design
- Improved thermohydrodynamic models

TECHNOLOGY CHALLENGES:

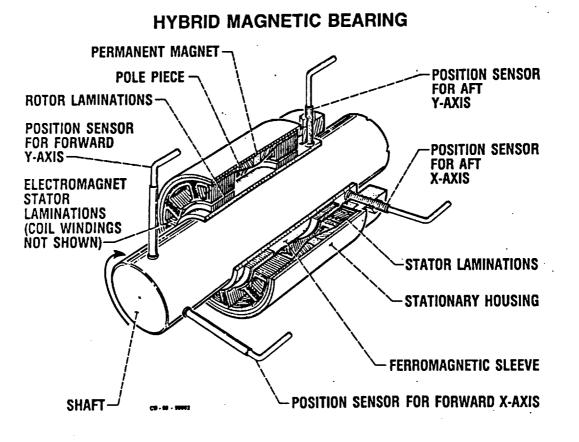
- Measure complete bearing fluid mechanic and thermal properties to thoroughly validate codes
- Standardize measurement techniques to determine bearing dynamic coefficients
- Identify propellant compatible and wear resistant materials
- Develop bearing designs tolerant to wide operating ranges and pump transients

TECHNOLOGY BENEFITS:

- Longer Life: Increased reliability, improved maintainability, multimission capability
- Improved Performance: Higher speeds, greater stiffness & damping, improved stability

SPACE R&T BAS. ROPULSION

BEARINGS


CURRENT PROGRAM

- Experimental testing of LH2 Foil Bearings
- Development of Foil Bearing design and performance prediction code
- Development of dynamic coefficients measurement technique
- Development of hydrostatic bearing steady state and dynamic characteristics code
- Flow visualization experiments of fluid film bearings for code validation
- Experimental testing of a hybrid magnetic bearing to identify technical issues

AUGMENTED PROGRAM

- Demonstration testing of foil bearings in a turbopump
- Experimental testing of LOX foil bearings
- Development of advanced hydrodynamic, hydrostatic and hybrid bearing concepts
- Experimental testing of fluid film bearings to validate codes
- Development of magnetic and superconducting magnetic bearing technology
- Demonstration of magnetic bearings in a turbopump
- Advancement of cryogenic fluid flow and thermal fundamentals to model bearing thermohydrodynamics (turbulence modeling, two-phase flow, cavitation, inertia)
- Establishment of tribomaterials design data base and methodology

SPACE R&T BASL 'ROPULSION HIGH THRUST CHEMICAL

SPACE R&T BAS PROPULSION HIGH THRUST CHEMICAL		
FOIL BEARING PERFORMANCE IN LH2		
OBJECTIVE:	JUSTIFICATION	
CHARACTERIZE FOIL BEARING LOAD CAPACITY AND TORQUE IN LH ₂	LONG-LIFE, HIGH LOAD CAPACITY BEARING IS NEEDED FOR CRYOGENIC TURBOPUMPS	
APPROACH: • COOPERATIVE AGREEMENT WITH AIRESEARCH UNDER 1958 SPACE ACT • AIRESEARCH PROVIDES ANALYSES CODES AND FIOL BEARING TESTER • LERC PROVIDES LH ₂ TEST FACILITY	AIRESEARCH HAS DEMONSTRATED LOAD CAPACITY OF 200 + psi IN GN2	
POR HOUSENS ASSEMBLED POR SEGMENTS POIL SEGMENT NEMOVED FOR	 PROGRAM HIGHLIGHTS: ACHIEVED 240 PSI LOAD CAPACITY IN LH2 RAN STABLY AT ALL SPEEDS (10-97 KPRM) OVER 150 START/CYCLES WITH NO NOTICEABLE BEARING WEAR ACHIEVED 300 PSI LOAD CAPACITY IN LN2 ACCUMULATED RUN TIME: 4 HRS IN LH2 AND 5 HRS IN LN2 	

SPACE R&T BAS PROPULSION HIGH THRUST CHEMICAL

TURBOPUMP SEALS TECHNOLOGY

!

ţ

TECHNOLOGY NEEDS:

- Longer life
- Lower leakage especially over wide throttling ranges in small turbopumps
- Higher pressure capability
- Dynamic stability, high shaft speed
- Compatible materials

An analysis in the second seco

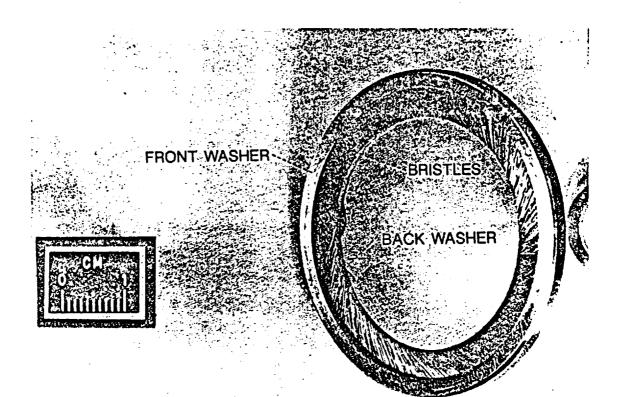
TECHNOLOGY CHALLENGES:

Low density, wear-resistant materials or material combinations

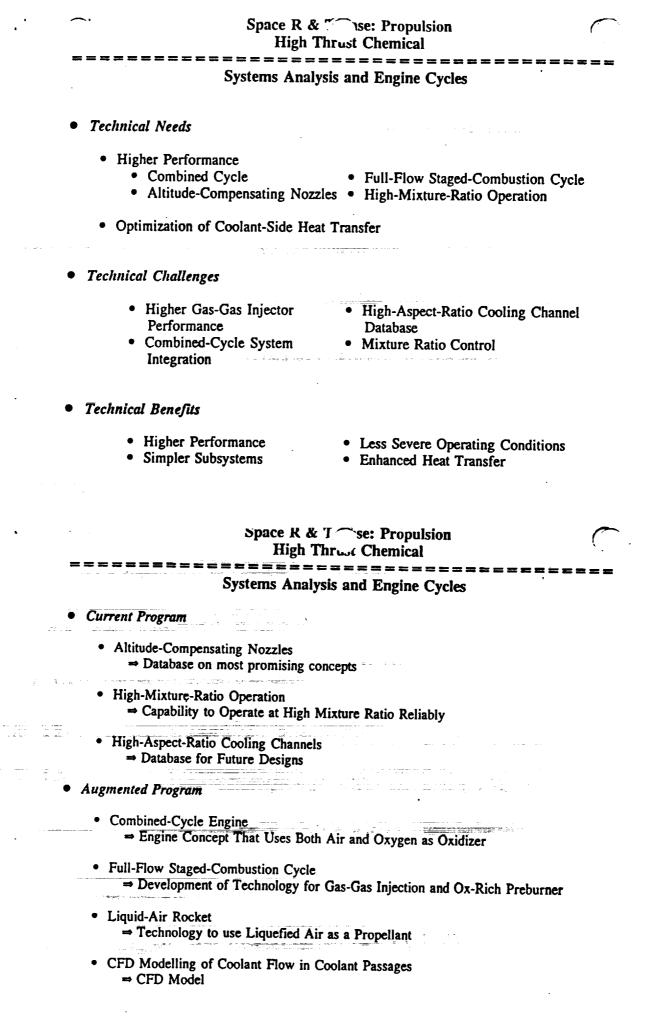
- Low leakage, non-contacting seals
- High dynamic response of seals to shaft excursions
- Oxygen compatible materials
- Actively controlling clearance

TECHNOLOGY BENEFITS:

- Space Basing capability due to improved reliability and maintainability
- Increased payload by reducing purge gases needed
- Increased component efficiency
- Improved reliability and maintainability


TURBOPUMP SEALS TECHNOLOGY

CURRENT PROGRAM


- BRUSH SEALS FOR CRYOGENIC APPLICATIONS (IN-HOUSE) FABRICATION INITIATED FOR TESTER MODS.
- BRUSH SEALS FOR HIGH TEMPERATURE APPLICATIONS (IN-HOUSE) ACQUIRED TEST RIG FROM THE AIR FORCE.
- NUMERICAL, ANALYTICAL, EXPERIMENTAL STUDY OF FLUID DYNAMIC FORCES IN SEALS (MECHANICAL TECHNOLOGY, INC.) THREE INDUSTRIAL CODES READY FOR USER EVALUATION

PROPOSED AUGMENTATION

- DEFINE AND EXPERIMENTALLY VALIDATE CERAMIC BRUSH SEALS
- EXPERIMENTALLY VALIDATE ANALYSIS AND DESIGN CODE FOR 2-PHASE CRYOGENIC SEALS
- DESIGN AND DEMONSTRATE ACTIVELY-CONTROLLED OR "SMART" SEALS FOR AEROSPACE APPLICATIONS AND DEVELOP THE NECESSARY ANALYSIS AND DESIGN TOOLS

A TYPICAL BRUSH SEAL

ſ

<u>SUMMARY</u>

TECHNICAL CHALLENGE

- Long life turbopump components.
- Improved stability and performance of combustion devices.
- Reduced launch mass and cost, enabling SEI missions.

APPROACH

- Validated models, codes and algorithms for component design and analysis.
- Develop benchmark data for supercritical spray dynamics.
- Evaluate advanced turbomachinery sub-components (seals and bearings) design concepts.
- System and cycle analysis for design optimization.
- Fundamental combustion research and material characterization.

PAYOFF

- Improved life, durability, performance and safety in the evolution of high thrust chemical propulsion systems, e.g., SSME and liquid rocket boosters, through advanced concepts and methodologies.
- Reduce SEI costs.

RELATIONSHIP TO FOCUSED ACTIVITIES AND OTHER PROGRAMS

Develop fundamental technologies in direct support of earth-to-orbit, orbit transfer and upper stage propulsion programs. Efforts are coordinated with other Centers and DOD as appropriate.

TECHNOLOGY CONTRIBUTIONS

- Expertise and technology in turbomachinery code development utilized by ATD and NLS designers.
- Combustion stability methodology applied to MSFC TTB and RCS thrusters at JSC.

≣

1.1

ŝ

.

Integrated Technology Plan for the Civil Space Program

N93-71879

56-81

157473 p_ 24

Cryogenic Fluid Management (Base R&T)

Cryogenic Fluid Systems Cryogenic Orbital Nitrogen Experiment (CONE) Cryogenic Orbital Hydrogen Experiment (COHE) (Transportation Focused Technology)

June 1991

Presented by: Pat Symons

Agenda

- Technology Requirements vs. SOA
- Benefits Assessment
- Integrated Program
 - Objective
 - Approach
 - Content
- Concluding Remarks
- Summary

Cryogenic Fluid Systems Element Introduction

- All known future manned space missions and most future unmanned space missions require or could substantially benefit from the use of subcritical cryogenic liquids
 - As propellants
 - As life support fluids
 - As reactants
 - As coolants
- The current SOA is based on Centaur and Saturn upper stage technology and Apollo technology which is 15-20 years old
- Continued use of existing SOA technology imposes enormous cost and performance penalties on future missions, neither of which can be successfully borne by the Agency
- To meet the need, a NASA Cryogenic Fluid Systems Technology Program has been formulated with LeRC as Lead Center and substantial involvement and participation from MSFC
- The funding for the program is provided by both the Base R&T program and the Focused Program in Transportation

TECHNOLOGY REQUIREMENTS VS. SOA

- Nacional Contanta

Capability	Flight Proven SOA: Saturn/Centaur	Future Requirements
Mission Operations	<u>Ground</u> : Assembly, Propellant Loading Check-out and Launch <u>Space:</u> Short Coast and Engine Restart	Space: Final Assembly, Propellant Loading, Check-out and Entire Mission Operation for Reusable Space-based stage
Mission Duration	Hours	Months (Moon) to Years (Mars)
Fluid Management - Thermal Control	3 Layers MLI	50-200 layers MLI Refrigeration (Lunar surface/Mars)
- Pressure Control	Prop. settling (low-g) & Vent	Thermodynamic Vent (Zero-g) compatible with mission ops.
- Liquid Acquisition	Prop. settling (low-g)	Capillary (Zero-g) compatible with mission operations
- Pressurization	Prop. settling (low-g) & GHe GH2 after engine ignition (high-g)	Zero and low-g autogenous (GH2/GO2)
- Liquid Transfer	None	Nonvented (Zero-g) preferred; optimized prop. settling (low-g) may be acceptable
- Slosh Control	Baffles for launch and stage separation (accel. dominated)	Space operations (capillary dominated)
- Mass Gauging	One to high-g	Zero to low-g

SymoneNTP\SOA vs future kad 8-12-91

Apollo - Space Exploration Initiative Comparison

		Space Exploration Initiative	
Mission & Transportation Vehicle Characteristics	Apollo	Lunar	Martian
Total Duration (1st Launch to crew return)	12 Days	3-15 months	3-5 years
Crew Size	3	4-6	4-16
Duration on Surface	· 3 days	1-12 months	1-2 years
Cargo Mass	0.7 mt	13-32 mt	TBD
No. of Propulsion Systems	4	1-2	1-2
 Trans Lunar/Mars Injection Propellant Lunar/Martian Orbit & Earth Return Prop. Surface Departure/Ascent Propellant 	LOX/LH2 Storable Storable	LOX/LH2 or LH2 (nuclear) LOX/LH2 or LH2 (nuclear) LOX/LH2	
LEO Departure Mass (75-80% propellant)	140 MT	160-280 mt	300-2000 mt
Mission Objectives	Init. Manned Presence	Conduct Scier	nce & Surface Exp.

Key Space Exploration Initiative transportation system technology requirements (engines, aerobrake, and cryogenic fluid systems) are not based on "Apollo-type" mission scenarios

-

Use of Apollo technology to meet SEI mission requirements is not possible

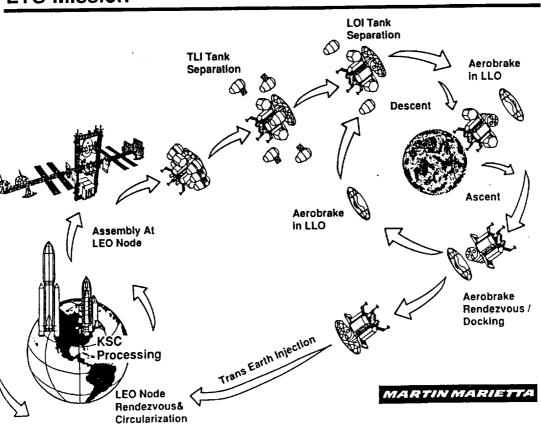
monslittPVApolio SE) comp kad 6 12 91

Sy

- Exploration of the Moon and Mars requires cryogenic fluids for propulsion (both Chemical and Nuclear Thermal)
- Advanced cryogenic fluid systems should be classified as enabling to achieve necessary system performance and to reduce mission costs
 - Long-term fluid storage (Thermal Control)
 - Refill/contingency capability (Liquid Transfer)
 - Tank pressure control

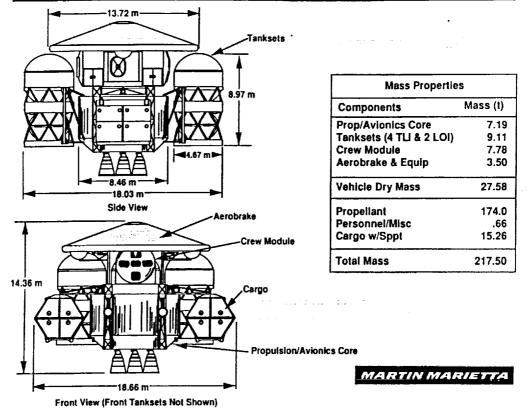
.

- Recently completed assessments of technology required for exploration has shown cryogenic fluid management to be the highest priority from both Level II and Level III
- Office of Space Flight technology requirements assessment identified cryogenic storage, supply and handling as one of their highest priority technologies
- Synthesis committee report identifies cryogenic transfer and long-term storage as one of fourteen critical technologies for exploration


UTP/Criticality kad 6-13-91

Benefits Assessment

- Baseline: Lunar Transfer System (LTS) Concept and Mission Scenario Developed by Martin Marietta
 - Assumes three ETO launches at 45 day intervals (480K lb. total mass)
 - Allows 60 days for pre-Leo departure ops. (no contingency)
 - Assumed significant technology advances
 - (Aerobrake, advanced space engine, thick MLI, zero-g cryo transfer, and pressure control)


NTP\Benahis 2 kad 6-13-91

- State-of-the-Art Assumptions for Benefit Assessment
 - Thermal control: 1/2 inch MLI with foam substrate
 - Pressure control: Shuttle Centaur system design criteria
 - Liquid transfer: No orbital capability (tanks loaded on ground) therefore, space-based/reusable concept precluded
- Mass Savings (Technology Benefits) accrue from boiloff reductions and decreases in tankage volume/mass

LTS Mission

Selected Concept - Piloted Configuration

Cryogenic Fluid Management Technology Benefits Assessment Results

ETO mass savings for nominal mission with 30 day lunar stay

\$2.95B

Thermal control
 Pressure control
 Total mass savings
 Potential cost savings

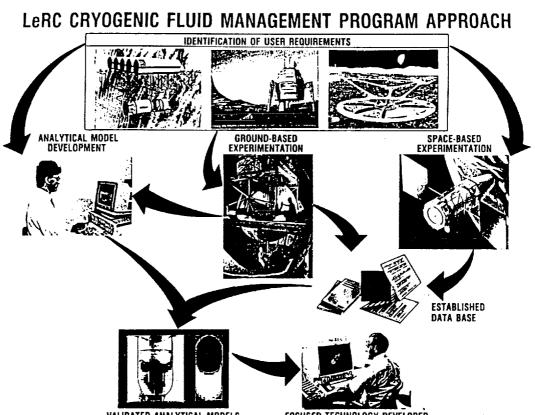
= 28,700 lbm

= 18,500 lbm

= 47,200 (10% LEO mass growth)

Potential cost savings = \$118 M/mission (at \$2500/lbm ETO cost)

ti El seleto. El seleto.


NTP/Benefits 3 kpd 6-13-91

Benefit of adding a 45 day pre-LEO departure contingency

\$.75B	 Thermal control Pressure control Total mass savings Potential cost savings 	n (2.5% of LEO n hission (at \$2500	nass growth))/Ibm ETO cost)
			1 h

Cryogenic Fluid Management Technology Benefits Assessment Results (continued) Additional benefit for 6 month lunar stay - Thermal control = 58,000 lbm - Pressure control = 52,000 lbm - Advanced thermal control = 14,700 lbm \$7.8B Total mass savings = 124,700 lbm (26%LEO Mass growth) Potential cost savings = \$312M/mission (at \$2500/lbm ETO cost) Additional Benefit of a tanker/depot (top-off, core & aerobrake tank fueling) - For nominal mission with 30 day lunar stay = 5,600 lbm - For 45 day pre-LEO departure contingency = 18,500 lbm \$1.6B = 1,800 lbm - For 180 day lunar stay = 1,800 lbm Total mass savings = 25,900 lbm (5.4% of LEO mass growth) Potential cost savings = \$64.75M/mission (at \$2500/lbm ETO cost) Major benefit of transfer technology is enabling of reusable LTS concepts (Life Cycle Cost Savings of approximately \$10B estimated by Martin Marietta) Total Benefit for 25 Lunar Missions = \$23 B SymposyTP\Benalds 3 kad 6-13-91

Integrated Program

VALIDATED ANALYTICAL MODELS

FOCUSED TECHNOLOGY DEVELOPED

CD-90-45209

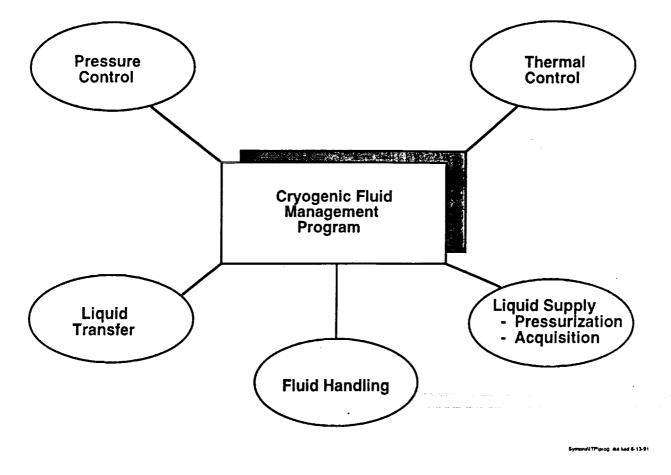
Cryogenic Fiuid Systems

Technology Development Approach

Technology Development Approach:

- Analytical model development efforts to identify key parameters and model basic fluid dynamic, thermodynamic and heat transfer processes
- Analytical model development efforts to enable the performance predictions of future cryogenic fluid systems
- Small scale ground-based experiments to investigate the basic thermodynamic and fluid dynamic processes; provide proof of concept; parametric testing
- * Large scale system testing to provide a more controlled environment for the collection of data for partial analytical model validation and refinement of operational procedures
- * Large subscale system demonstrations to integrate flight type components and processes in space simulated thermal and vacuum conditions using fluids of interest in a one-g environment
- Small scale flight experiments to provide low gravity data necessary to initiate analytical model validation and to provide low-g demonstrations of actual processes with a simulant fluid
- Cryogenic Orbital Nitrogen Experiment (CONE), a subscale cryogenic test bed to provide low-g data necessary for the partial analytical model validation and low-g demonstration of critical components and processes
- Cryogenic Orbital Hydrogen Experiment (COHE), a subscale cryogenic test bed to provide low-g data necessary for completion of analytical model validation

* Included in Transportation Technology Program

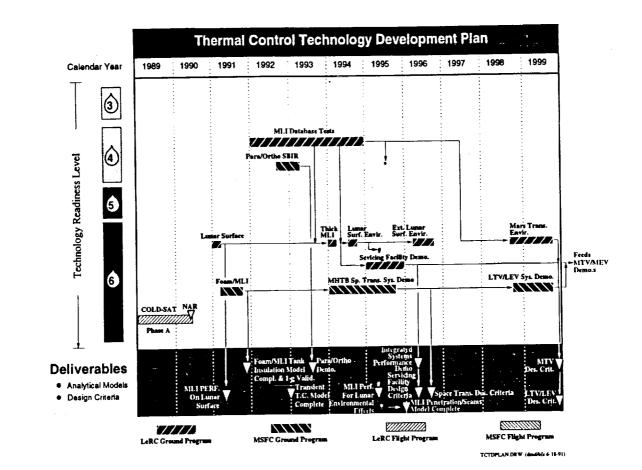

Base Research and Technology

Cryogenic Fluid Management

Objectives	Schedule
Programmatic Develop analytical models of pertinent thermodynamic and luid dynamic processes required to utilize subcritical cryogenic luids in space and to conduct small scale tests to confirm concepts	1992 Data available/transfer models one-g validated 1992 LAD model one-g validated 1993 Pressurization model one-g validated 1994 TVS models validated for one-g 1996 MLI seams/penetrations model validated
Technical	1996 3-D slosh model validation for zero-g
Thermal Control - Thick MLI and Foam/MLI Systems	1997 Thick MLI generic model validated
Pressure Control - Zero-g venting and fluid mixing	1998 Partial low-g validation of CFS model (LN2)
Liquid Supply - Low-g settling and capillary devices	 2004 Low-g CFS model validation (LH2) 2005 Technology complete
- Zero-g and low-g autogenous pressurization Liquid Transfer - Nonvented fill (zero-g) and optimized low-g fill	
Liquid Transfer - Nonvented fill (zero-g) and optimized low-g fill Fluid Handling - Slosh control for vehicle operations	
- Mass gauging in zero-g and low-g	 Milestones depend on successful flight of CONE and COHE
Resources	Participants
1991 \$ 1.5 M 1992 2.6 M	Lewis Research Center
1992 2.6 M 1993 2.1 M	Lead Center - MLI database, pressure control components, tank pressurization components, and liquid
1994 2.2 M	spray characterization
1995 2.3 M	
1996 2.4 M 1997 2.5 M	Marshall Space Flight Center Participating Center - Integrated chilldown and no-vent fill, support and value doublesment
Note: This element is closely coordinated with development efforts in NASA/OSF and other related Government programs; resources shown are NASA/OAET only	pump and valve development
	Symmet/TPQUAD2 kad 6-
Transportatio	on Technology
Space Tra	on Technology Insportation Fluid Systems
Space Tra Cryogenic F	insportation
Space Tra Cryogenic F Objectives Programmatic	Insportation Fluid Systems Schedule
Space Tra <i>Cryogenic H</i> <i>Objectives</i> Provide technology necessary to proceed in the late 1990's with the development of cryogenic storage and supply systems for various transportation applications including space transfer vehicles and propellant storage systems for planetary surfaces	Insportation Fluid Systems Schedule 1991 MLI characterized for Lunar thermal conditions 1993 One-g and zero-g transfer technique completed 1994 3-D slosh model completed 1995 Foam/MLI design database (Lunar applications) 1996 Servicing facility design criteria established 1996 Propulsion integrated system performance demo.
Space Tra Cryogenic A Objectives Programmatic Provide technology necessary to proceed in the late 1990's with the development of cryogenic storage and supply systems for various transportation applications including space transfer	Fluid Systems Schedule 1991 MLI characterized for Lunar themal conditions 1993 One-g and zero-g transfer technique completed 1994 3-D slosh model completed 1995 Foam/MLI design database (Lunar applications) 1996 Servicing facility design criteria established
Space Tra <i>Cryogenic I</i> <i>Objectives</i> <u>Provide technology necessary to proceed in the late 1990's</u> with the development of cryogenic storage and supply systems for various transportation applications including space transfer vehicles and propellant storage systems for planetary surfaces <u>Technical</u> Thermal Control - Thick MLI and Foam/MLI Systems Pressure Control - Zero-g venting and fluid mixing Liquid Supply - Low-g settling and capillary devices	Insportation Fluid Systems Schedule 1991 MLI characterized for Lunar themal conditions 1993 One-g and zero-g transfer technique completed 1994 3-D slosh model completed 1995 Foam/MLI design database (Lunar applications) 1996 Servicing facility design criteria established 1997 LN2 fluid handling components available 2000 LH2 fluid handling components available 2001 Mars insulation systems performance demo.
Space Tra Cryogenic I Objectives Proorammatic Provide technology necessary to proceed in the late 1990's with the development of cryogenic storage and supply systems for various transportation applications including space transfer vehicles and propellant storage systems for planetary surfaces <u>Technical</u> Thermal Control - Thick MLI and Foam/MLI Systems Pressure Control - Zero-g venting and fluid mixing Liquid Supply - Low-g settling and capillary devices - Zero-g and low-g autogenous pressurization Liquid Transfer - Nonvented fill (zero-g) and optimized low-g fill Fluid Handling - Slosh control for vehicle operations	Insportation Fluid Systems Schedule 1991 MLI characterized for Lunar themal conditions 1993 One-g and zero-g transfer technique completed 1994 3-D slosh model completed 1995 Foam/MLI design database (Lunar applications) 1996 Servicing facility design criteria established 1997 LN2 fluid handling components available 2000 LH2 fluid handling components available 2001 Mars insulation systems performance demo.
Space Tra Cryogenic A Objectives Provide technology necessary to proceed in the late 1990's with the development of cryogenic storage and supply systems for various transportation applications including space transfer vehicles and propellant storage systems for planetary surfaces <u>Iechnical</u> Thermal Control - Thick MLI and Foam/MLI Systems Pressure Control - Zero-g venting and fluid mixing Liquid Supply - Low-g settling and capillary devices - Zero-g and low-g autogenous pressurization Liquid Transfer - Nonvented fill (zero-g) and optimized low-g fill Fluid Handling - Slosh control for vehicle operations - Mass gauging in zero-g and low-g	Fluid Systems Schedule Schedule 1991 MLI characterized for Lunar themal conditions 1993 One-g and zero-g transfer technique completed 1993 One-g and zero-g transfer technique completed 1994 3-D slosh model completed 1995 Foam/MLI design database (Lunar applications) 1996 Servicing facility design criteria established 1996 Propulsion integrated system performance demo. 1997 LN2 fluid handling components available 2000 LH2 fluid handling components available 2005 Technology Complete Participants
Space Tra Cryogenic H Objectives Proorammatic Provide technology necessary to proceed in the late 1990's with the development of cryogenic storage and supply systems for various transportation applications including space transfer vehicles and propellant storage systems for planetary surfaces <u>Iechnical</u> Thermal Control - Thick MLI and Foam/MLI Systems Pressure Control - Zero-g venting and fluid mixing Liquid Supply - Low-g settling and capillary devices - Zero-g and low-g autogenous pressurization Liquid Transfer Fluid Handling - Slosh control for vehicle operations - Mass gauging in zero-g and low-g <i>Resources</i>	Schedule 1991 MLI characterized for Lunar thermal conditions 1993 One-g and zero-g transfer technique completed 1994 3-D slosh model completed 1995 Foam/MLI design database (Lunar applications) 1996 Servicing facility design criteria established 1997 LN2 fluid handling components available 2000 LH2 fluid handling components available 2001 Mars insulation systems performance demo. 2005 Technology Complete Participants Lewis Research Center
Space Tra Cryogenic I Objectives Provide technology necessary to proceed in the late 1990's with the development of cryogenic storage and supply systems for various transportation applications including space transfer vehicles and propellant storage systems for planetary surfaces <u>Technical</u> Thermal Control - Thick MLI and Foam/MLI Systems Pressure Control - Zero-g venting and fluid mixing Liquid Supply - Low-g settling and capillary devices - Zero-g and low-g autogenous pressurization Liquid Transfer Fluid Handling - Slosh control for vehicle operations - Mass gauging in zero-g and low-g <i>Resources</i> <u>1991</u> \$ 1.5M <u>1992</u> 0.0M <u>1993</u> 8.5M	Insportation Fluid Systems Schedule 1991 MLI characterized for Lunar thermal conditions 1993 One-g and zero-g transfer technique completed 1994 3-D slosh model completed 1995 Foam/MLI design database (Lunar applications) 1996 Servicing facility design criteria established 1996 Propulsion integrated system performance demo. 1997 LN2 fluid handling components available 2000 LH2 fluid handling components available 2001 Mars insulation systems performance demo. 2005 Technology Complete Participants Lewis Research Center Lead Center - Thick MLI, pressure control technology
Space Tra Cryogenic # Objectives Proorammatic Provide technology necessary to proceed in the late 1990's with the development of cryogenic storage and supply systems for various transportation applications including space transfer vehicles and propellant storage systems for planetary surfaces <u>Technical</u> Thermal Control - Thick MLI and Foam/MLI Systems Pressure Control - Zero-g venting and fluid mixing Liquid Supply - Low-g settling and capillary devices - Zero-g and low-g autogenous pressurization Liquid Transfer - Nonvented fill (zero-g) and optimized low-g fill Fluid Handling - Slosh control for vehicle operations - Mass gauging in zero-g and low-g <i>Resources</i> 1991 \$ 1.5M 1992 0.0M 1993 8.5M 1994 11.0M	Insportation Fluid Systems Schedule 1991 MLI characterized for Lunar thermal conditions 1993 One-g and zero-g transfer technique completed 1994 3-D slosh model completed 1995 Foam/MLI design database (Lunar applications) 1996 Servicing facility design criteria established 1996 Propulsion integrated system performance demo. 1997 LN2 fluid handling components available 2000 LH2 fluid handling components available 2001 Mars insulation systems performance demo. 2005 Technology Complete Participants Lewis Research Center Lead Center - Thick MLI, pressure control technology database, slow pressurization, liquid transfer technology
Space Tra <i>Cryogenic I</i> <i>Objectives</i> Provide technology necessary to proceed in the late 1990's with the development of cryogenic storage and supply systems for various transportation applications including space transfer vehicles and propellant storage systems for planetary surfaces <u>Technical</u> Thermal Control - Thick MLI and Foam/MLI Systems Pressure Control - Zero-g venting and fluid mixing Liquid Supply - Low-g settling and capillary devices - Zero-g and low-g autogenous pressurization Liquid Transfer - Nonvented fill (zero-g) and optimized low-g fill Fluid Handling - Slosh control for vehicle operations - Mass gauging in zero-g and low-g <i>Ipg2</i> 0.0M 1993 8.5M 1994 11.0M 1995 11.3M	Insportation Fluid Systems Schedule 1991 MLI characterized for Lunar themal conditions 1993 One-g and zero-g transfer technique completed 1994 3-D slosh model completed 1995 Foam/MLI design database (Lunar applications) 1996 Servicing facility design criteria established 1996 Propulsion integrated system performance demo. 1997 LN2 fluid handling components available 2000 LH2 fluid handling components available 2001 Mars insulation systems performance demo. 2005 Technology Complete Participants Lewis Research Center Lead Center - Thick MLI, pressure control technology
Space Tra Cryogenic # Objectives Proorammatic Provide technology necessary to proceed in the late 1990's with the development of cryogenic storage and supply systems for various transportation applications including space transfer vehicles and propellant storage systems for planetary surfaces <u>Technical</u> Thermal Control - Thick MLI and Foam/MLI Systems Pressure Control - Zero-g venting and fluid mixing Liquid Supply - Low-g settling and capillary devices - Zero-g and low-g autogenous pressurization Liquid Transfer - Nonvented fill (zero-g) and optimized low-g fill Fluid Handling - Slosh control for vehicle operations - Mass gauging in zero-g and low-g <i>Resources</i> 1991 \$ 1.5M 1992 0.0M 1993 8.5M 1994 11.0M	Insportation Fluid Systems Schedule 1991 MLI characterized for Lunar thermal conditions 1993 One-g and zero-g transfer technique completed 1994 3-D slosh model completed 1995 Foam/MLI design database (Lunar applications) 1996 Servicing facility design criteria established 1996 Propulsion integrated system performance demo. 1997 LN2 fluid handling components available 2000 LH2 fluid handling components available 2001 Mars insulation systems performance demo. 2005 Technology Complete Participants Lewis Research Center Lead Center - Thick MLI, pressure control technology database, slow pressurization, liquid transfer technology database, slow pressurization, liquid transfer technology database, fluid dumping and slosh control Marshall Space Flight Center Participating Center - Foam/ML
Space Tra Cryogenic # Objectives Provide technology necessary to proceed in the late 1990's with the development of cryogenic storage and supply systems for various transportation applications including space transfer vehicles and propellant storage systems for planetary surfaces Technical Thermal Control - Thick MLI and Foam/MLI Systems Pressure Control - Zero-g venting and fluid mixing Liquid Supply - Low-g settling and capillary devices - Zero-g and low-g autogenous pressurization Liquid Transfer - Nonvented fill (zero-g) and optimized low-g fill Fluid Handling - Slosh control for vehicle operations - Mass gauging in zero-g and low-g Resources 1991 \$ 1.5M 1992 1991 15M 1993 1991 1.5M 1992 1991 1.5M 1993 1991 1.5M 1993 1991 1.5M 1993 1.5M 1994 1.1.3M 1995 11.3M 1996	Insportation Fluid Systems Schedule 1991 MLI characterized for Lunar thermal conditions 1993 One-g and zero-g transfer technique completed 1994 3-D slosh model completed 1995 Foam/MLI design database (Lunar applications) 1996 Servicing facility design criteria established 1997 LN2 fluid handling components available 2000 LH2 fluid handling components available 2001 Mars insulation systems performance demo. 2005 Technology Complete Participants Lewis Research Center Lead Center - Thick MLI, pressure control technology database, fluid dumping and slosh control Marshall Space Flight Center

-

PR6-9


Technology Area - Thermal Control

Effort:

- Thermal performance of thick MLI
- Purged MLI & foam/MLI ground-hold thermal performance
- Purged MLI earth-to-orbit venting
- MLI/vapor shield performance
- MLI system performance for Lunar/Mars transfer and surface storage

Base R&T Activities

- Generic Analytical Models
- Candidate MLI screening
- MLI seam/penetration tests - Thick MLI base performance
- Para/ortho conversion (SBIR)
- Focused Technology Activities
- Applied analytical models
- Foam/MLI earth-to-orbit performance
 Purged MLI earth-to-orbit performance
- MLI/Vapor Cooled Shield performance
- Large-scale system level tests

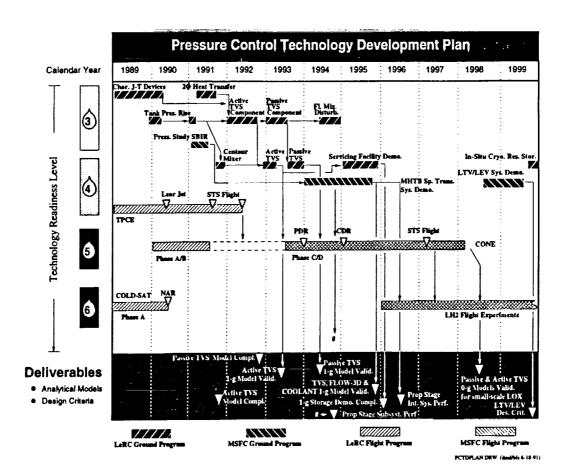
Technology Area – Pressure Control

Effort

L 2

1

- Passive TVS thermal performance Þ
- Active TVS fluid mixing
- Active TVS heat exchanger thermal performance
- Thermal stratification and self-pressurization


Base R&T Activities

- Generic Analytical models
- Passive Heat Exchanger 2-phase heat transfer
- J-T device flow tests
- Active/passive TVS component checkout/performance
- TPCE flight experiment (In-Step) -

Focused Technology Activities

- Thermal stratification and selfpressurization rise
- Active TVS performancePassive TVS performance
- Pressure control system demonstration
- CONE Flight Experiment
- COHE Flight Experiment

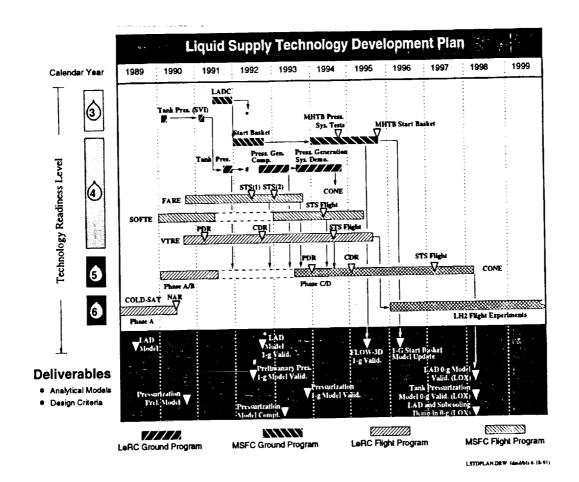
Symonal/TP\Tech Area Fres Ctri Lad 6 13 91

Technology Area -- Liquid Supply

Effort

- LAD performance characteristics
- Autogenous tank pressurization for liquid transfer
- Autogénous tank pressurization for engine start/run
- Autogenous pressurant generator

Base R&T Activities


- Generic analytical models
- LAD screen characterization
- VTRE flight experiment (In-Step)
- Autogenous pressurant generation

Focused Technology Activities

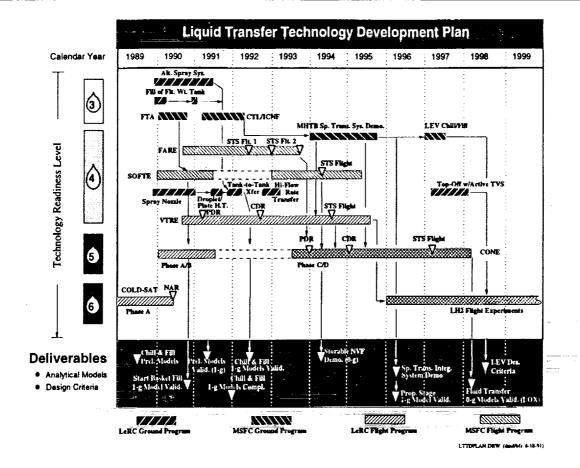
- Start basket characterization
- Autogenous tank pressurization

silTP\Tech Area - Lig Sup kad & 13 91

- FARE flight experiment
- SOFTE flight experiment
- CONE flight experiment
- COHE flight experiment

Technology Area -- Liquid Transfer

Effort


- Tank Chilldown
- **Ullage Condensation**
- Tank no-vent fill
- LAD Fill

Base R&T Activities

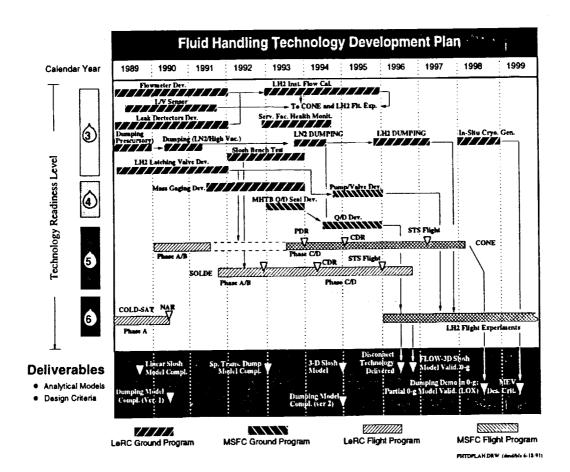
- Generic Analytical Models
- Alternate spray system performance
- Spray nozzle condensation rates -
- Precursory no-vent fill tests
- VTRE flight experiment (In-Step)

Focused Technology Activities

- No-vent fill of a flight weight tank
- Large scale system demonstration
 FARE Flight Experiment
- SOFTE Flight Experiment
- CONE Flight Experiment -
- **COHE Flight Experiment**

Technology Area -- Fluid Handling

Effort


- Low-g liquid fluid dynamics (slosh)
- Low-g fluid dumping/venting
- Instrumentation (L/V sensors, mass gauging, leak detectors, health monitoring)
- Components (valves, flowmeters, quick disconnects, pressurant generator, TVS mixer)

Base R&T Activities

- Generic analytical models
- Latching valve and two-phase flow meter development
- Fluid dynamics and L/V sensor characterization
- Mass gauging characterization
- Dumping/venting characterization
- Leak detector development (SBIR)

Focused Technology Activities

- Quick disconnect development
- Pressurant generator and TVS mixer development
- Health monitoring development
 SOLDE flight experiment

Test Facilities

PR6-15

Cryogenic Fluids Technology Office Space Flight Systems Directorate

CCL-7 Portable Cryogenic Research Test Rig

NASA Lewis Research Center Cleveland, Ohio Provide a liquid hydrogen flow facility for the collection of engineering data Purpose: for the development of cryogenic components and processes. **Test Capabilities** Fluid Systems:

Test Fluid Dewar Capacities Tank Operating Pressures LH₂ Flow Rates LN₂ Flow Rates Pressurants

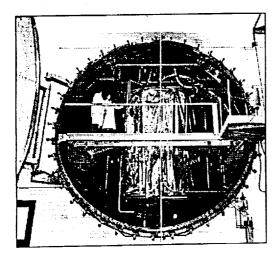
Insulation Systems: Dewars Lines

Data Collection: Data System

LH₂ or LN₂ 18, 5, and 1.7 11³ 2-30 psia 5-100 lb/hr 60-1200 lb/hr GH₂, GN₂ and GHe 470

10 layers of MLI Vacuum Jacket or Foam

IBM PC-AT 256 Channels


CD-89-44302

ເມເຊ Lewis Research Cente **Space Flight Systems Directorate**

K-Site Cryogenic Propellant Tank Research Facility

NASA Lewis Research Center **Plum Brook Station** Sandusky, Ohio

Purpose: Provide ground-based testing of large-scale cryogenic fluid systems for in-space applications using LH₂ in simulated thermal and vacuum environments

Test Capabilities

Tank Fluid Tank Operating Pressures LH₂ Flow Rates Pressurants

Liquid Hydrogen 1-60 psia 100-2000 lb/hr GH, and GHe

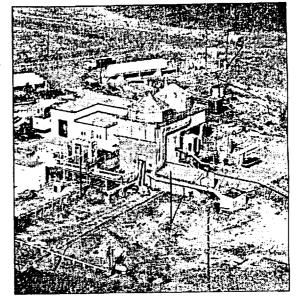
Facility Capabilities

Vacuum - with LH₂ Cryoshroud LH2/LN2 Cryoshroud Temp. LH, Capacity Max. Test Package Weight Data System

5x10" torr 5x10⁻⁸ torr -423 'F/-320 'F 26,000 gal 16,000 lb Escort D 512 Channels

VE K SITE CAP (and DI 10 91)

*ب*ي


MSFC Cryogenic Fluid Management Test Facilities Test Stand 300

- Three primary CFM test positions
 - TP 302: 20' by 35' thermal vac. chamber
 - TP 303: 4' by 6' ambient
 - TP 304: 12' by 15.4 ft vacuum chamber
- Utilities
 - -

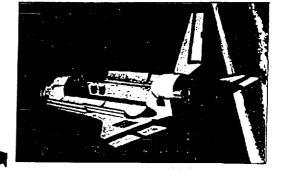
 - GN₂ Supply: 4200 PSIG GH₂ Supply: 4400 PSIG GHe Supply: 4000 PSIG
 - LH₂: 8000 gallons
- Instrumentation and Control
 - 500 data channels conditioned and digitized
 - 26 coax channels -
- History

<u>_</u>

- Original test position: 1964 -
- 20' thermal vac. chamber (TP302): 1969; modified 1981 -

MINSECENCE AND INFORMATION OF

Technology Flight Experiments


TANK PRESSURE CONTROL EXPERIMENT

- Low-g fluid mixing experiment on STS
- Freon in a plexiglass tank is thermally stratified by heaters and then mixed by an axial jet mixer

EXPERIMENT MOUNTS IN GET AWAY SPECIAL CONTAINER

• Temperature, pressure, and video data

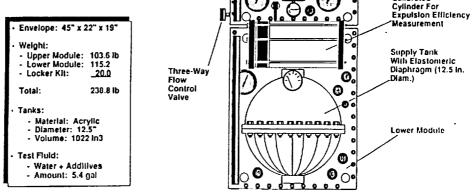
- Investigate fluid dynamics and thermodynamics of jet mixing as a means of pressure control for future space cryogenic storage tanks
- Obtain data for comparison with ground-based empirical models and computer codes

E

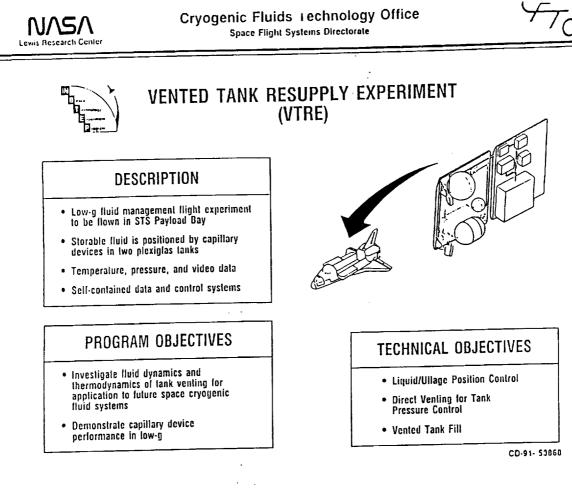
Upper Module

With Integral Lighting

Calibrated


Receiver Tank (12.5 in Diam.) With Totai -Communication Liquid Acquisition Device and Baffled Inlet

CD-90-49831


Fluid Acquisition and Resupply Experiment (FARE)

FARE I TEST OBJECTIVES

- DEMONSTRATE LOW GRAVITY OPERATION OF A SCREEN CHANNEL LIQUID ACQUISITION DEVICE DURING TANK EXPULSION AND REFILL
- DEMONSTRATE THE LOW GRAVITY VENTING OF A TANK WHILE FILLING
- DEMONSTRATE STATIC AND DYNAMIC LIQUID BEHAVIOR DURING LOW GRAVITY CONDITIONS AND APPLIED ACCELERATIONS

D B

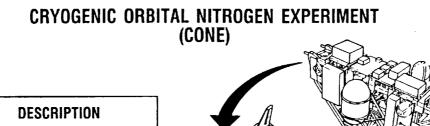
Transportation Technology Technology Flight Experiments

Cryogenic Orbital Nitrogen Experiment

Crybyenic Orbitar N	willogen Experiment	
Objectives Programmatic Gather zero-g flight data required to validate the cryogenic fluid analysis tools required to design LN2 and L02 pressure control and liquid transfer systems for SSF and Space Transfer Vehicles; where possible, extrapolate the basic data to partially validate LH2 models Technical Pressure Control - Extend cryogenic data to low-g - Reduce required mixer power by 10 Liquid Supply - Demonstrate zero-g acquisition with cryogen Liquid Transfer - Partially validate zero-g models for tank chilldown and fill - Demonstrate zero-g no-vent fill capability	Schedule 1991 Phase B contract completed (SDR) 1992 System requirements document completed 1993 Phase C/D contract initiated 1994 Preliminary design finalized/approved 1995 Flight hardware fabrication initiated 1995 System-level testing at MSFC initiated 1998 STS integration and flight completed 1998 Data analyzed and computer models updated 1999 Final report on LN2 and LO2 pressure control and liquid transfer issued	
Resources 1993 3.4 M 1994 15.0 M 1995 24.0 M 1996 23.0 M 1997 18.7 M Note: This element is closely coordinated with development efforts in NASA/OSF and other related Government programs; resources shown are NASA/OAET only	Participants Lewis Research Center Lead Center for CONE project - project management, program requirements, design, analytical model development, data analysis and model validation Marshall Space Flight Center Participating Center - input to program requirements, system test and verification requirements, system-level testing of flight hardware and STS integration	

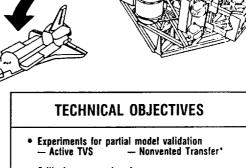
Program Gather analysis and liqu Vehicles

Symons/ITP\QUAD3 kad 6-13-91



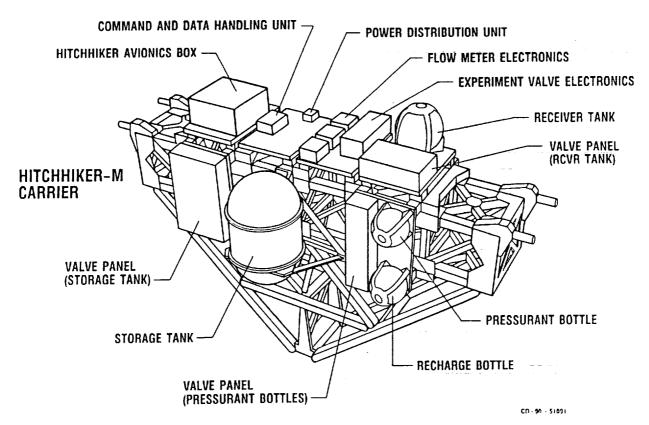
cryogenic rulus reciniology once Space Flight Systems Directorate

⊒


-

- Subcritical liquid nitrogen experiment to be flown in STS cargo bay
- · Currently designed for Hitchhiker-M carrier
- · Temperature, pressure, and flow rate data

PROGRAM OBJECTIVES


- Provide experimental data and component demonstration for the operation of a subscale cryogenic fluid management system in space
- Apply results to design of luture LOX/LN_2 space systems

- Critical component and process demonstrations:
- Passive TVS
- Thermal Subcooling
 Fluid Dumping
 Pressurant Generation - LAD Expulsion - LAD Fill
 - Autogenous Pressurization
- *Addition of nonvented fluid transfer experiment will occur at beginning of Phase C/D

CD-91- 53869

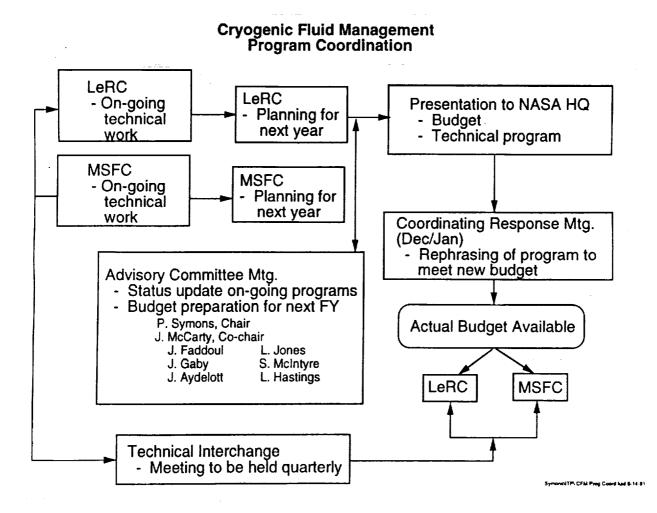
CRYOGENIC ORBITAL JITROGEN EXPERIMENT (CONE)

Technology Flight Experiments

ц / Ц ј

E

1



Cryogenic Orbital	Hydrogen Experiment
Objectives	Schedule
Programmatic Address critical cryogenic fluid management technologies via system demonstration and space experimentation to validate analytical models and to demonstrate critical components and processes Technical Pressure Control - Active and passive system demos Liquid Supply - Capillary acquisition device demo Liquid Transfer - Validate zero-g models for tank chilldown and no-vent fill Fluid Handling - Demonstrate liquid dumping in zero-g Mass gauging system evaluation	 1994 In-house Phase A/B on LH2 experiment 1995 In-house Phase A/B completed 1996 Small scale experiments completed 1996 Phase C/D contract awarded 1997 Procurement/Fab. of long-lead items initiated 1998 Subsystem assembly and testing completed 1999 System assembly and testing completed 2000 Final system checkout complete 2001 Experiment launched 2003 Data analyzed and computer models updated 2004 Final report issued
Resources	Participants
1996 \$ 3.6 M 1997 17.0 M Note: This element is closely coordinated with development efforts in NASA/OSF and other related Government programs; resources shown are NASA/OAET only	<u>Lewis Research Center</u> Responsibilities TBD <u>Marshall Space Flight Center</u> Responsibilities TBD
CRYOGENIC ORBITAL H (CO	YDROGEN EXPERIMENT HE)
DESCRIPTION	
 Subcritical liquid hydrogen flight experiment 	
Preferred carrier: ELV	
 Temperature, pressure, and flow rate data 	
PROGRAM OBJECTIVES	Sample Concept
FROGRAM OBJECTION	Sample Concept TECHNICAL OBJECTIVES
 Provide experimental data and component demonstration for the operation of a subscale cryogenic fluid management system in space 	
 Provide experimental data and component demonstration for the operation of a subscale cryogenic fluid 	TECHNICAL OBJECTIVES Experimentation for analytical model validation - Active TVS - Nonvented transfer

•

Program Coordination

- Technical Challenge
 - Develop fundamental understanding of the role that gravity plays in a range of fluid dynamic and thermo dynamic processes which govern the behavior of cryogenic fluid systems in space
 - CFM technologies include thermal control, pressure control, liquid supply, liquid transfer, and fluid handling

Approach

- Analytical model development and validation, ground-based testing, and small-scale flight experimentation
- Payoff
 - Analytical models and empirical cryogenic data bases will be developed which can be used to define viable options for a wide range of NASA missions and spacecraft designs
 - Parametric characterization of the performance of thermal control and low-g pressure control techniques will provide the data necessary to design optimized systems for long-term cryogenic storage
- Rationale for Augmentation
 - CFM technology advancement requires comprehensive and broad-based programs using cryogenic liquids to provide required advancement in the SOA for all technologies; cryogenic experiments are expensive
- Relationship to Focused Activities and other programs
 - Base and focused activities are synergistic; base program emphasizes analytical model development and parametric component/process testing; focused program emphasizes large-scale test beds and system demonstrations configured for specific future missions
- Technology Contributions
 - Early fluid dynamics research in drop towers and large-scale cryogenic insulation tests were
 utilized in the design of Centaur and Apollo stages; however these missions were of significantly
 shorter duration and the cryos were consumed primarily during high-thrust operations

Symonslitth:Base R&T Summer \$-18-01

Focused Technology: Cryogenic rluid Systems (CFS) Summary

Impact

>

- CFS provides enabling technology and enormous cost savings to almost all future NASA transportation missions (ASE & NTP); increases safety for certain missions
- Provides life-cycle cost savings for other missions/operations (e.g. ECLSS)
- Technology allows for space basing of reusable cryogenic fluid systems
- Majority of technology not mission or architecture specific

User Coordination

- Technology requirements developed jointly by several NASA centers and industry
- Codes RS, RX, RP, RZ, M and S all have provided funding or technology requirements
- DOD activities are monitored; DOD requirements worked jointly whenever possible

Technical Reviews

- Quarterly technical/financial reports submitted to NASA HQ by LeRC and MSFC
- Annual reviews by SSTAC/ARTS; ad-hoc Cryogenic Technology Advisory Group
- Overall Technical and Programmatic Status
 - During the past two years, significant strides made in reestablishing a world-class ground-based testing capability and in planning and evaluating overall CFS program
 - Ultimately, in-space testing required to validate analytical models and demonstrate critical components and processes
 - Available technology totally inadequate to meet future needs
- Major Technical/Programmatic Issues
 - Absence of a consistent funding source has greatly inhibited the advancement of this critical technology area
 - Recent technology prioritization efforts consistently rank CFS technology at or near top of lists; commensurate funding has not materialized
 - Misconception that cryo experience on the Centaur, Apollo, and Shuttle provides NASA the capability to design long-term, high performance space cryogenic systems -- this myth must be dispelled

Cryogenic Fluids Systems Technology

Concluding Remarks

- Advanced cryogenic fluid systems technology is enhancing or enabling to <u>all</u> known transportation scenarios for space exploration
- An integrated/coordinated program involving LeRC/MSFC has been formulated to address all <u>known</u> CFM needs; new needs should they develop, can be accommodated within available skills/facilities
- All required/experienced personnel and facilities are finally in place; data from initial ground-based experiments is being collected and analyzed; small scale STS experiments are nearing flight; program is beginning to yield significant results
- Future proposed funding to primarily come from two sources:

Base R&T Focused Transportation Thrust

Cryogenic fluid experimentation is <u>essential</u> to provide required technology <u>and</u> assure implementation in future NASA missions

NASA CSTI Earth-To-Orbit Propulsion R&T Program Overview

N93-71880

57-81 157474 P_ 8

y¢

Presented to the

Space Systems and Technology

Advisory Committee

By James L. Moses MSFC

June 26, 1991

Earth-To-Orbit Transportation

Earth-to-Orbit Propulsion

 OBJECTIVES Programmatic Develop and validate technology, design tools and methodologies needed for the development of a new generation of lower cost, operationally-efficient, long-life, highly reliable ETO propulsion systems Technical Manulacturing High quality, low cost, inspectable Safety Safe shutdown to fault tolerant ops Maintainability Condition monitoring diagnostics Ground Ops Automated servicing and checkout Performance Max commensurate with life Advanced Cycles Full flow, combined cycle, etc. 	 SCHEDULE 1992 Electronic engine simulation capability operational 1993 3D CFD codes for combustion, stability, nozzle and turbomachinery flows validated and documented 1995 Low cost manufacturing processes applicable to shuttle and NLS/HLLV propulsion verified and documented 1996 System monitoring capability for safe shutdown and for enhanced prefilight servicing and checkout demonstrated 1999 Probabilistic codes, fatigue methodology and life prediction/damage models validated and documented 2005 Advanced manufacturing processes and design methodologies applicable to fully reusable, long-life AMLS propulsion verified and documented; propulsion system monitoring and control for automated operations demonstrated
RESOURCES· CURRENT STRATEGIC AUGMENTATION ** • 1991 \$21.8 M 21.8 • 1992 \$28.7 M 28.7 • 1992 \$28.7 M 28.7 • 1993 \$33.9 M 33.9 • 1994 \$25.1 M 36.9 • 1995 \$26.4 M 36.9 • 1996 \$27.6 M 42.7 • 1997 \$28.8 M 45.1 * Note: This element is closely coordinated with development efforts in NASA/OSF and other related government programs; resources shown are NASA/OAET only ** Proposed Augmentation elininated from the 3X program	PARTICIPANTS • Marshall Space Flight Center Lead Center-technology acquisition, test rig validation, large scale validation, technology test bed • Lewis Research Center Participating Center-technology acquisition, test rig validation • Langley Research Center Supporting Center-vehicle systems analysis April 25, 1991 DRS-QUAD1

NASA Earth-To-Orbit Propulsion R&T Program	
Purpose	
 Provide an up-to-date technology base to support future space transportation needs 	
<u>Objective</u>	
 Continuing enhancement of <u>knowledge</u>, <u>understanding</u>, and <u>design</u> <u>methodology</u> applicable to the development of advanced oxygen/hydrogen and oxygen/hydrocarbon ETO propulsion systems 	
Justification	
 Space transportation systems can benefit from advancements in propulsion system performance, service life and automated operations and diagnostics 	

2

til til

NASA Earth-To-Orbit Propulsion R&T Program

Contents

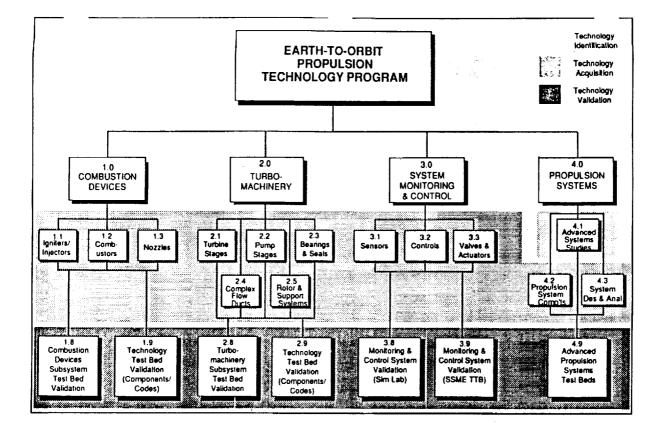
- <u>Analytical models</u> for defining engine environments and for predicting hardware life (flow codes, loads definition, material behavior, structural response, fracture mechanics, combustion performance and stability, heat transfer)
- <u>Advanced component technology</u> (bearings, seals, turbine blades, active dampers, materials, processes, coatings, advanced manufacturing)
- Instrumentation for empirically defining engine environments, for performance analysis, and for health monitoring (flow meters, pressure transducers, bearing wear detectors, optical temperature sensors)
- <u>Engineering testing</u> at subcomponent level to validate analytical models, verify advanced materials, and to verify advanced sensor life and performance
- <u>Component/test bed engine</u> for validation/verification testing in true operating environments

1-665, J-27T

NASA Earth-to-Orbit Propulsion R&T Program

Work Breakdown

- Technology Acquisition phase
 - Seeks improved understanding of the basic chemical and physical processes of propulsion
 - Develops analyses, design models and codes using analytical techniques supported by empirical laboratory data as required
 - Results are obtained through ten discipline working groups
 - Bearings
 - Structural dynamics
 - Turbomachinery
 - Fatigue/fracture/life
 - Ignition/combustion
- Fluid & gas dynamics
- Instrumentation
- Controls
- Manufacturing/producibility/inspection
- Materials


3-3941-9-401

ETO Propulsion Technology Approach

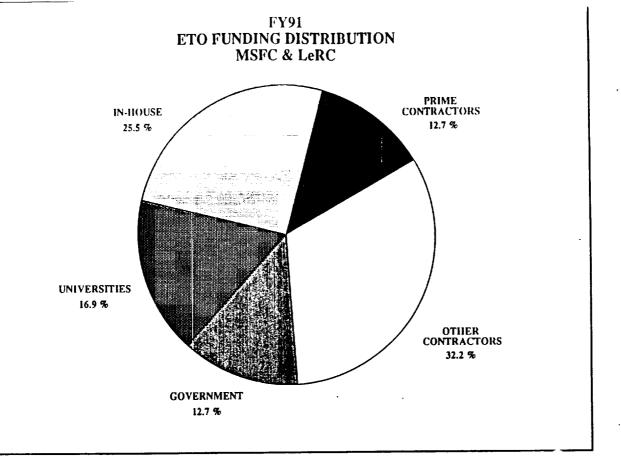
• Civil Space Technology Initiative (CSTI) program emphasizes validated technology delivered on schedule.

• Concepts, codes, techniques obtained in the Technology Acquisition Phase.

- Validated at the appropriate level by means of component subsystem or system level testing (TTB).
- OAET provides technology to TTB. OSF provides integration funds to incorporate technology items into TTB.
- Technology is transferred to industry via papers & conferences such as Biannual Propulsion Conference at MSFC and Biannual Structural Durability Conference at LeRC.
 - Technologists also are working flight programs
- Technology must be generic, but should be applicable to on-going or anticipated programs.
 - Goal is to provide a broad technology base that will support a wide variety of propulsion options

Earth-to-Orbit Propulsion Technology Program Work Breakdown Structure

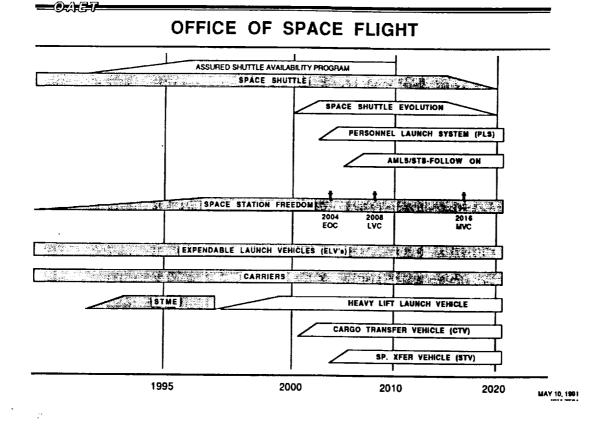
	ETO PRO	PULSIO	N FUND	IN I	MMARY	- \$K		5/13/91
	FY89	FY90	FY91	FY92	FY93	FY94	FY95	FY96
TECHNOLOGY ACQUISIT	ION 2093	1561	1562	1200	1200	800	1000	1200
STRUC. DYNAMICS*	1371	1162	1350	1400	1800	1500	1700	1700
TURBOMACHINERY*	1229	1137	1764	1600	1600	1100	1050	1200
FATIGUE/FRACTURE	1285	837	1115	1200	1410	1200	1200	1200
COMBUSTION	3123	2875	1126	1700	1960	1200	1000	1200
FLUID & GAS DYN.	1600	989	1697	1300	1200	900	1000	1200
INSTRUMENTATION	1420	836	920	1100	1400	1000	1000	1200
CONTROLS	1753	1182	1455	1800	1600	1000	1050	1200
MANUFACTURING	763	835	1088	1100	1650	1300	1300	1400
MATERIALS"	1580	1020	1270	1000	1400	800	1000	1200
TOTAL TECH. ACQ.	16217	12434	13347	13400	15220	10800	11300	12700
VALIDATION COMBUSTION VALID.	2160	622	750	1100	1780	1100	1200	2000
TURBO. VALID.	5285	2412	4619	3000	4700	3600	3600	3600
SYS. MONITOR. VALID.	4578	4459	2606	8000	8800	6000	6500	5300
TOTAL VALIDATION	12023	7493	7975	12100	15280	10700	11300	10900
TOTAL PROGRAM	28240	19927	21322	25500	30500	21500	22600	23600
PMS	3375	3484	2616	3200	3400	3600	3800	4000
CENTER TOTALS	31615	23411	23938	28700	33900	25100	26400	27600


R

Ē

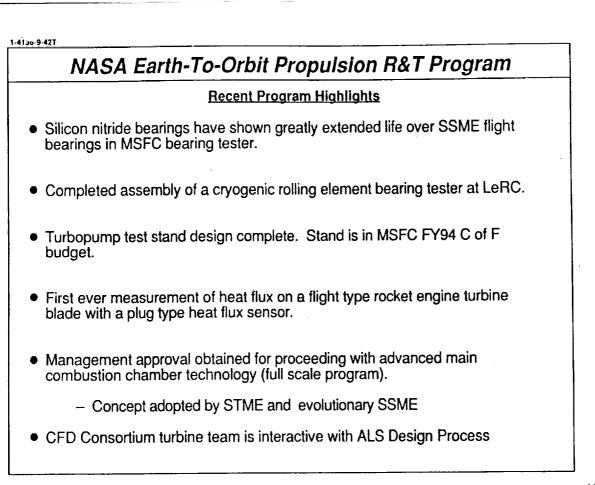
_

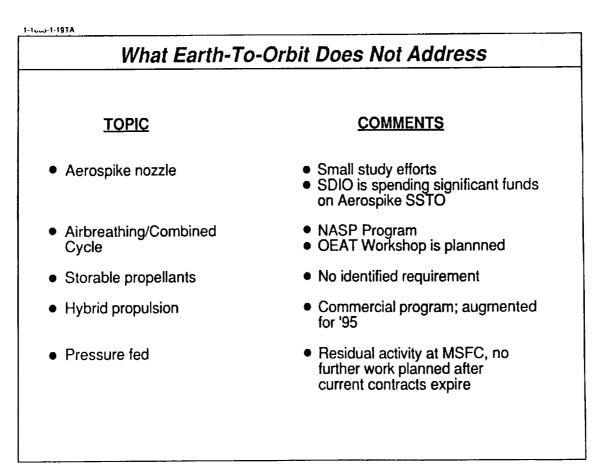
_


5 3

12

lO


INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM FLIGHT PROGRAMS VISION



1-1602-1-19TA

Earth-To-Orbit Propulsion R&T Program Activities

- Conducted biannual ETO Technology Conference May 15-17, 1990. 123 papers presented. 400 attendees.
- Presented program to Space Technology Interdependency Group (STIG) November 29-30, 1990, Andrews A.F.B.
- Conducted Propulsion Program Review for OAET, December 10-12, 1990.
- Conducted Detailed ALS assessment of ETO Propulsion Project, March 1991, MSFC.
- Conducted 3rd screening of technology items for TTB March 8, 1991.
- Conducted biannual Structural Durability Conference at LeRC, May, 1991.

Focused Technology: ETO Propulsion

Summary

<u>IMPACT</u>. The ETO Propulsion Technology Program supports all advanced engine programs. Half of the 200 tasks in the Program were judged by an ALS consortium contractor team to be directly applicable to ALS propulsion technology needs. ETO addresses the top 3 priority technology issues of the Office of Manned Space Flight.

<u>USER COORDINATION:</u> Closely tied to SSME/ALS. SSME review held at Tyson's Corner Va. Oct.1989. ALS/SSME review held at MSFC February 1990. A special ALS review was held for ALS at MSFC in March 1991. Interagency coordination provided by Space Technology Interdependency Group (STIG).

<u>TECHNICAL REVIEWS</u>: Annual RTOP review held in Nov/Dec each year, Government only. Covers each task, technical and budget, in the program. Other reviews as required.

OVERALL TECHNICAL and PROGRAMMATIC STATUS: Activities are maturing. Technology items for validation are being developed, such as bearings, sensors, health monitoring algorithms.

<u>RATIONALE for AUGMENTATION</u>; Several areas require additional funding, Advanced Manufacturing, Propulsion System Studies and Additional Testing Capability. In addition the combination of budget constraints and the CSTI emphasis on validated technology starves the program of new technologies.

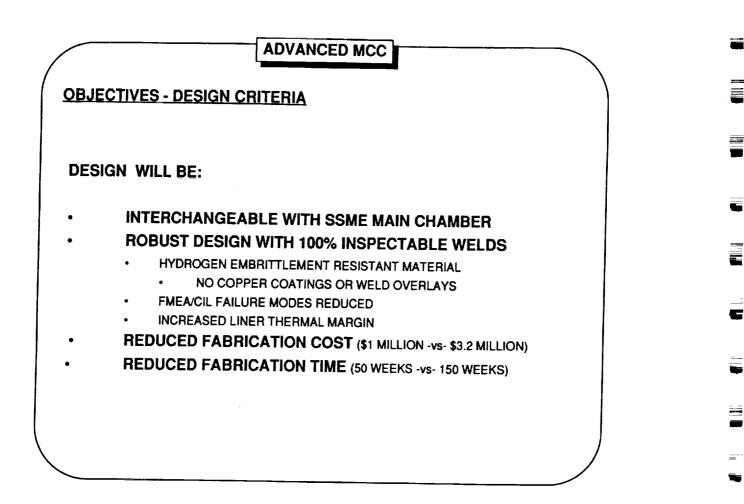
MAJOR TECHNICAL/PROGRAMMATIC ISSUES: Several propulsion options are available to the U.S. for the next generation of vehicles. The ETO program must maintain a broad base of technology to address a range of options. In addition, the absence of Program Advanced Development programs makes the ETO program the Nation's propulsion Advanced Development Program by default.

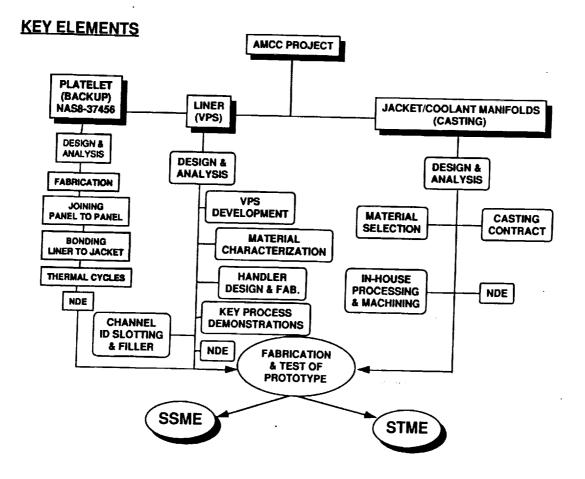
15

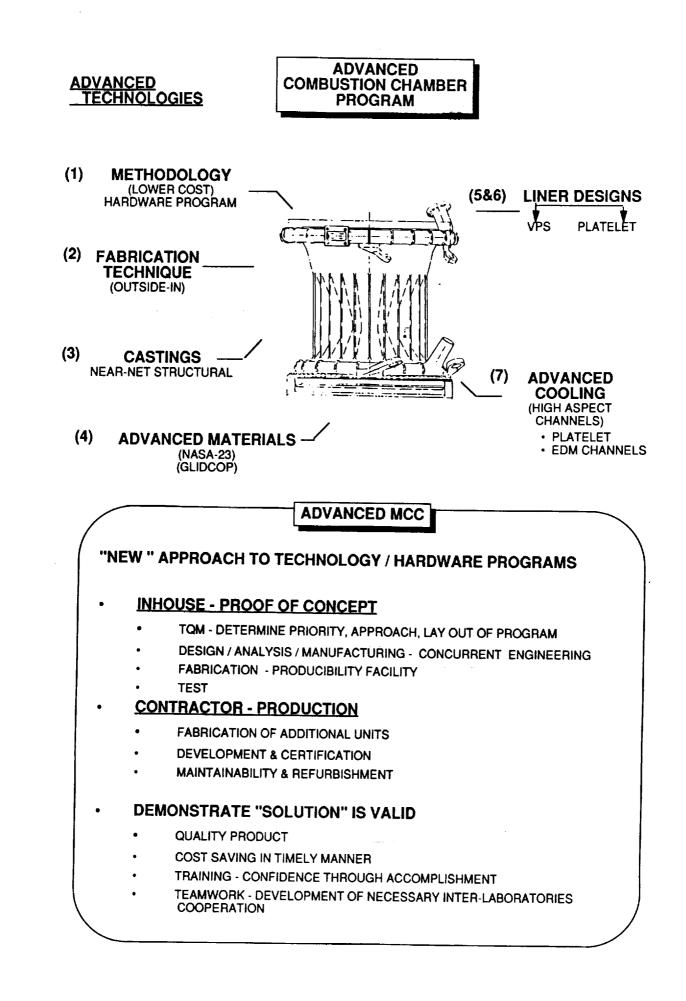
_

58-81 157475 N93-71881

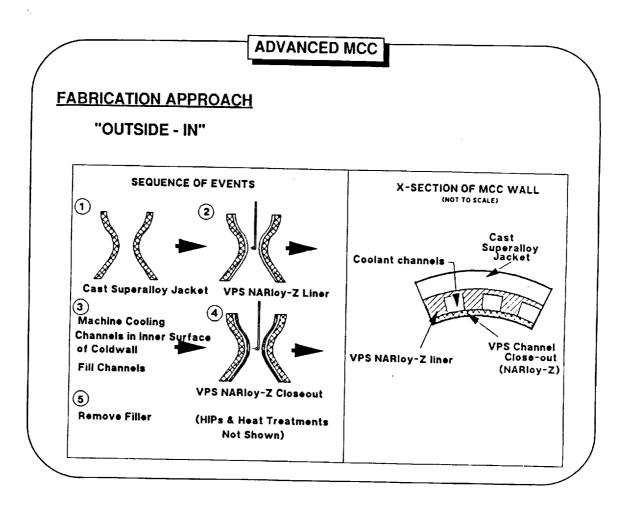
ADVANCED MAIN COMBUSTION CHAMBER PROGRAM

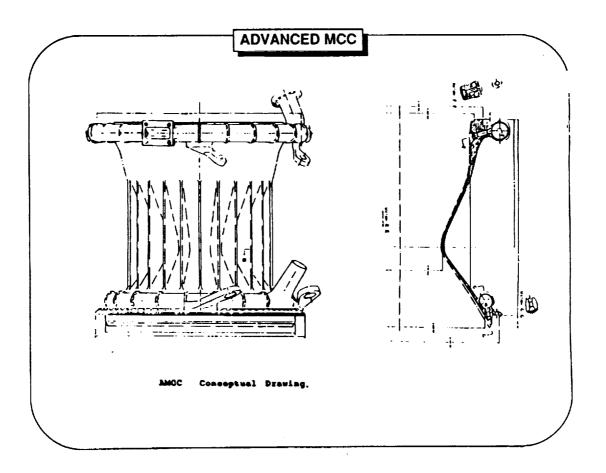

.

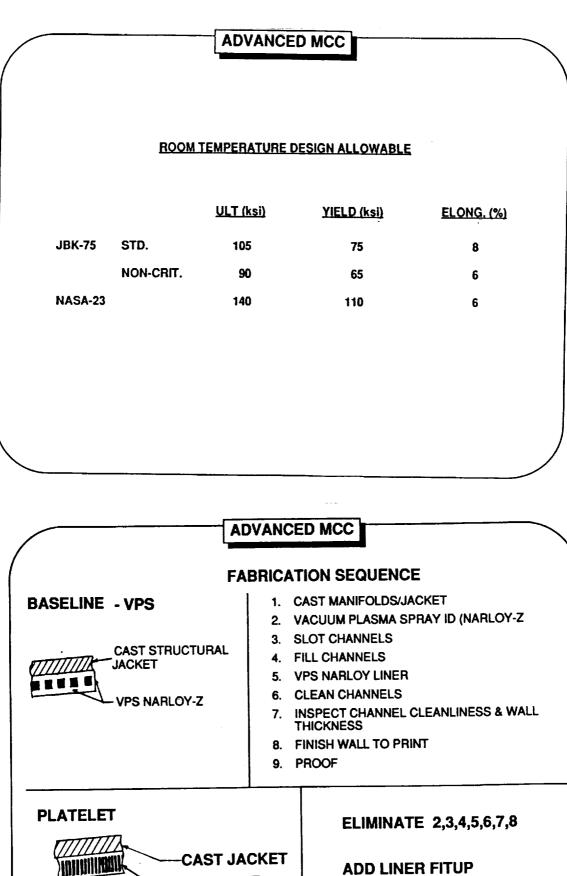

1 1


1 1000 1 1000 1 1000

ADVANCED MCC PROGRAM OVERVIEW ADVANCE CURRENT MANUFACTURING TECHNOLOGY FOR SPACE HARDWARE **DESIGN A MAIN COMBUSTION CHAMBER INVESTMENT CASTINGS (LOW COST) ROBUST WITH 100% INSPECTABLE WELDS** CAPABLE OF UTILIZING ALTERNATE LINERS VACUUM PLASMA SPRAY MATERIALS . PLATELET **USE SSME PROGRAM** LARGE DATA BASE - NONCONFORMITIES, ETC **AVAILABLE TEST FACILITY - TTB USE MSFC PERSONNEL FOR DESIGN EFFORT** DESIGN ANALYSIS QUALITY USE CONCURRENT ENGINEERING TECHNIQUES




.

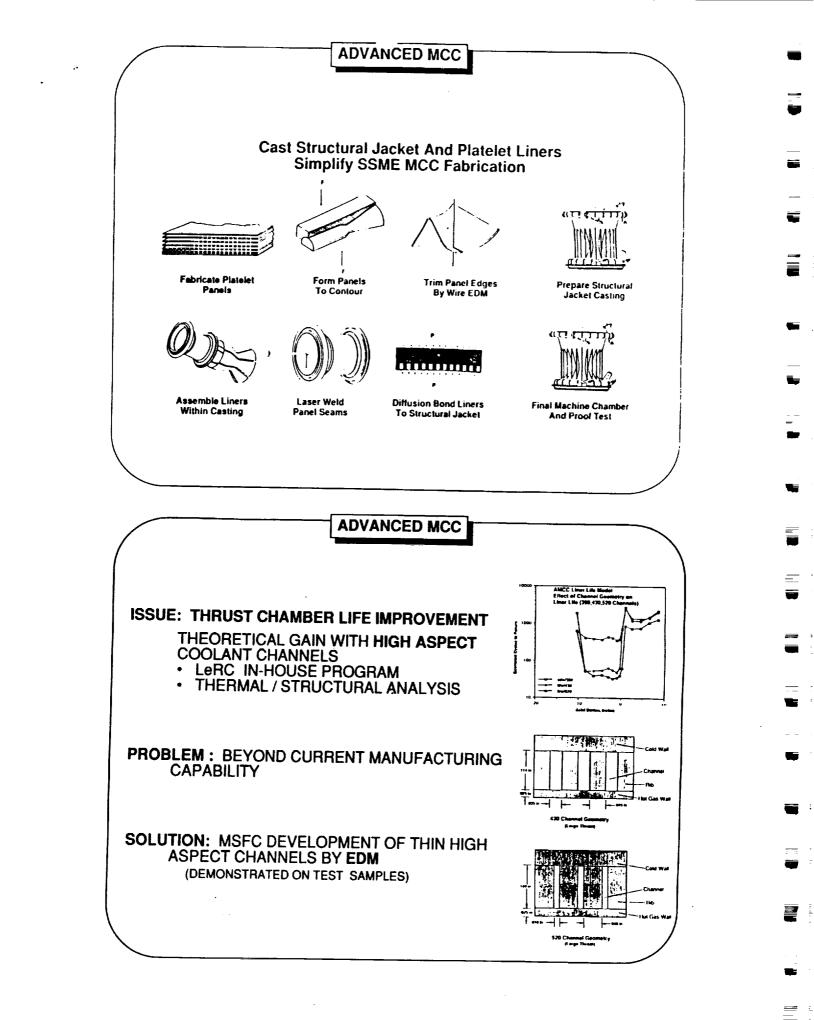

(1000) (1000)

1.1

.

100 C

1000


.

÷-.

ADD LINER FITUP ADD JOINING SEGMENTS (LASER WELDS) ADD BONDING LINER / JAC.

PLATELET

LINER

Space Administration

Earth-To-Orbit Turbomachinery Subsystem

N93-71882

Presented to: Integrated Technology

George C. Marshall Space Flight Center

Integrated Technology Plan External Review Team Tysons Corner, McLean, Virginia

Overview Earth-to-Orbit Propulsion Turbomachinery Subsystem

59-81 157476 p, 22

147

By: L.A. Schutzenhofer/R. Garcia Computational Fluid Dynamics Branch Structures and Dynamics Laboratory

National Aeronautics and Space Administration George C. Marshall Space Flight Center

Earth-To-Orbit Turbomachinery Subsystem

Overview

- Objectives/Focus
- MSFC/LeRC Teaming
- · Determination of Needs and Deliverable Products
- Turbomachinery Technology Components and Disciplines
 - Component Specific Technologies
 - Discipline Specific Technologies
- Turbornachinery Large Scale Validation
- Accomplishments
 - Turbine Stages
 - Complex Flow Paths
- Summary

5-13538 1-392

Earth-To-Orbit Turbomachinery Subsystem

Objectives/Focus

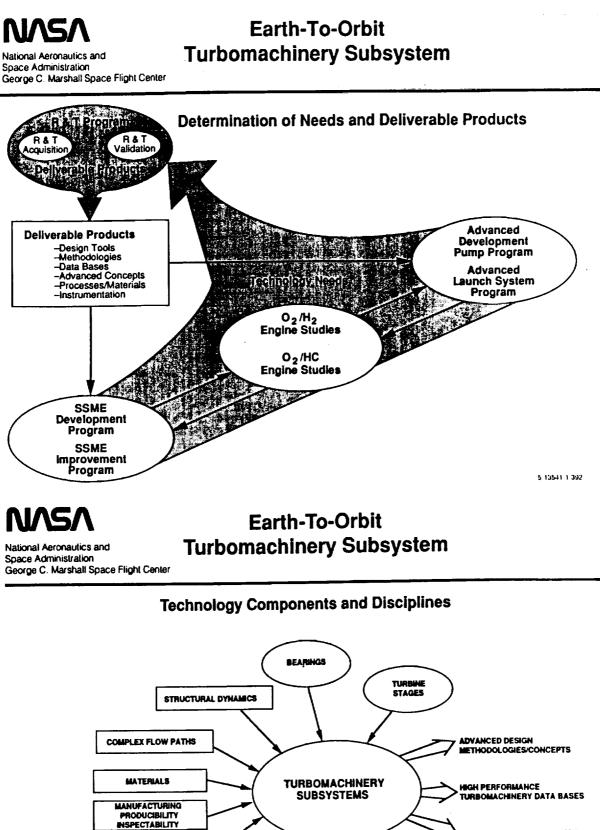
- Develop the Technology Related to the Turbomachinery Systems of High Performance Rocket Engines
 - Advanced Design Methodologies and Concepts
 - Develop High Performance Turbomachinery Data Bases
 - Validated Turbornachinery Design Tools
- Specific Turbomachinery Subsystems and Disciplines
 - Turbine Stages
 - Pump Stages
 - Bearings
 - Seals

- Structural Dynamics
- Complex Flow Paths
- Materials
- Manufacturability, Producibility, Inspectability
- Rotordynamics
- Fatigue/Fracture/Life

5-13539-1-392

_

-


National Aeronautics and Space Administration George C. Marshall Space Flight Center

Earth-To-Orbit Turbomachinery Subsystem

MSFC/LeRC Teaming

Turbomachinery Thrust Co-Managers – L. Schutzenhofer/MSFC J. Gauntner/LeRc

Working Groups	<u>Co-Chairmen</u>
Bearings	F. Dolan/MSFC
	J. Walker/LeRC
	L. Kiefling/MSFC C. Chamis/LeRC
Structural Dynamics	C. Chamis/LeRC
	/ H. Struck/MSFC
Fluid and Gas Dynamics	R. Gaugler/LeRC
B An Annia Ia	S. Gentry/MSFC
Materials	R. Dreshfield/LeRC
the state of the state in the state of the state	J. Clark/MSFC
Manufacturing/Producibility/Inspection	T. Herbell/LeRC
	L. Schutzenhofer/MSFC
Turbomachinery	J. Gauntner/LeRC
	G. Faile/MSFC
Fatigue/Fracture/Life ——————————	M. McGraw/LeRC 5 13540 1 392

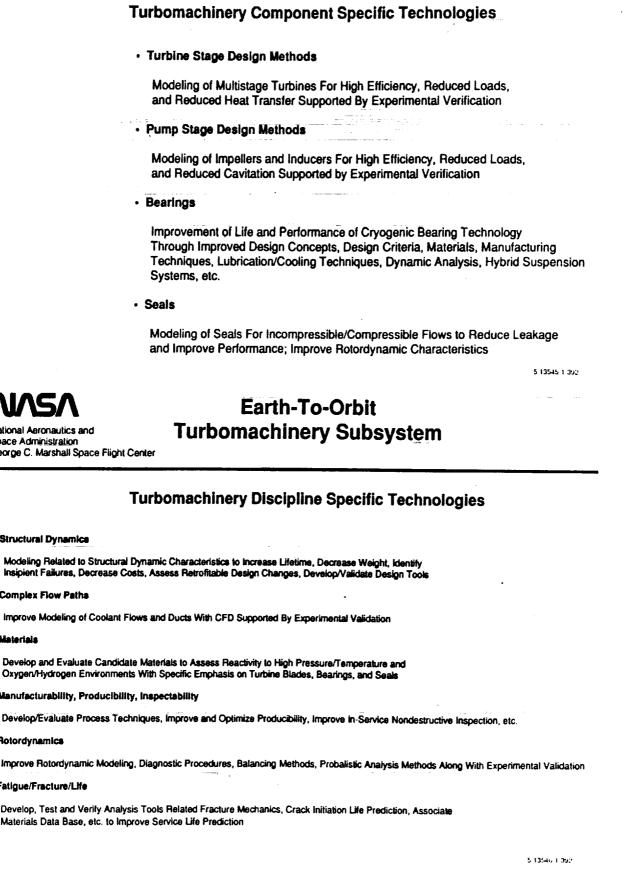
ROTORDYNAMICS

FATIGUE/FRACTURE/LIFE

Ξ.,

SEALS

PUMP STAGES


5 13542 1 392

VALIDATED TURBOMACHINERY

DESIGN TOOLS

Earth-To-Orbit **Turbomachinery Subsystem**

National Aeronautics and Space Administration George C. Marshall Space Flight Center

Turbomachinery Discipline Specific Technologies

Structural Dynamica

Modeling Related to Structural Dynamic Characteristics to Increase Lifetime, Decrease Weight, Identify Insipient Failures, Decrease Costs, Assess Retrofitable Design Changes, Develop/Validate Design Tools

Complex Flow Paths

Improve Modeling of Coolant Flows and Ducts With CFD Supported By Experimental Validation

Seals

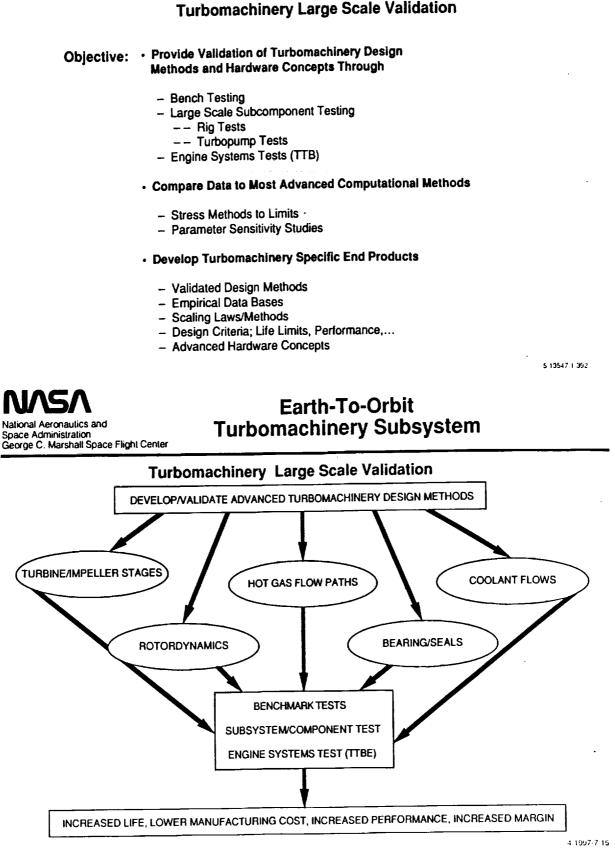
Materials

Develop and Evaluate Candidate Materials to Assess Reactivity to High Pressure/Temperature and Oxygen/Hydrogen Environments With Specific Emphasis on Turbine Blades, Bearings, and Seals

Manufacturability, Producibility, Inspectability

Develop/Evaluate Process Techniques, Improve and Optimize Producibility, Improve In-Service Nondestructive Inspection, etc.

Rotordynamics


Fatigue/Fracture/Life

Develop, Test and Verify Analysis Tools Related Fracture Mechanics, Crack Initiation Life Prediction, Associate Materials Data Base, etc. to Improve Service Life Prediction

Earth-To-Orbit **Turbomachinery Subsystem**

National Aeronautics and Space Administration George C. Marshall Space Flight Center

Earth-To-Orbit **Turbomachinery Subsystem**

Accomplishments

Turbine Stage

Computational Fluid Dynamic Analysis and Validation Led to Decision to Implement a Single Stage Turbine Into STME Instead of Two Stages.

Complex Flow Paths

Technology Flow Testing Led to the Development of the SSME Phase II+ Hot Gas Manifold; CFD Analysis Validated In Air- and Water-Flow Facilities

5-13551-1-392

÷

100

National Aeronautics and Space Administration George C. Marshall Space Flight Center

Earth-To-Orbit **Turbomachinery Subsystem**

Turbine Stage

Consortium for CFD Applications in Propulsion

· Objectives

- Identify needs
- Development of CFD as a design tool through challenging applications
- Evaluation/development of advanced hardware concepts

Teams in place

- Turbine
- Pump

←

- Combustion-driven flows

Participants (e.g., Turbine Team)

		÷ . = .	
NASA	Industry	Small Business	Universities
MSFC	Aerojet	Calspan	Penn. State Univ.
LeRC	General Electric	Rotodata	Miss. State Univ.
ARC	Pratt & Whitney	Sci. Res. Assoc.	Univ. of Ala. (T)
	Rocketdyne	SECA	Univ. of Ala. (Hsv.)
	United Technologies Res	s. Cen.	
<i>(</i>	Technol	ogy Transfer	5-13552-1-390

Space Administration

George C. Marshall Space Flight Center

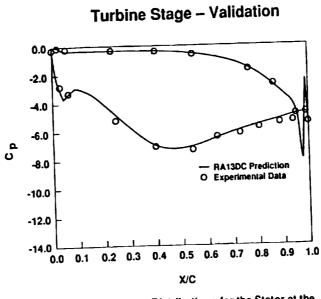
Earth-To-Orbit Turbomachinery Subsystem

Turbine Stage – Generic Gas Generator

· Objectives

- Enhance and Validate Turbine Design Tools
- Transfer Advanced Technology to Turbine Design Process

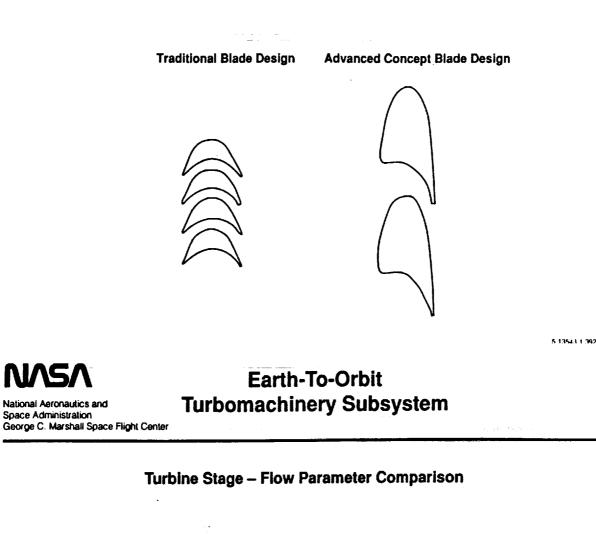
Approach


- Develop and Implement Plan Cognisant of STME Program Goals
- Focus Activity Around STME Turbines but Ensure End Products are Generic
- Establish a Focused Team of Committed Turbine Experts to Drive Technology Transfer and Focus Deliverable Products toward Design Tools
- Benchmark Codes With Air-Flow Data
- Establish and Evaluate Advanced Baseline Turbine Stage
- Fine Tune Baseline and Validate In Air-Flow Test
- Results
 - Code Validated for STME Type Turbine Stage
 - High Turning (160°) Blade Designed/Evaluated
 - Efficiency Increased by 9.8 Percent
 - Single-Stage Turbine Instead of Two
 - Projected Life-Cycle Cost Savings of \$71M

5 13544 1 392

Earth-To-Orbit Turbomachinery Subsystem

National Aeronautics and Space Administration George C. Marshall Space Flight Center



5 10/20 1 000

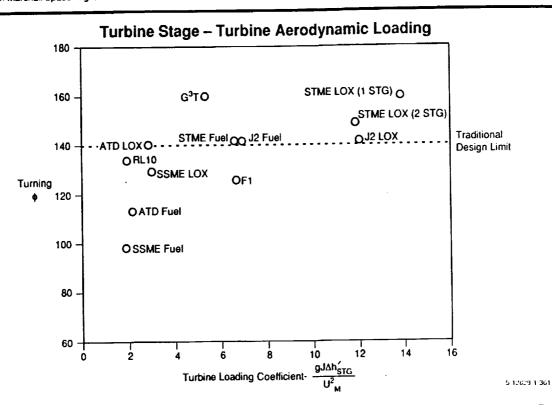
Earth-To-Orbit Turbomachinery Subsystem

Turbine Stage – Blade Comparison

	Previous State-of-the-Art GG Experience	Advanced G ³ T Design Concept
General Description	70/30 Work Split Nominal Annulus Height	50/50 Work Split Increased Annulus Height
Blade turning	135°	160°
Fluid acceleration	0.9	1.6
Max blade Mach number	1.32	0.87
Efficiency	Base	+9.8 percent
Airfoil count	Base	-55 percent

5 13556 1 392

Ē

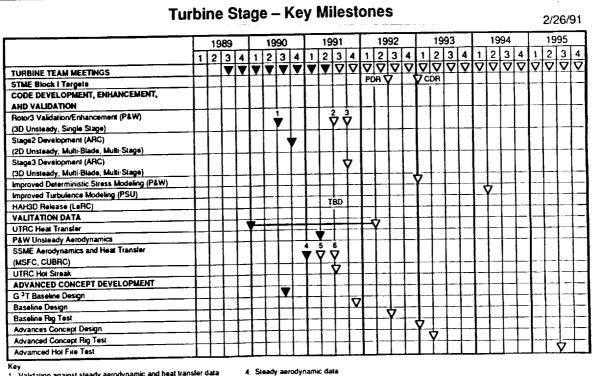

_

ک

Ī

Ŧ

National Aeronautics and Space Administration George C. Marshall Space Flight Center



Earth-To-Orbit **Turbomachinery Subsystem**

National Aeronautics and

Space Administration George C. Marshall Space Flight Center

Earth-To-Orbit **Turbomachinery Subsystem**

, Validation against steady aerodynamic and heat transfer data 2 Improved turbulence modeliling

5. Unsteady aerodynamic and heat transfer data 3. Validation against aerodynamic data

6. ATD steady aerodynamic data

E

Earth-To-Orbit **Turbomachinery Subsystem**

Turbine Stage – Technology Transfer

STME LOX turbine design decision: one vs. two stage turbine

- LCC favors one stage (reduction in LCC of 71 million dollars)
- Risk comparable
- Rotordynamic comparable, slightly favoring one stage
- Hardware simplicity favors one stage
- Turbine stage technology team support available for one stage

By concensus of Aerojet, Pratt and Whitney, and Rocketdyne on Novermber 15, 1990, a one stage oxygen turbopump turbine was recommended and subsequently implemented into the STME design.

National Aeronautics and Space Administration George C. Marshall Space Flight Center

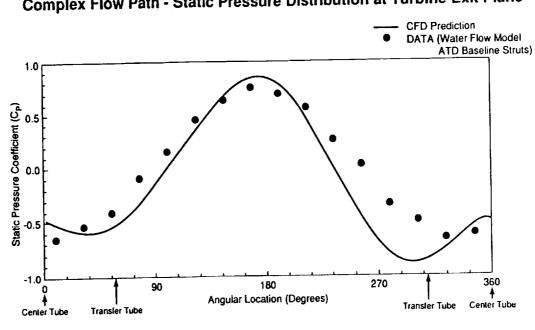
Earth-To-Orbit **Turbomachinery Subsystem**

Complex Flow Path - SSME Phase II +

- **Objectives** .
 - Validate CFD analysis using air- and water-flow data
 - Evaluate 2-duct versus 3-duct HGM design
- Approach
 - Compare CFD results to air- and water-flow tests
 - Apply CFD codes and test rigs to 2-duct and 3-duct HGM designs
- Results

 - Good agreement between CFD predicted and measured wall pressures
 - 2-duct manifold results in
 - · Lower side loads on turbine end
 - Lower turbine temperatures
 - More benign internal flow environment

5 1355/ 1 392


=

577.255

10100

_

5 13545 1 002

NVZV

•

Earth-To-Orbit Turbomachinery Subsystem

National Aeronautics and Space Administration George C. Marshall Space Flight Center

Complex Flow Path – Technology Transfer

SSME Program Made Key Decision to Develop Two Duct HGM

- Developmental Hot Fire Testing In Progress
- Program Plans Indicate First Flight 1996

Earth-To-Orbit Turbomachinery Subsystem

Potential Augmented Work

- Flow Model of Entire Rocket Engine
- Advanced Turbopump
- Casting Technology
- Advanced Materials

5-13686-1-392

Z

÷

National Aeronautics and Space Administration George C. Marshall Space Flight Center

Earth-To-Orbit Turbomachinery Subsystem

Summary

- Focused Management Milestone Plan In Place Via Cooperative Efforts Between MSFC and LeRC with ARC Participation.
- Technology Being Developed That has Potential to Flow
 Into Ongoing Main Stream Programs.
- NLS Distinguishable Technology Products Being Evolved That Also Have Generic Payoffs
- Technology Transfer Being Accomplish and Accelerated
 Via Consortium for CFD Application In Propulsion Technology

INTEGRATED TECHNOLOGY PLAN

FOR THE CIVIL SPACE PROGRAM

TRANSPORTATION TECHNOLOGY EARTH-TO-ORBIT TRANSPORTATION

HEALTH MONITORING & DIAGNOSTICS

AND CONTROLS

S. Gorland

6/26/91

Transportation Technology Earth-To-Orbit Transportation 5

INSTRUMENTATION

TECHNOLOGY NEEDS

1

- IMPROVED SENSORS AND MEASUREMENT SYSTEMS FOR BOTH CURRENT AND FUTURE 0 SPACE PROPULSION SYSTEMS IN ORDER TO PROVIDE:
 - DETAILED MEASUREMENTS FOR CODE VALIDATION IN: 0
 - SUBCOMPONENT TESTS IN LABORATORIES. COMPONENT TESTS IN FACILITIES. TEST BED ENGINE. 0
 - 0
 - 0
 - IMPROVED TEST AND LAUNCH STAND INSTRUMENTATION. 0
 - IMPROVED SENSORS AND SYSTEMS FOR OPERATIONAL ENGINES FOR BOTH: 0
 - CONTROL PARAMETERS. 0
 - HEALTH MONITORING. 0

INSTRUMENTATION

CHALLENGES

- THE ENVIRONMENTAL REQUIREMENTS UNDER WHICH THE SENSORS MUST FUNCTION AND THE PARAMETERS TO BE SENSED ARE FREQUENTLY BEYOND CURRENT STATE-OF-THE-ART.
- O MEASUREMENT SYSTEMS FOR CODE VALIDATION MUST BE NON INTRUSIVE (E.G. OPTICAL) OR AT LEAST MINIMALLY INTRUSIVE (E.G. THIN FILM) BECAUSE THE CODES DO NOT ALLOW FOR THE PRESENCE OF A SENSOR.
- MEASUREMENT SYSTEMS FOR CODE VALIDATION MUST ALSO PROVIDE HIGH TEMPORAL AND SPATIAL RESOLUTION BECAUSE THE CODES ARE USUALLY FINE MESH SOLUTIONS.
- SENSORS FOR OPERATIONAL ENGINES MUST BE HIGHLY RELIABLE PARTICULARLY WHEN FUTURE LONG TERM MISSIONS ARE CONSIDERED.
- O MEASUREMENT SYSTEMS FOR TEST AND LAUNCH PAD OPERATION MUST REQUIRE MINIMUM MANPOWER AND/OR MAINTENANCE WHILE SURVIVING THE EXTREME ACOUSTIC, VIBRATION, AND THERMAL ENVIRONMENTS DURING LAUNCH.

Transportation Technology Earth-To-Orbit Transportation

INSTRUMENTATION

APPROACH

- O MAXIMIZE THE USE OF OPTICAL SYSTEMS AND FIBER OPTICS.
- **O DEVELOP THIN, SPUTTER DEPOSITED FILM SENSORS.**
- CAPITALIZE ON DEVELOPMENTS IN THE COMPUTER, MICROELECTRONIC, AND LASER TECHNOLOGY FIELDS.

- O BALANCE THE PROGRAM AMONG IN-HOUSE, GRANT, AND CONTRACT WORK.
- O COORDINATE CLOSELY WITH THE OTHER TECHNOLOGY GROUPS, PARTICULARLY CONTROLS.

INSTRUMENTATION

BENEFITS

- **RELIABLE SENSORS FOR:** Ω
 - CONTROL AND HEALTH MONITORING 0
 - INCREASED CREDIBILITY OF COMPUTER CODES. 0
- MORE DIRECT SENSING OF THE PARAMETER REQUIRED RATHER THAN INDIRECT 0 INFERENCE FROM OTHER MEASUREMENTS.
- MORE EFFICIENT AND SAFER STAND AND PAD OPERATIONS. 0
- GENERIC TECHNOLOGY APPLICABLE NOT ONLY TO EARTH-TO-ORBIT PROPULSION 0 SYSTEMS BUT ALSO TO SPACE BASED PROPULSION SYSTEMS INCLUDING NUCLEAR.

Transportation Technology Earth-To-Orbit Transportation

INSTRUMENTATION

CURRENT PROGRAM

- DETAILED MEASUREMENTS FOR CODE VALIDATION IN LABORATORIES, RESEARCH 0 FACILITIES, AND THE TEST BED ENGINE.
 - THIN FILM THERMOCOUPLES AND HEAT FLUX SENSORS FOR THE TURBINE Ó ENVIRONMENT.
 - PLUG TYPE HEAT FLUX SENSORS FOR TURBINE TRANSIENTS. 0
 - **OPTICAL SYSTEMS FOR:** 0
 - 0
 - 0
 - PREBURNER GAS TEMPERATURE. TURBINE REGION FLOW MEASUREMENT. 2D STRAIN MEASUREMENTS IN HIGH TEMPERATURE MATERIALS TEST FACILITIES. 0
 - HOLOGRAPHIC STRUCTURAL FLAW DETECTION. 0
 - OPTICAL SYSTEM ALIGNMENT IN HARSH ENVIRONMENTS USING NEURAL 0 NETWORKS.

INSTRUMENTATION

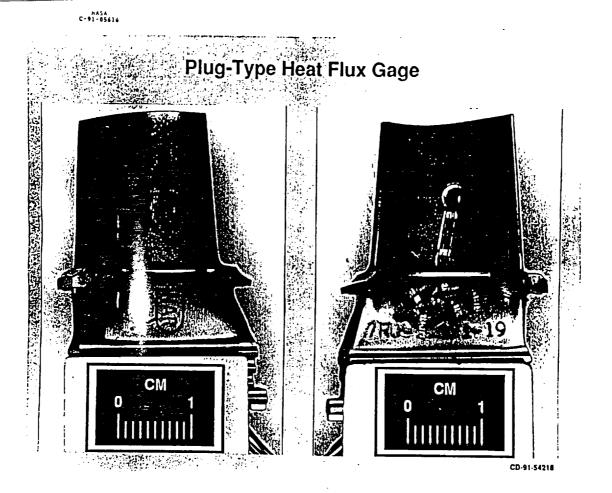
CURRENT PROGRAM (CONT)

- IMPROVED TEST AND LAUNCH STAND INSTRUMENTATION. 0
 - OPTICAL PLUME ANOMALY DETECTION SYSTEM. 0
 - 0 GASEOUS (H2) LEAK DETECTION USING: 0
 - SOLID STATE POINT SENSORS. REMOTE OPTICAL SYSTEMS. 0

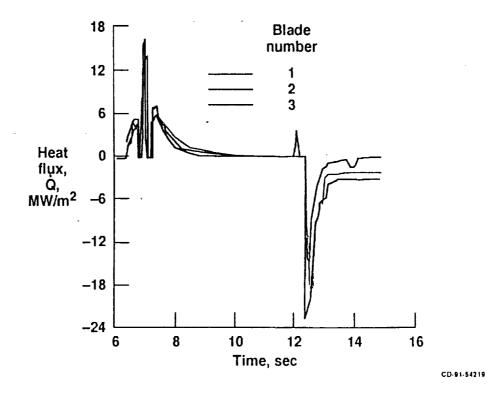
Transportation Technology **Earth-To-Orbit Transportation**

INSTRUMENTATION

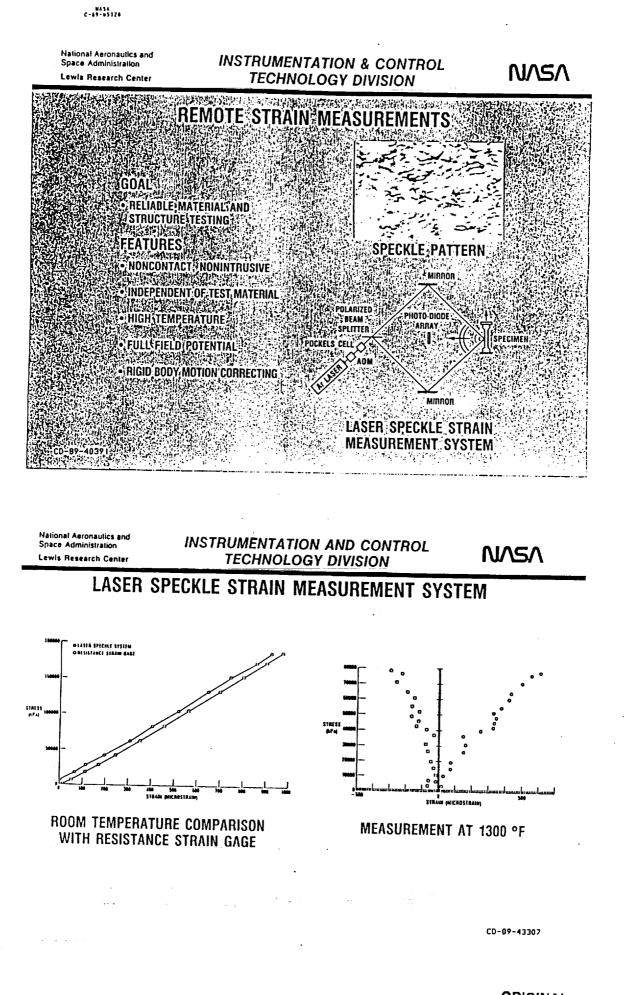
CURRENT PROGRAM (CONT)

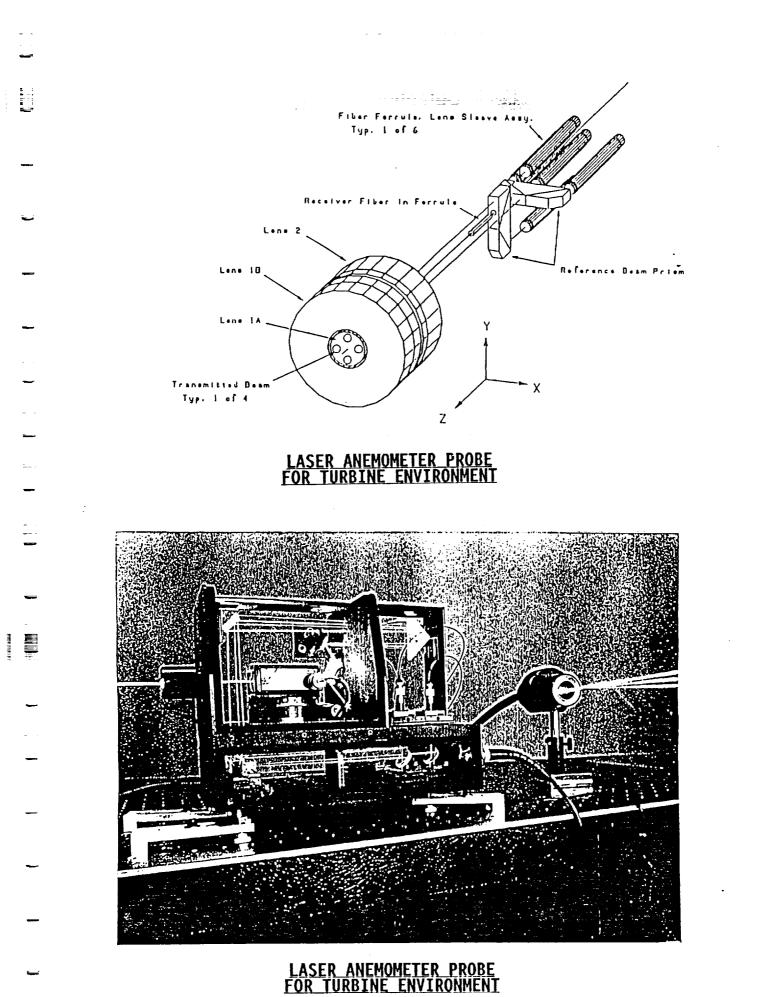

IMPROVED SENSORS AND SYSTEMS FOR OPERATIONAL ENGINES FOR BOTH CONTROL AND 0 HEALTH MONITORING.

10.12


- OPTICAL COMBUSTION CHAMBER GAS SPECIES MEASUREMENT. 0
- FLOWMETERS: 0
 - VORTEX SHEDDING. ULTRASONIC. 0

a <u>a a se a constructional de la construction de la construction de la construction de la construction de la cons</u> La construction de la construction d


- 0
- TRIBOELECTRIC. 0
- NON-INTRUSIVE SPEED SENSOR FOR TURBOPUMPS. Q
- BEARING DEFLECTOMETER. 0
- TURBINE BLADE PYROMETER. 0
- BRUSHLESS TORQUEMETER. 0
- PRESSURE SENSOR. 0



Heat Flux Measured in SSME Turbine Blade Tester

H 10

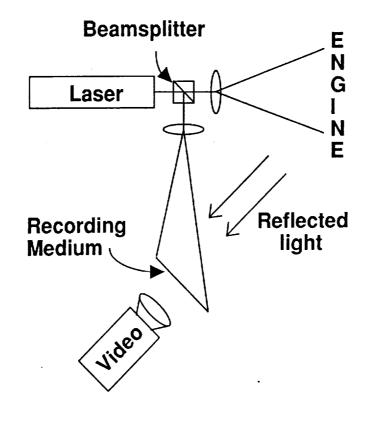
Leak Detection

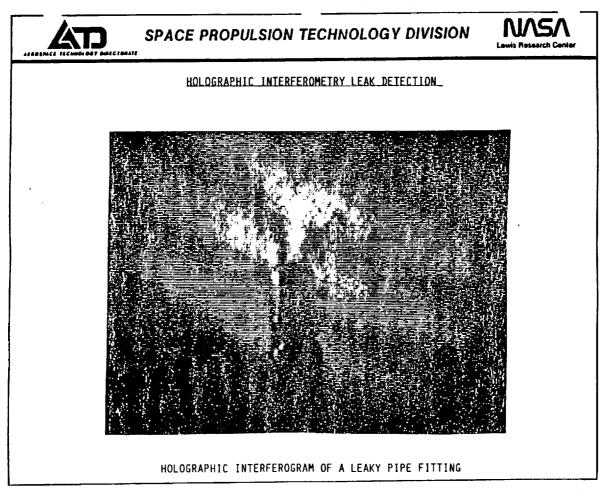
Technology Needs:

- Develop sensors that detect propellant leakage from cryogenic liquid fueled rocket engines.

Technology Challenge:

- Develop hydrogen and oxygen sensors exhibitting:
 - Fast response
 - High sensitivity
 - High spatial resolution
- Harden and package sensors for engine environment.


Benefits:


- Enables real time leak detection of propellants.
- Increases engine/mission safety.

Mask for Hydrogen Sensor

HOLOGRAPHIC INTERFEROMETRIC CONFIGURATION FOR LEAK DETECTION

Transportation Technology Earth-To-Orbit Transportation

INSTRUMENTATION

AUGMENTED PROGRAM

- ACCELERATE THE RATE AT WHICH ADVANCED INSTRUMENTATION IS APPLIED. 0
 - CURRENT PROGRAM IS FOCUSSED ON DEVELOPING AND VALIDATING NEW MEASUREMENT CONCEPTS IN THE LABORATORY. 0
 - CURRENT FUNDING LEVELS PERMIT THE DEVELOPMENT OF ONE (OR A FEW) PROTOTYPE MEASUREMENT SYSTEMS FOR FIELD APPLICATIONS. Ω
 - AUGMENTED FUNDING WOULD ALLOW MORE RAPID APPLICATION OF NEW 0 **MEASUREMENT TECHNOLOGY.**
 - 0
- SPECIFIC EXAMPLES INCLUDE: o HYDROGEN LEAK DETECTION SYSTEMS. o THIN FILM SENSORS. o ADVANCED FLOW, TEMPERATURE, AND TORQUE SENSORS. o OPTICAL DIAGNOSTIC SYSTEMS.

Transportation Lechnology **Earth-To-Orbit Transportation**

INSTRUMENTATION

AUGMENTED PROGRAM (CONT)

nn a nen An Isaac

- DEVELOP NEW AND UPGRADE EXISTING INSTRUMENTATION TEST FACILITIES TO 0 ENHANCE RESEARCH PRODUCTIVITY.
 - NEW FACILITY FOR HYDROGEN LEAK DETECTION SYSTEM TEST AND CALIBRATION. 0
 - NEW FACILITY FOR THE EXPOSURE OF SENSORS, MATERIALS SAMPLES, COATINGS, AND OTHER SMALL ITEMS TO HOT (BURNING) HYDROGEN AT ELEVATED PRESSURES AND UNDER TRANSIENT FLOW AND TEMPERATURE CONDITIONS. 0

<u>.</u>

UPGRADE THE EXISTING LERC HEAT FLUX CALIBRATION FACILITY. O

.

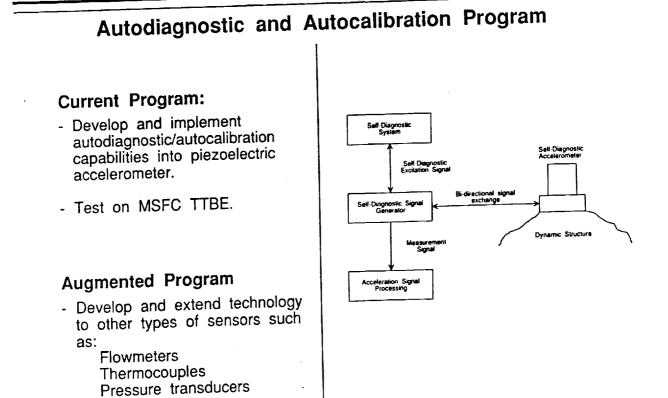
and a second The second sec The second sec

N93-71883

Sensor Autodiagnosis and Autocalibration

Technology Needs:

- Develop capability to enable in-situ, autonomous sensor failure detection/diagnosis and sensor self calibration


Technology Challenge:

- Model sensor with autodiagnostic/autocal capabilities
- Incorporate autodiagnostic/autocal capabilities without major modification or redesign of sensor

Benefits:

- Increased sensor reliability
- Reduced sensor maintenance requirements
- Enables sensors to be fault tolerant
- Eliminates "false alarm" shutdowns

Earth-to-Orbit Propulsion

510-81 157477 P-13

Plume Diagnostics

Technology Needs:

- Develop plume diagnostic capabilities for ground test and flight rocket engines.

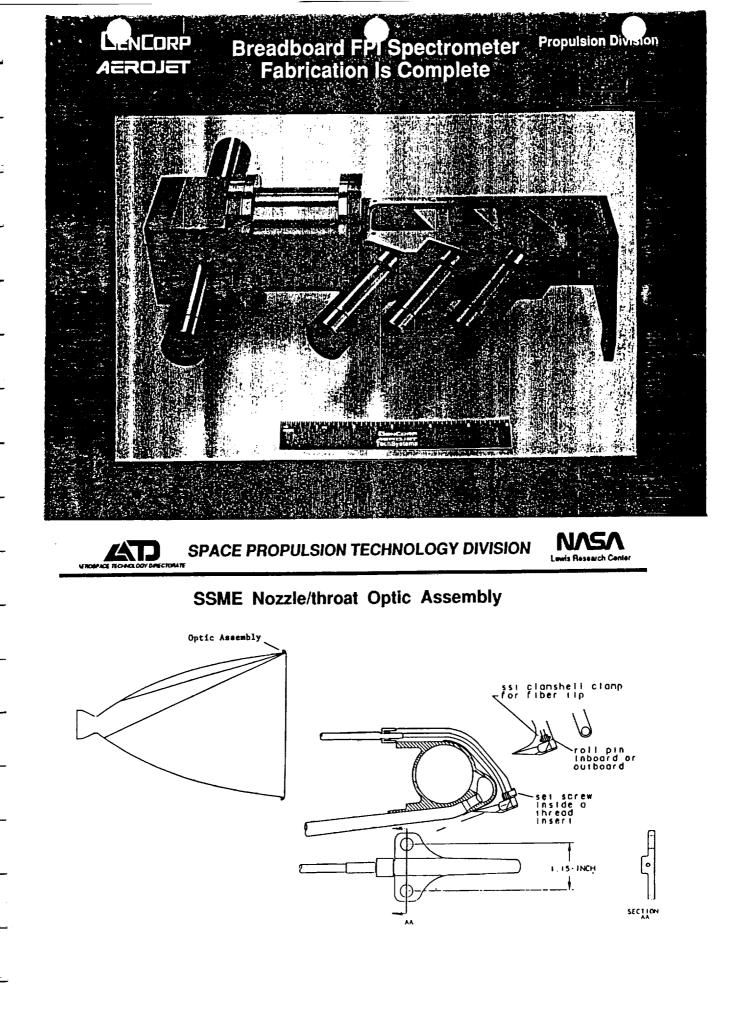
Technology Challenge:

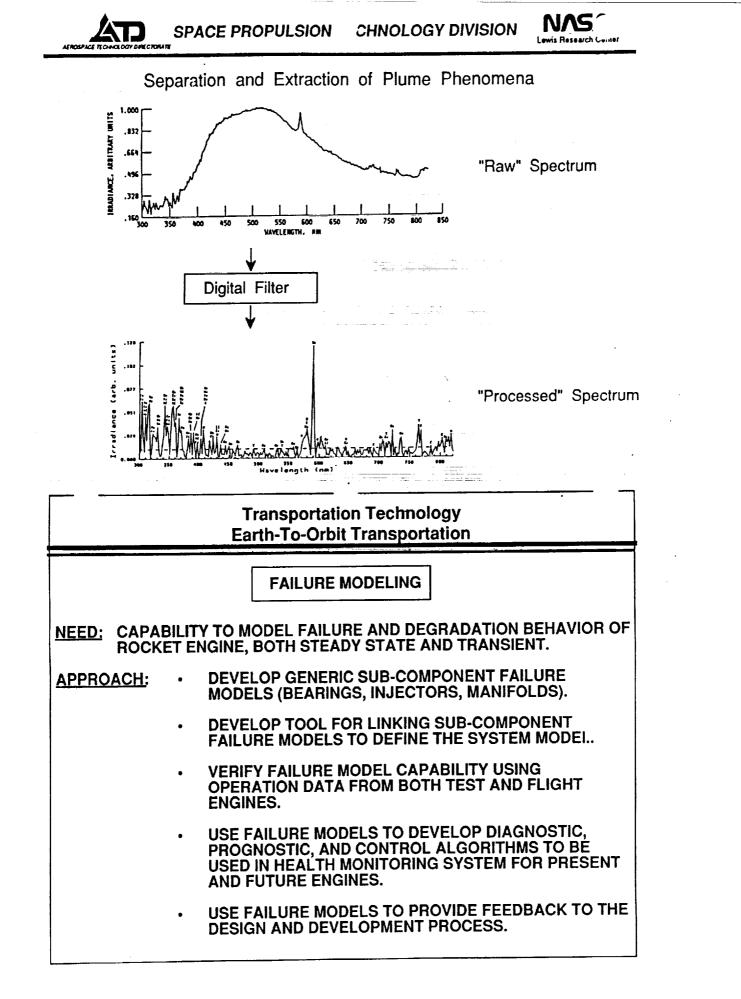
- Develop engine ground testing plume diagnostic capabilities
- Develop engine mounted optics and spectrometer.
- Develop codes to extract safety, health and performance information from plume spectral data.

Benefits:

- Enables rocket engine safety, health and performance monitoring with a single instrument.

Transportatic., Technology Earth-to-Orbit Propulsion


Plume Diagnostics Program


Current Program:

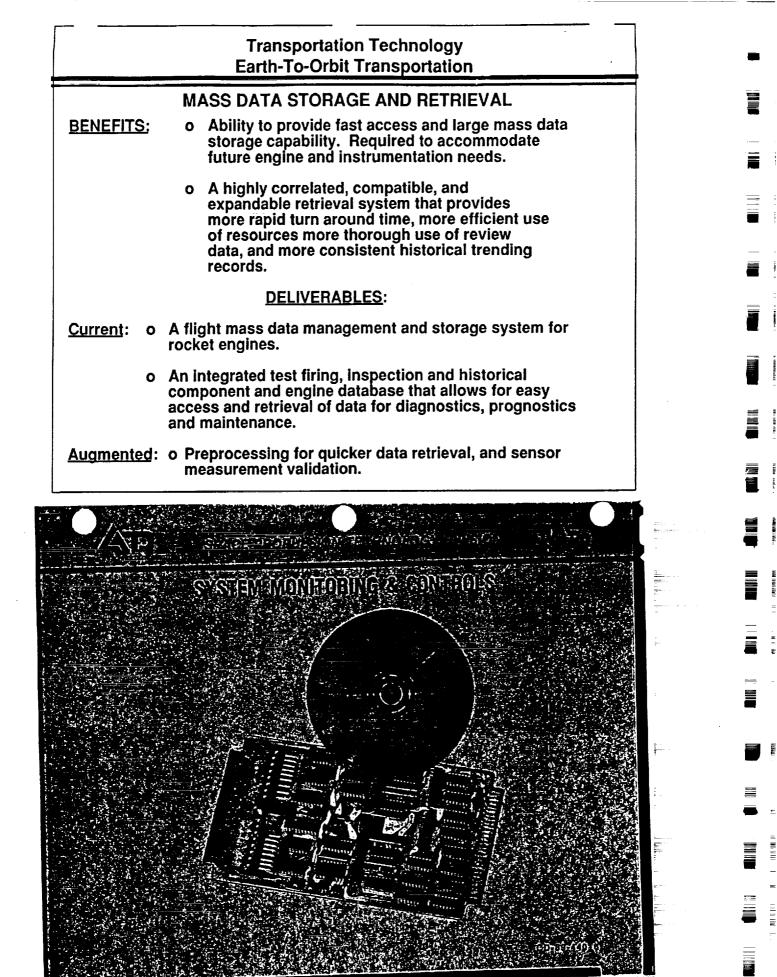
- Monitoring TTBE spectral emisisons (OPAD).
- Monitoring emissions across the TTBE exit plane.
- Development of nozzle mounted optic assembly and high resolution spectrometer for SSME.
- Develop code to extract species/alloy information from plume spectral data.

Augmented Program

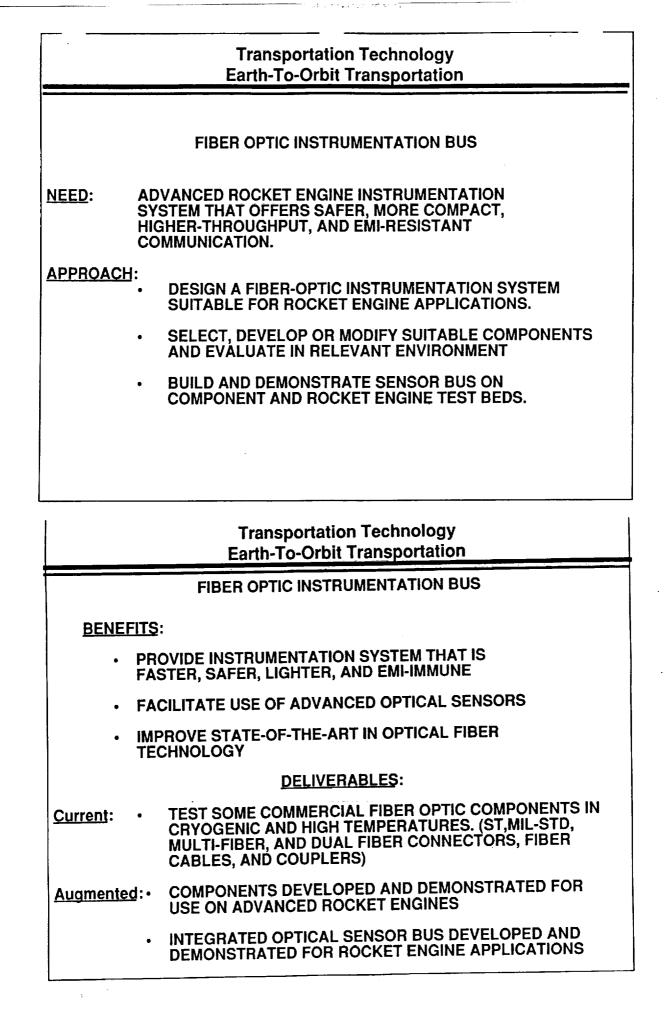
- Develop code(s) to model and predict spectral emissions from a high pressure/high temperature combustion process.

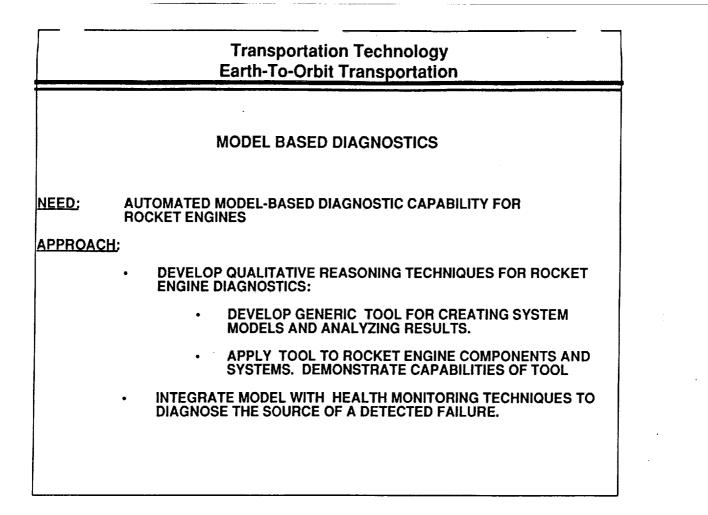
Transportation Technology Earth-To-Orbit Transportation					
FAILURE MODELING					
<u>BENEFIT;</u>	•	PROVIDE FAILURE DATA TO DEVELOP ALGORITHMS AND HEALTH MONITORING SYSTEMS PRIOR TO ACTUAL ROCKET ENGINE DEVELOPMENT.			
	•	ACTUAL ROCKET ENGINE FAILURES ARE BOTH COSTLY AND INFREQUENT. FAILURE MODELS CAPABILITY WILL PROVIDE A "RICH" FAILURE DATABASE WITH MINIMUM HARDWARE AND SAFETY IMPACTS.			
		DELIVERABLE:			
Current:	0	TOOL FOR LINKING SUB-COMPONENTS TO DEFINE SYSTEM MODEL			
	0	INJECTOR FAILURE MODEL SPECIFIC TO SSME			
Augmented:	0	GENERIC FAILURE MODELS OF KEY ROCKET ENGINE SUB-COMPONENTS			
	0	VALIDATE FAILURE MODELS CAPABILITY USING SSME DATA			

Transportation Technology Earth-To-Orbit Transportation


MASS DATA STORAGE AND RETRIEVAL

1


NEED: O A validated engine flight data recorder, based on either digital or optical theory, that allows for increased bandwidth storage capability. Coupled with validated expert system and data base technologies to provide extensive archival search and retrieval techniques for the massive and disparate data required for diagnostics and prognostics.


<u>APPROACH</u>: o Design and develop advanced techniques for fast access and large bandwidth for mass data storage and retrieval.

o Design and develop techniques and database with smart retrieval capabilities.

ORIGINAL PAGE IS OF POOR QUALITY

	Transportation Technology Earth-To-Orbit Transportation
	MODEL BASED DIAGNOSTICS
<u>Benefits</u> ;	PROVIDES MODEL-BASED DIAGNOSTIC ALGORITHMS WHICH CAN EXECUTE IN NEAR-REAL-TIME
	MODEL-BASED DIAGNOSTICS OFFER MORE COMPLETE COVERAGE THAN RULED-BASED TECHNIQUES OF SIMILAR COMPLEXITY
	DELIVERABLES:
Augmented:	ANALYSIS AND DIAGNOSIS TOOLS
	USER INTERFACE FOR SYSTEM DEFINITION AND DISPLAY OF RESULTS
	• VERIFICATION OF MODELS OF ROCKET ENGINE COMPONENTS AND SYSTEMS.

薑

Ξ

SAFETY MONITORING SYSTEM (SMS)

OBJECTIVES:

- Provide increased safety on the test stand, while maintaining a path to flight.
- Complement the current redline system with the SMS to detect anomalies earlier.

APPROACH:

<u>----</u>

ро н. 1911 г.

E: :: "

- Validate SMS algorithms.
- Integrate algorithms with hardware.
- Demonstrate anomaly detection on TTB.

TRANSPORTAT. TECHNOLOGY EARTH-TO-ORBIT TRANSPORTATION

SAFETY MONITORING SYSTEM (SMS)

SMS MAJOR RESULTS

- 100% detection of faults for 15 test cases
- Low false alarm rate
- Covers all phases of SSME operation including power transients
- Robust to sensor loss (clustering)
- Significant improvement in fault detection times
- Not complex

ALGORITHM PERFORMANCE - DETECTION TIME IN SECONDS

TEST NO.	901-110	901-436	901-364	901-307	902-198	902-249	901-225	750-168	901-284	750-259	901-173	901-331	901-222	901-340	SF10-01
CLUSTER	-	302.4	42.7	8.6	5.8	5.2	255.6	300.2	5.2	101.5	102.1	50.2	N/A	405.5	N/A
ARMA	16.0	70.0	210.0	9.0	8.5	160.0	16.0	N/A	9.0	101.5	188.0	233.0	N/A	12.2	104.8
CURRENT RED-LINE	74.1	611.0	392.2	75.0	8.5	450.6	255.6	300.2	9.9	101.5	201.2	233.1	4.3	405.5	104.8

Transportation Technology Earth-To-Orbit Transportation

CONTROLS & REAL TIME DIAGNOSTICS

TECHNOLOGY NEED

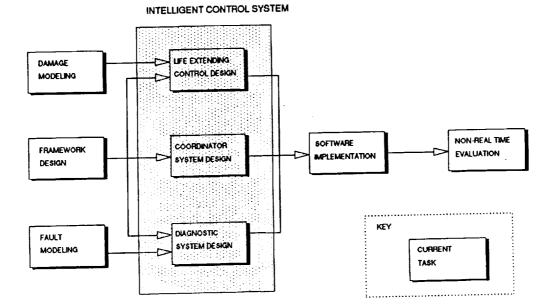
IMPROVE THE SURVIVABILITY AND DURABILITY OF REUSABLE ROCKET ENGINES THROUGH THE USE OF INTELLIGENT CONTROLS AND REAL TIME DIAGNOSTICS

TECHNOLOGY CHALLENGES

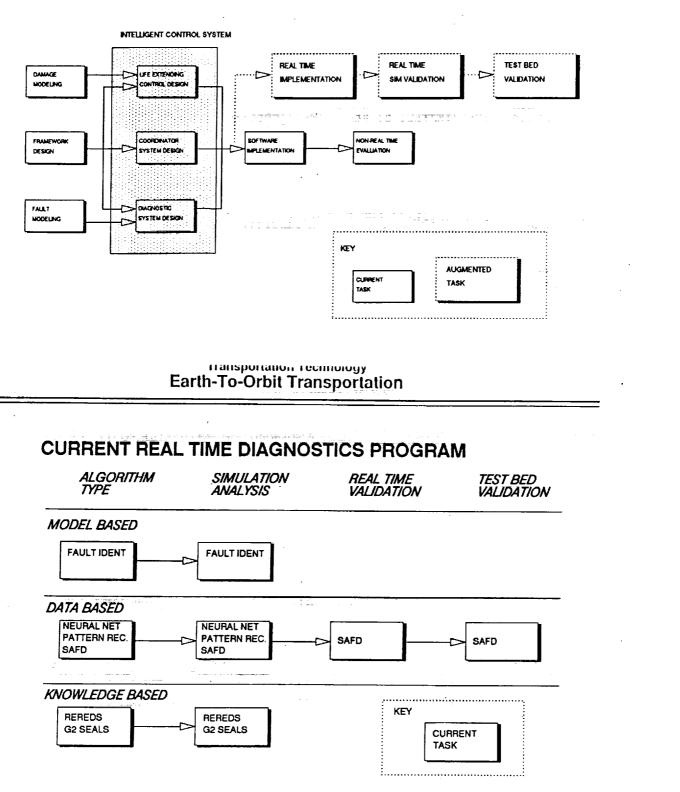
- INTEGRATION OF FAULT DETECTION AND CONTROL MODES TO FORM INTELLIGENT CONTROL WITH INCREASED FUNCTIONALITY AND AUTONOMY RELIABLE(I.E. NO FALSE ALARMS), REAL TIME FAULT DETECTION ALGORITHMS REAL TIME DIAGNOSTIC ALGORITHMS THAT ACCURATELY PORTRAY ENGINE CONDITION IMPLEMENTATION OF DIAGNOSTIC AND CONTROL ALGORITHMS IN COMPUTER HARDWARE LIFE EXTENDING CONTROL ALGORITHMS WHICH IMPROVE ENGINE PERFORMANCE AND 0
- 0
- 0
- 0
- 0 LIFE
- MODELING AND REAL TIME SIMULATION OF ROCKET ENGINES 0
- SENSORS FOR CONDITION MONITORING ELECTROMECHANICAL ACTUATORS 0
- 0

CONTROLS & REAL TIME DIAGNOSTICS

APPROACH


- DESIGN AND ANALYZE ALTERNATIVE FAULT DETECTION, CONDITION MONITORING, AND 0 CONTROL STRATEGIES.
- IMPLEMENT THE MOST SUCCESSFUL STRATEGIES IN SOFTWARE/HARDWARE PROTOTYPES INTEGRATE THE PROTOTYPES INTO A VALIDATION SYSTEM VALIDATE THE STRATEGY BY REAL TIME SIMULATION AND ENGINE TEST 0
- 0
- 0
- COORDINATE CLOSELY WITH THE OTHER TECHNOLOGY GROUPS, PARTICULARLY n INSTRUMENTATION.

PAYOFFS

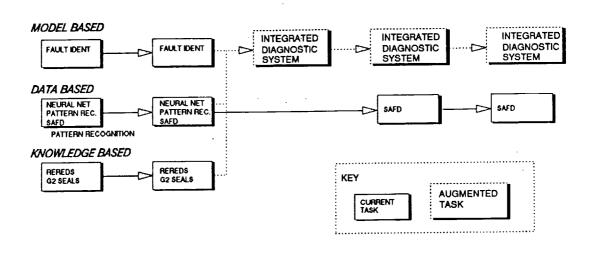

- IMPROVED SURVIVABILITY FOR PROPULSION SYSTEM 0
- 0
- IMPROVED ENGINE PERFORMANCE AND DURABILITY ENHANCED SAFETY FOR PROPULSION SYSTEM AND VEHICLE 0
- 0
- ENHANCED SAFETY FOR GROUND TEST OF ENGINES INCREASED CONTROL SYSTEM RELIABILITY, FUNCTIONALITY, AND AUTONOMY REDUCED ENGINE LIFE CYCLE AND MAINTENANCE COSTS 0
- 0
- REDUCED CONTROL SYSTEM COST AND WEIGHT n

Transportation Technology Earth-To-Orbit Transportation

CURRENT INTELLIGENT CONTROLS PROGRAM

AUGMENTED INTELLIGENT CONTROLS PROGRAM

-


AUGMENTED RT DIAGNOSTICS PROGRAM

ALGORITHM TYPE

SIMULATION ANALYSIS

SYSTEM INTEGRATION

REAL TIME VALIDATION TEST BED VALIDATION

Transportation Technology Earth-To-Orbit Transportation

CONTROL AND DIAGNOSTIC SYSTEM HARDWARE

CURRENT PROGRAM

- SIMULATION LAB AND TTBE CONTROL COMPUTERS 0
- FLOWMETERS 0
 - TRIBOELECTRIC
 - ULTRASONIC

 - VORTEX SHEDDING NON-INTRUSIVE SPEED MEASUREMENT GAS LEAK DETECTOR MASS DATA STORAGE
- 0 0
- 0
- ADVANCED PROPELLANT CONTROL VALVES 0
- ELECTROMECHANICAL ACTUATOR 0

AUGMENTED PROGRAM

- COMPLETE TEST BED EVALUATION OF FLOWMETER 0
- 0
- COMPLETE TESTING OF ELECTROMECHANICAL ACTUATOR PROCURE AND DEMONSTRATE HARDWARE FOR MASS DATA STORAGE SYSTEM 0
- PROCURE AND DEMONSTRATE COMPUTERS FOR REAL TIME DIAGNOSTIC SYSTEMS 0

· · ·

N93-71884

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM

SPACE CHEMICAL ENGINES TECHNOLOGY

511-81 157478 P_16

£' '

FRANK D. BERKOPEC

JUNE 24-28, 1991

AGENDA

PD++.+

- INTRODUCTION/OVERVIEW/QUAD CHART
- TERMINOLOGY

1

- PROGRAM DESCRIPTION
- PROGRAMMATIC REVIEW
- CURRENT PROGRESS
- OBSERVATIONS
- SUMMARY CHART

TRANSPORTATION ECHNOLOGY SPACE TRANSPORTATION Space Chemical Engines Technology SCHEDULE **OBJECTIVES** 1992 - Evaluate (study) modular system concepts PROGRAMMATIC 1992 - Advanced Expander Test Bed (AETB) DR Provide the technology necessary to proceed in 1996 - AETB Delivered the late 1990's with development of moderate-1996 - Complete critical sub-component thrust LOX/LH2 expander cycle engines for technology efforts various space transportation applications. 1998 - AETB System characterized 1998 - Health Mgt. Sys. & Oper. Eff. Comps. **TECHNICAL** characterized **Reliability:** Adequate Margins, Simplicity 1998 - AETB alternate components characterized ICHM, Auto Servicing, Min Parts **Oper.** Efficiency: 1998 - Modular engine system components Wide Throttling: 20:1 and Stable characterized Low Cost, High Quality, Manufacturing: 1999 - Modular engine system characterized Inspectable 1999 - 200 Klbf expander components Performance: **Optimum vs. Other Factors** characterized Environ. Durable (Space&Oper.) Auto c/o (Space Maintainable) Materials: 2001 - 200 Klbf expander system test charac-**Maintainability:** terized **RESOURCES (\$M) PARTICIPANTS** LEWIS RESEARCH CENTER CURRENT 3X STRATEGIC Lead Center - Propulsion Studies, Technology Acquisition, Component Validation, Advanced **FY91** 4.0 4.0 4.0 Expander Test Bed (AETB) **FY92** 9.0 9.0 9.0 **FY93** 12.6 14.9 15.0 MARSHALL SPACE FLIGHT CENTER **FY94** 13.2 16.7 24.0 Participating Center - Propulsion Studies, **FY95** 19.6 14.0 31.0 **Technology Acquisition, Component FY96** 14.7 20.2 45.8 Validation, Test Bed **FY97** 15.4 28.0 42.4

APPLICATIONS

1

709 1000 DO

- EARTH SPACE ORBIT TRANSFER
- SPACE EXPLORATION INITIATIVE

LUNAR TRANSFER VEHICLE LUNAR EXCURSION VEHICLE MARS TRANSFER VEHICLE MARS EXCURSION VEHICLE UNMANNED PLANETARY AND ROBOTIC MISSIONS

UPPER STAGES

ATLAS TITAN

CRYOGENIC ENGINE OPTIONS

	RL10A-3-3A (Baseline)	RL10A-4	Advanced Space Engine
Vacuum Thrust, Ibs Vacuum Isp, sec Life (TBO) - # Starts # Hours Weight, Ibs Length, in. Thrust/Weight Combustion Pressure, psia Expansion Ratio Vac. Thrust Throttling Ratio Mixture Ratio, O/F Mixture Ratio Range, O/F	16,500 444.4 20 1.25 305 70.1 54 475 61:1 Not Specified 5.0 Not Specified	20,800 449.0 15 0.8 365 90 57 578 84:1 Not Specified 5.5 Not Specified	7,000 to 50,000 > 480 > 100 > 4 TBD TBD TBD > 1200 > 600:1 20:1 6.0 5.0 to 12.0
Basing Man-Rating	Ground No	Ground No	Space Yes
Hardware Changes from RL10A-3-3A	None	Modified Turbine Strengthened Chamber and injector Improved Gear Train Modified LOX Pump Improved Injector 20" Nozzie Extension & Mechanism Fuel Pump Tolerance Improved Solenoids	Clean Sheet Design
Development Status	Operational	Flight Qualified	Technology Dev.

CUSTOMER. . AND NEEDS

	SEI 90-Day Study	SEI Early Lunar	ETO High Energy Upper Stage	ETO Commercial Upper Stage
High Reliability (Includes man-rating)	Enabling	Enabling	Very Important	Very Important
Operational Efficiency	Enabling	Beneficial	Beneficial	Enabling
Throttling (to TBD level)	Enabling	Enabling	n/a	n/a
Low cost Manufacturing High Performance	Beneficiai Very Important	Beneficial Beneficial	Beneficial Very Important	Enabling Beneficial
Storable in Space Environment	Very Important	Very Important	n/a	n/a
Reusable	Very Important	n/a	n/a	n/a
Maintainable in Space	Very Important	n/a	n/a	n/a

-

SPACE CHEMICAL ENGINES TECHNOLOGY INTEGRATED TECHNOLOGY PLAN REVIEW

- EMPHASIS IS ON FUTURE PLANS AND DIRECTION
- SOME HISTORICAL PERSPECTIVE IS NECESSARY
- PROGRAM CONTENT BASED ON A STRATEGIC RESOURCE PROFILE
 SATISFIES USERS NEEDS
- COMPARISONS MADE BETWEEN

STRATEGIC AND CURRENT RESOURCE PROFILES

SPACE CHEMICAL ENGINES TECHNOLOGY

TERMINOLOGY

2

Ξ

•	ASE:	ADVANCED SPACE ENGINE BASE R&T (EARLY 1970's)
•	OTV:	ORBIT TRANSFER VEHICLE (ENGINE TECHNOLOGY) BASE R&T (1982-1988)
•	CTP:	CHEMICAL TRANSFER PROPULSION PATHFINDER (1989-1990)
•	SBE:	SPACE BASED ENGINES EXPLORATION TECHNOLOGIES (1991)
•	ASE:	SPACE EXPLORATION INITIATIVE (1989 ONWARD) NEW ENGINE 20-50 KLBF CLASS, 200 KLBF CLASS TRANSFER & EXCURSION VEHICLES (LUNAR, MARS)
•	SCET:	SPACE CHEMICAL ENGINES TECHNOLOGY PRESENT FOCUSED TECHNOLOGY PROGRAM

SPACE CHEMICAL ENGINES TECHNOLOGY

PROGRAM DESCRIPTION

<u>CONCEPT</u>

- CONDUCT A FOCUSED TECHNOLOGY PROGRAM IN SPACE ENGINES:
 - AS RAPIDLY AS RESOURCES PERMIT
 - AS RAPIDLY AS PRIORITIES DICTATE

CONDUCT THE PROGRAM WITH THE WIDEST POSSIBLE PARTICIPATION

- INDUSTRY

٠

- ACADEMIA
- GOVERNMENT

INVOLVE THE USERS AS SOON AS PRACTICABLE

- REQUIREMENTS
- TECHNOLOGY TRANSFER

PROGRAM DESCRIPTION

PURPOSE

• PROVIDE THE TECHNOLOGY NECESSARY TO CONFIDENTLY PROCEED, IN THE LATE 1990'S WITH THE DEVELOPMENT OF MODERATE THRUST (7.5 TO 200 KLBF) HIGH-PERFORMANCE, LIQUID OXYGEN/LIQUID HYDROGEN EXPANDER CYCLE ENGINES FOR VARIOUS SPACE TRANSPORTATION APPLICATIONS.

MAJOR OBJECTIVES

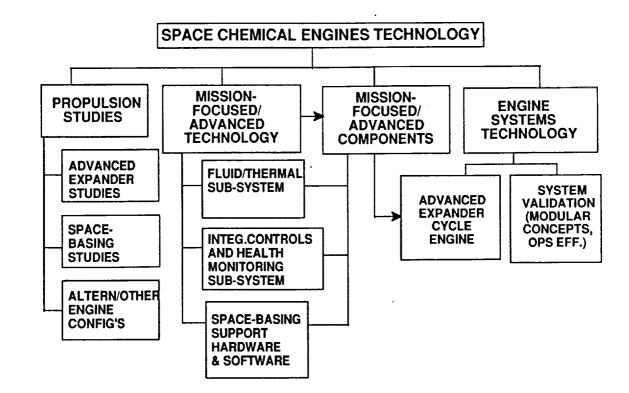
- IDENTIFY, ASSESS TECHNOLOGY REQUIREMENTS
- IDENTIFY, CREATE, AND/OR VALIDATE;
 - DESIGN & ANALYSIS METHODOLOGIES/SOFTWARE
 - MATERIALS WITH REQUIRED/DESIRABLE PROPERTIES
 - RELIABLE, COST-EFFECTIVE MANUFACTURING PROCESSES

ningen er sen er s

1

- -

• DEVELOP AND VALIDATE ENGINE AND SUPPORT EQUIPMENT SUB-COMPONENT, COMPONENT, AND SYSTEM TECHNOLOGIES FOCUSED ON (IN PRIORITY ORDER):

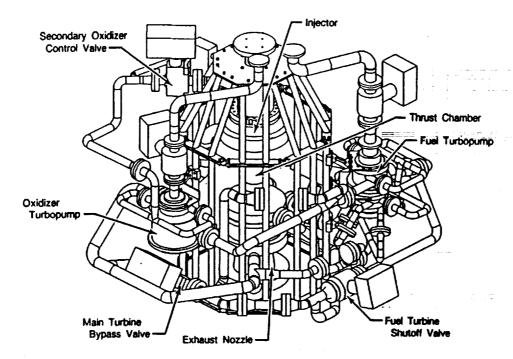

- RELIABILITY
- OPERATIONAL EFFICIENCY
- WIDE-RANGE THROTTLING
- LOW-COST MANUFACTURING
- EFFICIENT PERFORMANCE
- SPACE-ENVIRONMENT DURABILITY
- REUSABILITY/OPERATION-ENVIRONMENT DURABILITY
- IN-SPACE MAINTAINABILITY

PROGRAM DESCRIPTION

APPROACH

- PROPULSION STUDIES TO DEFINE PROPULSION TECHNOLOGY REQUIREMENTS
- TECHNOLOGY EFFORTS ADDRESSING THE TECHNOLOGY NEEDS
- DEVELOPMENT OF ANALYTICAL TOOLS, TECHNOLOGIES, DESIGNS
- VALIDATION IN AN ENGINE SYSTEM ENVIRONMENT

PROGRAM DESCRIPTION

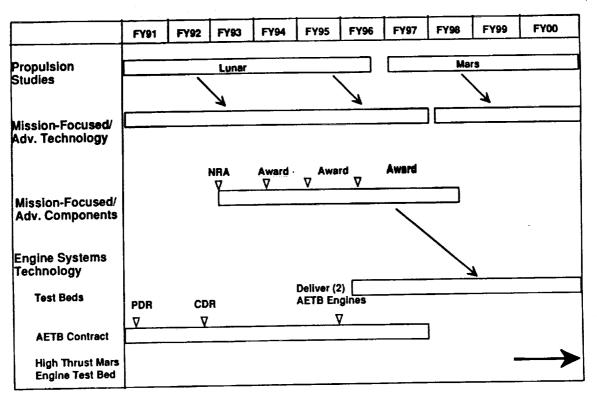


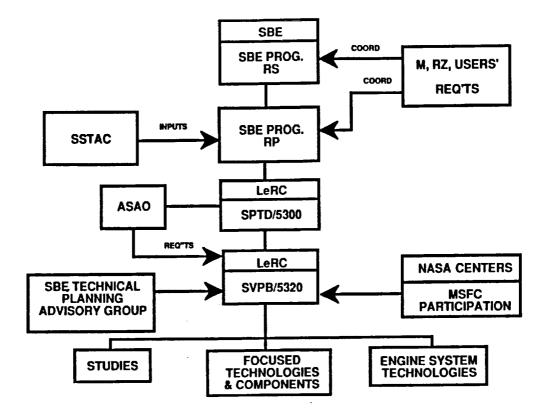
100

-

ADVANCED EXPANDER TEST L_D (AETB) CHARACTERISTICS

•	PROPELLANTS:	HYDROGEN/OXYGEN
•	CYCLE:	SPLIT EXPANDER
•	THRUST:	25K (DESIGN) 20K (NORMAL OPN)
•	CHAMBER PRESSURE:	1500 PSI (DESIGN) 1200 PSI (NORMAL OPN)
•	THROTTLING:	125% TO 5% CONTINUOUS
•	IDLE MODES:	PUMPED (LOW NPSP)
		TANKHEAD (NON-ROTATING)
•	MIXTURE RATIO (O/F):	6.0 <u>+</u> 1.0 12.0
•	LIFE	100:STARTS/5 HOURS

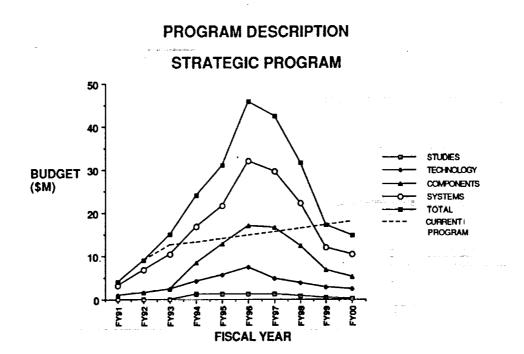



1

ţ

PROGRAM DESCRIPTION

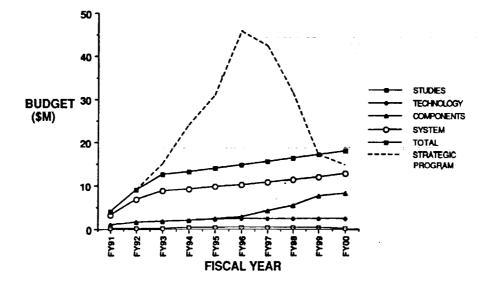
STRATEGIC PROGRAM



PROGRAM DESCRIPTION

RESOURCE PROFILES

(\$M)


Program	FY91	92	93	94	95	96	97
Strategic	4.0	9.0	15.0	24.0	31.0	45.8	42.4
"3X"	4.0	9.0	14.9	16.7	19.6	20.2	28.0
Current	4.0	9.0	12.6	13.2	14.0	14.7	15.4

Ē

V 174

PROGRAM DESCRIPTION CURRENT PROGRAM

STRATEGIC PROGRAM

PROGRAM STARTED IN FY89 .

- **PLANNING UNDERWAY IN FY88** -
- **PROGRAM CONCEPT FINALIZED** -
- **AETB PROCUREMENT STARTED**
- STRATEGIC PROGRAM RESOURCE REQUIREMENTS ESTABLISHED

FY90-92 LEAN YEARS

- .
- REPLAN, "HOLD-ON" STRATEGY AFFIRM EMPHASIS ON SYSTEMS TECHNOLOGY .

FY90-92 IMPACTS

-

• ·

5 N

- ٠
- MINIMIZED PARTICIPATION (OTV CONTRACTS, INDUSTRY, UNIVERSITIES) OTV TASK ORDER CONTRACTS END, NRA'S DO NOT START: STRAINS INDUSTRY PARTICIPATION
- **IRREVERSIBLE SCHEDULE IMPACTS (AETB, NRA'S)**

<u>NEEDS</u>	STRATEGIC	CURRENT
HIGH RELIABILITY	1996 AETB SYSTEMS TESTS ALTERNATIVE CONFIG. SYSTEMS	1997 AETB SYSTEMS TESTS ALTERNATIVE CONFIG. COMPONENTS
OPERATIONAL EFFICIENCY	• FOCUSED TECH & COMPONENTS • SYSTEM TESTBED • HEALTH MANAGEAMENT SYSTEM	FOCUSED COMP ON AETB HEALTH MANAGEMENT COMPONENTS
THROTTLING	FOCUSED TECH & COMPONENTS SYSTEM VALIDATION	 FOCUSED COMPONENT TURBOPUMP(S), TURBOPUMP VALIDATION ON AETB
LOW-COST MFG.	 PUMPS, COMBUSTION DEVICES SYSTEM VALIDATION 	FOCUSED TECHNOLOGY
HIGH PERFORMANCE	 AETB SYSTEM FOCUSED COMPONENTS SYSTEM VALIDATION ALTERNATIVE SYSTEMS 	AETB SYSTEM
SPACE STORABLE	MATERIAL VALIDATION STORABLE COMPONENTS	FOCUSED TECHNOLOGY
SPACE MAINTAINABLE	SYSTEM VALIDATION	• STUDIES

STRATEGIC PROGRAM

PROVIDES TECHNOLOGY TO MEET USER NEEDS .

- SYSTEMS LEVEL TECHNOLOGY (AETB, MODULAR SYSTEMS, **OPERATIONAL EFFICIENCY**)
- ADVANCED/ALTERNATIVE COMPONENTS
- SYSTEMS LEVEL VALIDATION

ADEQUATELY MEET MOST USER SCHEDULAR NEEDS

- **COMMERCIAL NEEDS MARGINALLY MET**
- **HIGH ENERGY UPPER STAGES**
- **EXPLORATION MISSIONS**

PROMOTES TECHNOLOGY TRANSFER

- WIDE NUMBER OF PARTICIPANTS (NRA) (INDUSTRY, ACADEMIA, GOVERNMENT)
- PARTICIPATION IN PARALLEL
- EXTENSIVE LEVELS OF PARTICIPATION (ALL ON SYSTEM MODEL LEVEL. ALL WITH COMPONENTS)

1

1

1

ŧ

į

1

*

- PERMITS SUBSTANTIAL, MEANINGFUL LEVEL OF PARTICIPATION BY MSFC
- ENABLES PRODUCTIVE SYNERGISM WITH BASE R&T AND NON-SCET PROGRAMS

CURRENT PROGRAM

MARGINALLY MEETS USER TECHNICAL NEEDS

- **AETB SYSTEMS TECHNOLOGY (1989)** -
- ONE OR TWO ADVANCED COMPONENTS (TURBOPUMPS)
- LIMITED FOCUSED TECHNOLOGY (COMBUSTION DEVICES,
- **HEALTH MONITORING)** STUDIES (MAINTAINABILITY)

.

- MARGINALLY MEETS SOME USER SCHEDULAR NEEDS
- COMMERCIAL NEEDS ARE IMMEDIATE (COST AVOIDANCE, EARLY .
 - MARKET ENTRY)
 - HIGH ENERGY UPPER STAGES NEEDED NEAR TERM (DOD, UNMANNED MISSIONS)
 - EXPLORATION MISSIONS MOST COMPLICATED, REQUIRE ADEQUATE TECHNOLOGY LEAD TIMES (SYSTHESIS GROUP IOC'S 2003, 2004, 2005)

INHIBITS TECHNOLOGY TRANSFER ("HANDS ON") .

- VERY LIMITED NUMBER OF PARTICIPANTS (NRA) (ONE OR TWO COMPONENTS)
- PARTICIPATION LIKELY IN SERIES (ONE OR TWO AT A TIME) LIMITED LEVEL OF PARTICIPATION (STUDIES, FOCUSED TECHNOLOGY)
- DIFFICULT INTERNASA CENTER TECHNICAL PLANNING (LERC/MSFC)

SPACE PROPULSION TECHNOLOGY

BASE R&T/FOCUSED R&T

- SPACE CHEMICAL ENGINE TECHNOLOGY REQUIRES A FLOW OF TECHNOLOGIES THROUGH LEVELS OF TECHNICAL MATURITY
- TECHNOLOGIES PASS FROM THE BASE PROGRAM TO THE FOCUSED PROGRAM WHEN THEY REACH ACKNOWLEDGED VIABILITY OF AN ACCEPTABLE LEVEL OF MATURITY
- BASE AND FOCUSED PROGRAMS ARE STRONGLY LINKED, BUT SEPARATE

PROGRAMMATIC REVIEW

SPACE PROPULSION TECHNOLOGY

BASE R&T

- BROAD UTILITY FOR A WIDE RANGE OF APPLICATIONS
- FUNDAMENTAL KNOWLEDGE THAT COULD BECOME PART OF A
 FOCUSED PROGRAM

HIGH RISK/HIGH PAYOFF

SPECIFICS:

NETWORK OF TECHNOLOGY INFORMATION ENGINEERING AND SCIENTIFIC ANALYSIS AND DESIGN TOOLS INSTRUMENTATION/DIAGNOSTICS MATERIALS PROPELLANTS PROCESSES SUBCOMPONENTS TO COMPONENTS TO SYSTEMS

SPACE PROPULSION TECHNOLOGY

FOCUSED R&T

an a gaile a prìothachadh a

- TECHNOLOGIES FOR SPECIFIC MISSION/PROGRAM/APPLICATION
- DEFINED DELIVERABLES, SCHEDULE, RESOURCE

ويعاقفه والمراجع والمتراجع والمتراجع

- PRODUCT: TECHNOLOGIES TO SATISFY THE USER REQUIREMENTS
- MULTIDISCIPLINARY CONTENT, PROGRESSION TO A SPECIFIC **TECHNOLOGY READINESS LEVEL**
- **EXTREMELY VISIBLE**
- SPECIFICS:

STUDIES AND ANALYSES TO GUIDE PROGRAM METHODOLOGIES FOR THE DESIGN OF PROPULSION SYSTEMS COMPONENT AND SYSTEM MODELING VALIDATED TECHNOLOGIES THAT MEET USER REQUIREMENTS SYSTEM FOCUS FLIGHT EXPERIMENTATION

1

1

.....

ENGINE SYSTEMS

TESTBED CONCEPT IS KEY TO SPACE CHEMICAL ENGINES TECHNOLOGY

TESTBED VALIDATION RECOGNIZED FOCUSED TECHNOLOGY . NECESSITY (ETO)

- TESTBED EMULATES HIGHLY SUCCESSFUL AEROPROPULSION PROGRAM
 - ATEGG (ADVANCED TURBINE ENGINE GAS GENERATOR (CORE)) -

 - JTDE (JOINT TECHNOLOGY DEMONSTRATOR ENGINE) IHPTET (INTEGRATED HIGH PERFORMANCE TURBINE ENGINE TECHNOLOGY)

- A set of a data free U.S. AEROPROPULSION LEADS THE WORLD
- **AETB HAS WIDE APPLICABILITY**

LERC/MSFC TECHNICAL PLANNING

- WE HAVE 2 DIFFERENT PERSPECTIVES
 - TECHNOLOGISTS (LERC)
 - DEVELOPERS (MSFC)
- WE COME FROM 2 DIFFERENT CULTURES
 - "BOTTOMS UP" (LERC)
 - "TOP DOWN" (MSFC)
- WE HAVE WORKED TO DIFFERENT END PRODUCTS
 - TECHNOLOGY MATURITY LEVEL, MULTIPLE USERS (LERC)
 - SPECIFIC HARDWARE DEMONSTRATION, SPECIFIC USE (MSFC)
- SPACE CHEMICAL ENGINES FOCUSED TECHNOLOGY PROGRAM
 - TECHNOLOGY PROGRAM
 - BLENDS PERSPECTIVES, CULTURES
 - BEST COMBINATION

CURRENT PROGRESS

- IDENTIFIED POTENTIAL CUSTOMERS
- IDENTIFIED CUSTOMER NEEDS
- IDENTIFIED MEANS OF MEETING NEEDS
- IDENTIFIED MOST IMPORTANT TECHNOLOGY PROGRAM ELEMENTS
- PLANNED AND COSTED PROGRAM ELEMENTS
- FINALIZING NEAR-TERM DETAILS, IMPLEMENTAION

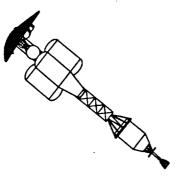
OBSERVATIONS

ł

j

1

=


- SPACE CHEMICAL ENGINES TECHNOLOGY PROJECT IN PLACE
- FY91 AND FY92 LEAN YEARS WITH IRREVERSIBLE EFFECTS
- PROGRAMS HAVE BEEN PLANNED FOR STRATEGIC/CURRENT PROGRAMS
- STRATEGIC PROGRAM HEALTHY (CONTENT, PACE, PARTICIPATION)
- CURRENT PROGRAM MARGINAŁ
- LERC AND MSFC DETAILED TECHNICAL PLANNING IN PROGRESS
- FY93 FUNDING DETERMINES MAJOR PROGRAM DIRECTION

Integrated Technology Plan for the Civil Space Program

FOCUSED TECHNOLOGY: NUCLEAR PROPULSION

Nuclear Thermal Propulsion

÷

Nuclear Electric Propulsion

512-31

N93-77885

l-40

 $\langle \gamma \rangle$

JUNE 27th, 1991 Washington, D.C.

OVERVIEW

Thomas J. Miller Head, Nuclear Propulsion Office NASA Lewis Research Center

IMPACT:

- Nuclear Propulsion Enables and/or Enhances Space Exploration Missions

Enables: Enhances:

<u>Nuclear Electric Propulsion (NEP)</u> Robotic Science Missions *Lunar & Mars Cargo, & Mars Piloted Space Exploration* Nuclear Thermal Propulsion (NTP) Mars Piloted Lunar & Mars Cargo, Lunar Piloted & Robotic Science Space Exploration

USER COORDINATION:

- Exploration Studies Identify Nuclear Propulsion as a Key Technology
- OAET/RZ Provide Performance Predictions for NASA Studies
- OSSA Study on NEP for Robotic Science Missions
- DOE, DoD & NASA Included on Steering Committee (also Astronaut Office)

TECHNICAL REVIEWS:

- Interagency Design Review Teams will Periodically Review Technical Progress

OVERALL TECHNICAL AND PROGRAMMATIC STATUS:

- High Priority Technology Areas Identified (some efforts initiated)
- Budget Deliberations Continue
- Single Multi Agency Plan Defined for FY92 Implementation

MAJOR TECHNICAL/PROGRAMMATIC ISSUES:

- Agency/Department Roles
- Funding to Initiate Technical Efforts
- Projected Budget Does Not Support Schedules

Nuclear Thermal Propulsion

PERFORMANCE OBJECTIVES

PARAMETER	STATE-OF-THE ART	OBJECTIVE
THRUST (Lb/)	75K (NERVA)	75K-125K/Engine
	250K (PHOEBUS)	(May shotler multiple grightes)
SPECIFIC IMPULSE (sec)	625	
CHAMBER PRESSURE	450	≥ 925 500 - 1000
EXHAUST TEMP. ("K)	2300-2500	2,700 (m Approp. Balaty & Robatiny Margin)
POWER (MWI)	1100 (NERVA)	≥ 1,600
	4,200 (PHOEBUS)	1.0
LIFETIME (Hrs) Single Burn	1.0	4.5 (32 Meeten rug)
Cumulative	1.5	
REUSABILITY (No. Missions)	1	1000 a

CHALLENGES

- High Temperature Fuel and Materials
- Hot Hydrogen Environment
- Test Facilities
- Safety
- Environmental Impact Compliance
- Concept Development

MISSION BENEFITS

- Short Transit Time Missions are Enabled
- Reduced IMLEO (~ 1/2 of Chemical)
- Crew Safety Enhanced
- Wider Launch Windows
- More Mars Opportunities
- High Thrust Available
- Aerobrake Not Required

Nuclear Electric Propulsion

E	ERFORMANCE O	BJECTIVES		
PARAMETER	STATE-OF-1	HE ART	OBJECTI	VE
POWER	SP-1	00		
POWER LEVEL (MWe)	0.1		≥10	.0
SPECIFIC MASS (Kg/KWe)	30		s 10	1
PROPULSION	ION	MPD	ION	MPD
SPECIFIC IMPULSE (sec)	2000-9000	1000-5000	2000-9000	1000-7000
EFFICIENCY	0.7-0.8	0.3	0.7-0.8	>0.5
POWER LEVEL (MWe)	0.01-0.03	0.01-0.5	1 • 2	1-5
LIFETIME (Hrs)	10,000	7	. 10,000	≥ 2000
PMAD				
EFFICIENCY	0.90		0.9	5
SPECIFIC MASS (Kg/KWe)	4		≤ 2 .	5
REJECTION TEMP. (*K)	400		600	

CHALLENGES

- Long Operational Lifetime
- High Temperature Reactors, Turbines, Radiators
- · High Fuel Burn-up Reactor Fuels, Designs
- Efficient, High Temperature Power Conditioning
- High Efficiency, Long Life Thrusters
- · Safety
- Environmental Impact Compliance
- Concept Development

MISSION BENEFITS

- Low Resupply Mass
- Availability of Onboard Power
- Reduced IMLEO Sensitivity w/Mission Opportunity
- Broad Launch Windows
- Commonality with Surface Nuclear Power

1992 Lab-Scale Demonstration of 2700K reactor fuel

1998 Select NTR Concept(s) for Systems Testing 1999 Systems Facility Construction Complete

2006 Full System Ground Testing Complete Verifying

Technology Readiness Level 6 (TRL-6) for NTR

1994 Complete conceptual designs of selected concepts for

Aerobrake Not Required

TRANSPORTATION TECHNOLOGY SPACE TRANSPORTATION

Nuclear Thermal Propulsion

SCHEDULE

OBJECTIVES

Programmatic

Develop propulsion technologies capable of fulfilling requirements, such as performance, long life, and multiple starts, for future piloted and cargo missions to Mars and the Moon, and robotic precursor missions.

Technical

Fuel Temperature	2700- 3100K (1995) 4.5 hrs (cyclic)
Man-Rated	Autonomous Robotic Operation
Ground Testing	Full System (TRL-6) by 2006

RESOURCES*

NASA**	DOE*	
1991 \$00.4M		
1992 \$05.0M	\$014.0M	
1993 \$13.0M	\$055.0M	
1994 \$22.0M	\$095.0M	
1995 \$39.0M	\$145.0M	
1996 \$50.3M	\$190.0M	
1997 \$83.0M	\$210.0M	

* DOE current estimate for both NTP & NEP

** NASA dollars do not include CoF

PARTICIPANTS

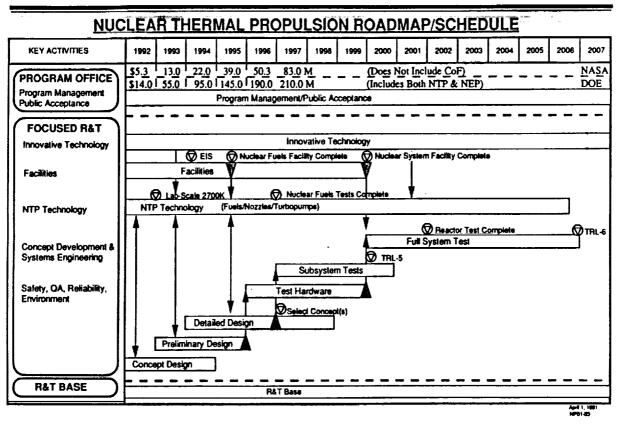
Lewis Research Center Lead Center

piloted Mars mission

1996 Nuclear Furnace Facility Complete

2002 First NTR Reactor Test Complete

Marshall Space Flight Center Participating Center

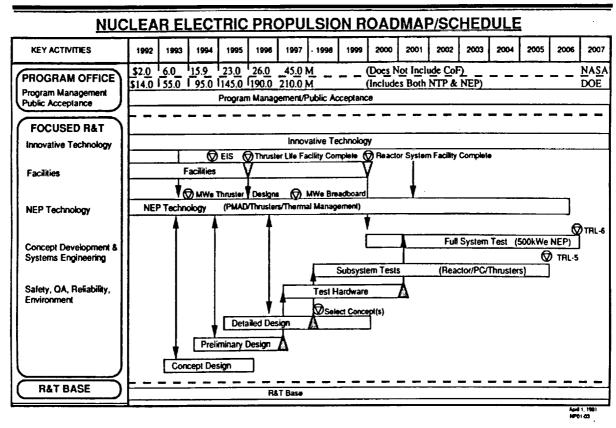

Johnson Space Center Supporting Center

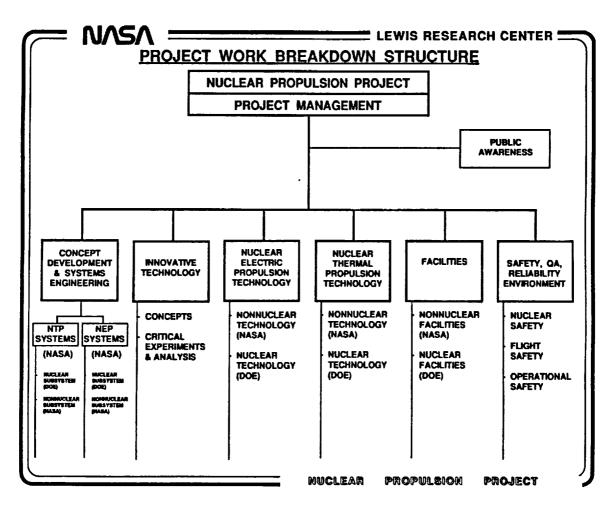
DOE Laboratories INEL, LANL, SNL, ORNL, ANL, BNL...

June 17, 199 NP01-01

TRANSPORTATION TECHNOLOGY SPACE TRANSPORTATION

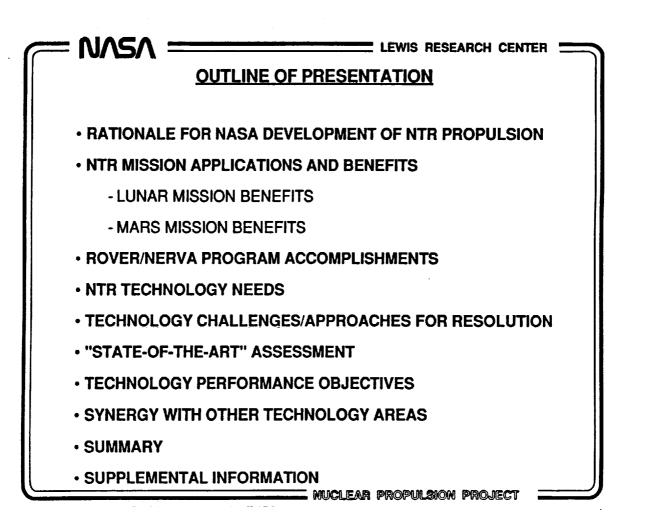
5507

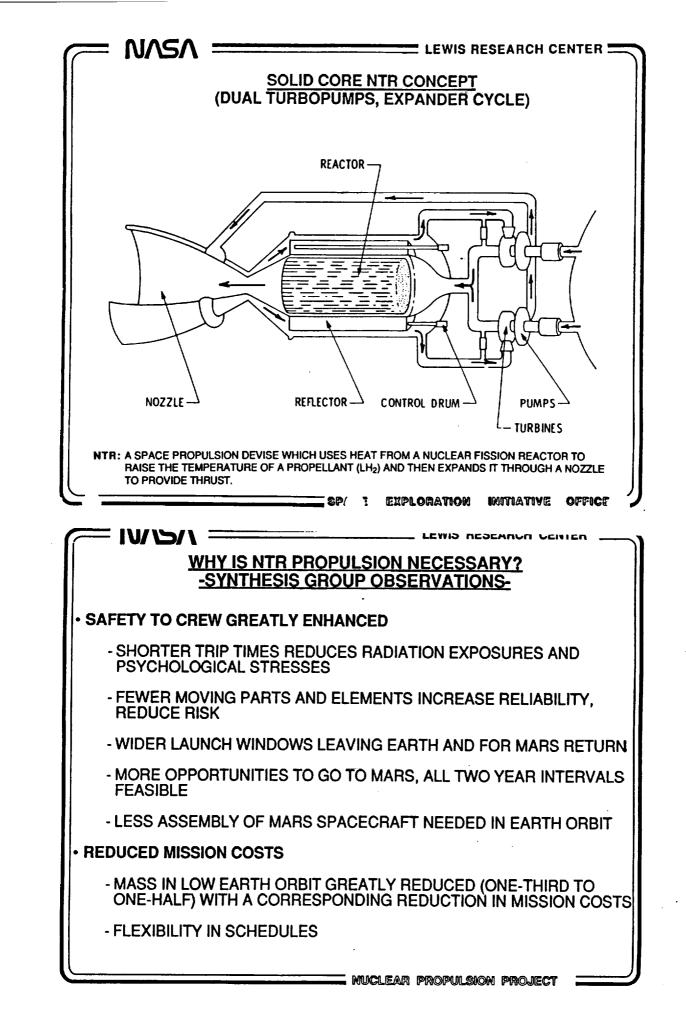


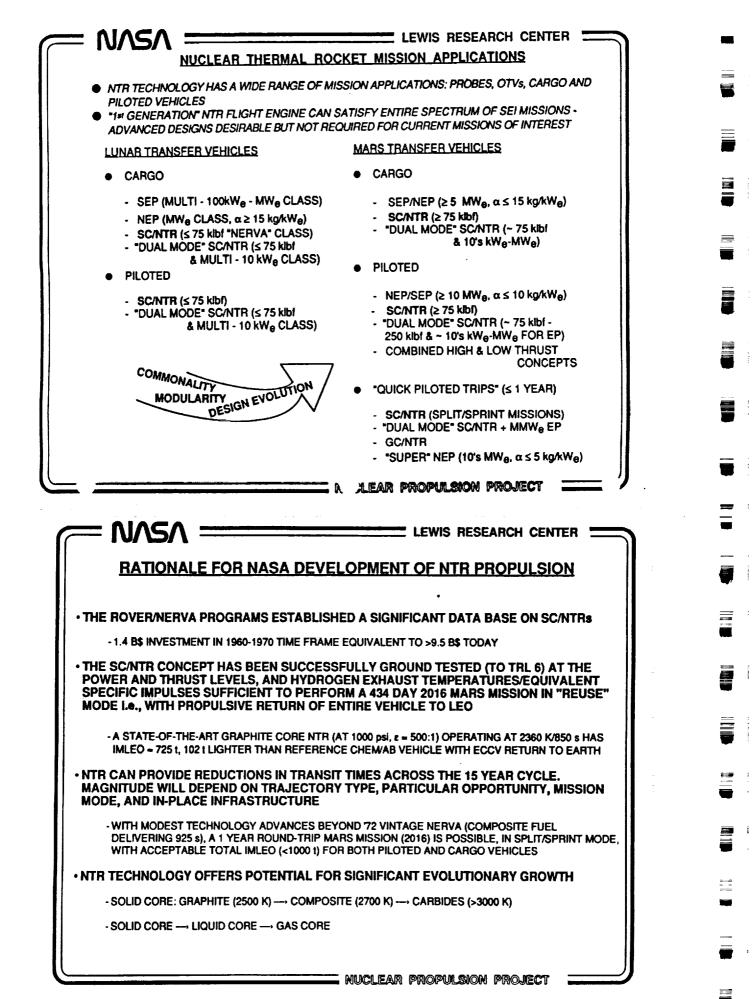

TRANSPORTATION TECHNOLOGY SPACE TRANSPORTATION

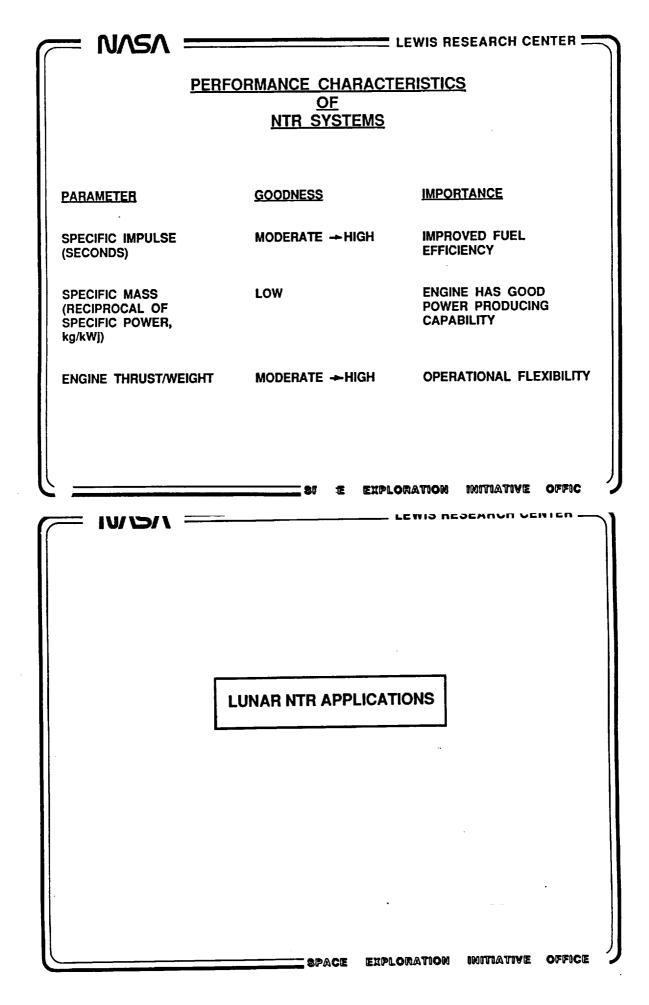
	Nuclear Elec	tric Propulsion	
requirements, such a multiple starts, for fut Mars and the Moon, a	echnologies capable of fulfilling is performance, long life, and ure piloted and cargo missions to and robotic precursor missions.	SCHEDULE 1993 Complete 500 kW electric p designs for high power (MM 1994 Complete candidate system source, power conversion, j and control concepts 1997 Complete breadboard demo thruster technology 2000 Verity 1000 hours of life for	/ class) electric thrusters is study for reactor power power processing, thruster o of megawatt class electric
Technical Power Specific Mass Lifetime	> 10MWe < 10kg/kwe by 2006 < 5 kg/kwe by TBD 3-10 years	2000 Verify Tour nours of hier for system 2005 Complete ground tests to vi power/propulsion system 2006 Verify TRL-6 through flight i vehicle	erify megawatt class test of 500 kW subscale NEP
NASA** 1991 - 1992 \$02.0M 1993 \$06.0M 1994 \$15.9M 1995 \$23.0M 1996 \$26.0M 1997 \$45.0M	DOE* \$014.0M \$055.0M \$095.0M \$145.0M \$190.0M \$210.0M	PARTICIPANTS Lewis Research Center Lead Center Jet Propulsion Laboratory Participating Center Johnson Space Center Supporting Center	DOE Laboratories INEL, LANL, SNL, ORNL, ANL, BNL
*DOE current estimate ** NASA dollars do not		•	Jana 17, 1991 HPD142

PR12-4

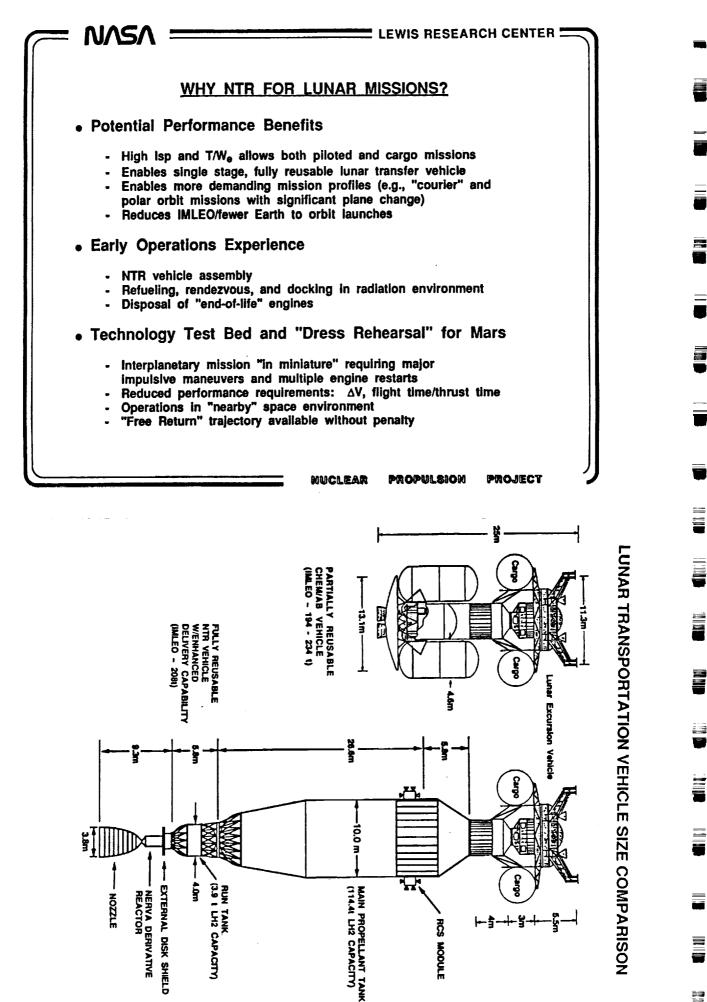

SPACE TRANSPORTATION

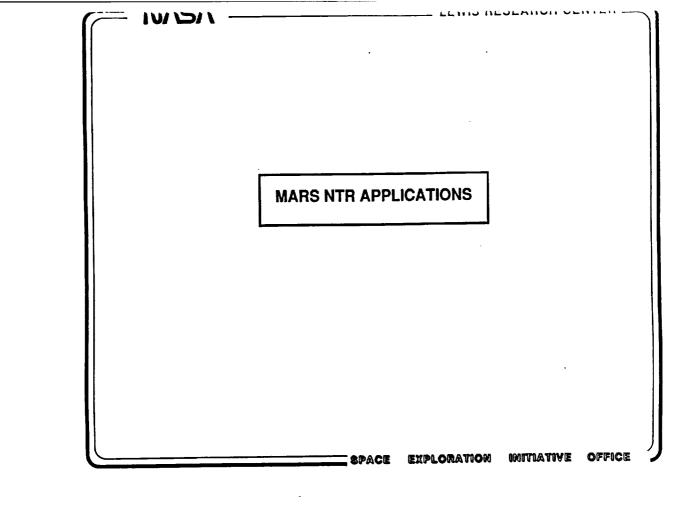





NUCLEAR THERMAL ROCKET (NTR) PROPULSION

Dr. Stanley K. Borowski NASA Lewis Research Center

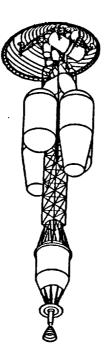




-

Nuclear Thermal A ropulsion Vehicle Opposition/Swingby Mission Mass Statement

Floment

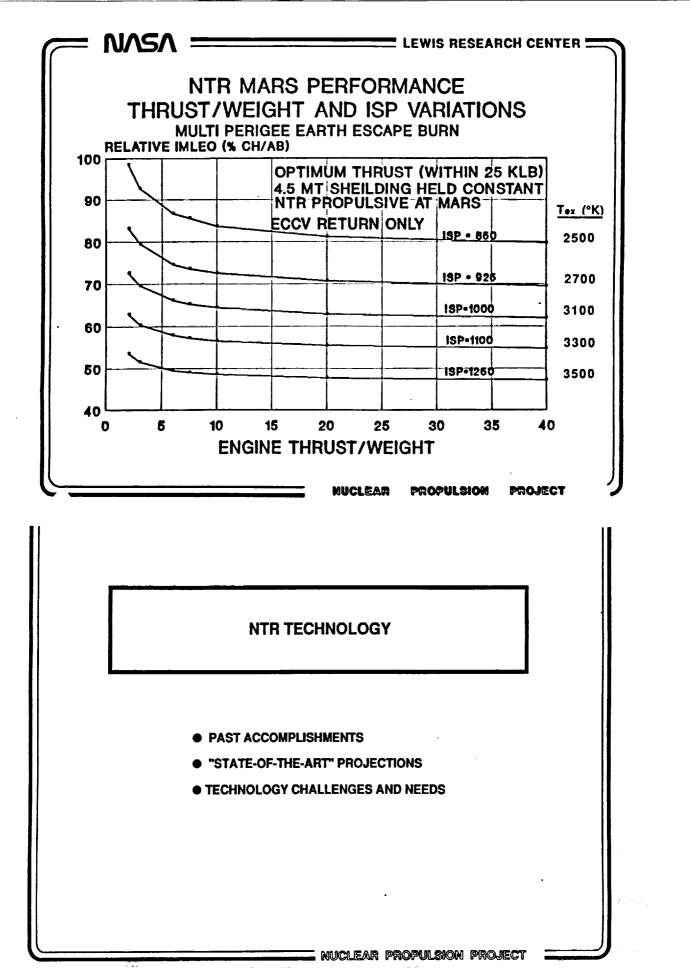

NERVA: I_{SP} = 925 s T/W_{eng} = 4.0

5

÷

ADV. NTR: $I_{SP} = 1050 \text{ s}$ T/W_{eng} = 20.0

Crew of 4, 30-day stay; Inbound Venus swingby; Elliptic parking orbit at Mars, 250 km x 24 hrs; Apsidal rotation penalty optimized; 25 t. surface cargo; 925 Isp; Reusable return


Liement	NERVA	Advanceantin
MEV desc scrobrake	7000	7000
MEV ascent stage	22464	22464
MEV descent stage	18659	18659
MEV surface cargo	25000	<u>25000</u>
MEV total	73118	73118
MTV crew hab module 'dry'	28531	28531
MTV consumables & resupply	5408	5408
MTV science	1000	1000
MTV crew habitat system tot	34939	34939
MTV frame, struts & RCS inert wt	4808	4808
Reactor/engine weight	9684	1701
Radiation shadow shield weight	4500	4500
EOC propellant (dV= 1799 m/s)	17598	13075
TEI propellant (dV= 4230 m/s)	61951	44301
EOC/TEl common tank wt (1)	13358	10501
MOC propellant (dV= 2830 m/s)	101810	75163
MOC lanks (2)	19128	15696
TMI propellant (dV=4105 m/s)	237850	165190
TMI tanks (2)	36636	27503
ECCV	7000	7000
Cargo to Mars orbit only	Ő	U
IMLEO	622380	477495
IMLEO	622380	477

2016 opposition with Venus swingby 434 day mission time

(SOURCE: MSFC)

NFRVA Advanced NTR

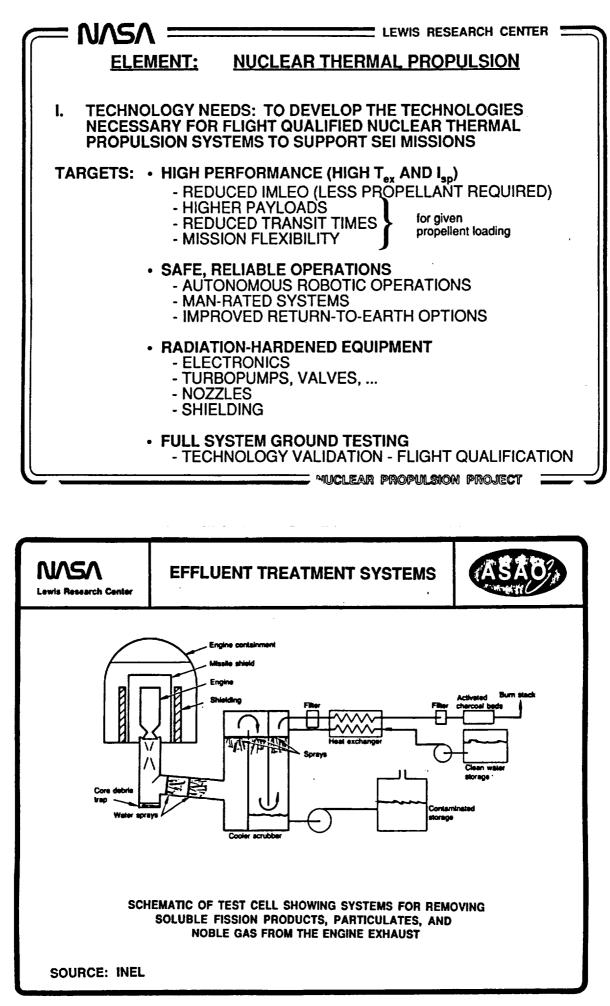
*PARAMETERS ARE ACTUALLY FOR COMPOSITE FUEL NERVA DERIVATIVE ENGINE SYSTEM

1

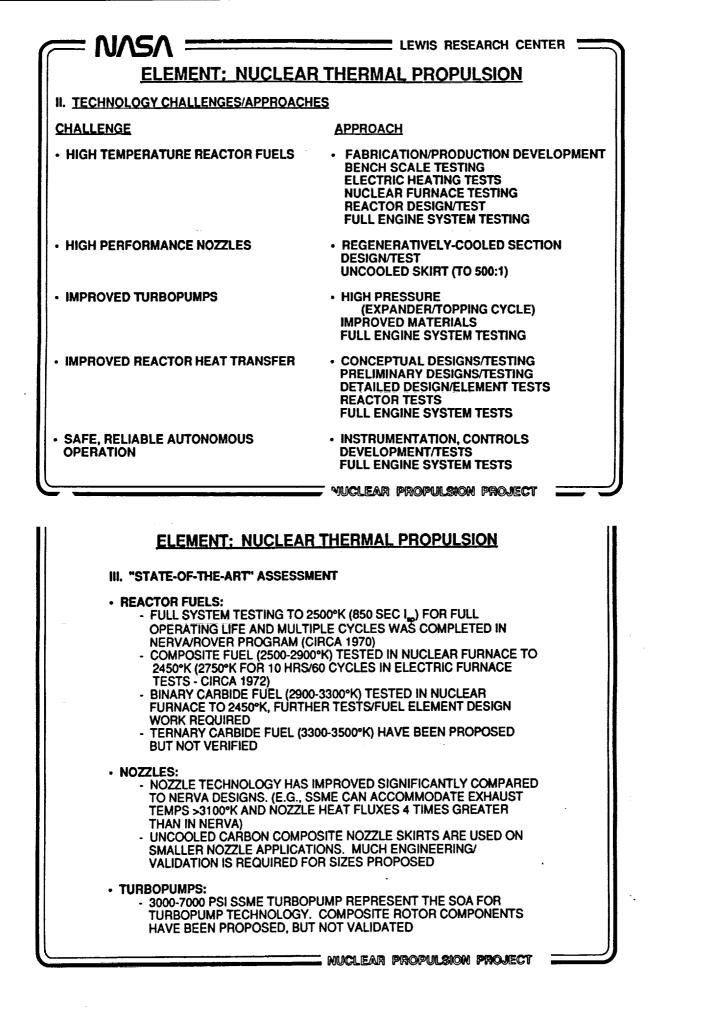
<u></u> ΝΛSΛ	
ROVE	R/NERVA_PROGRAM SUMMARY
• 20 REACTORS DESIGNED, BUILT, A APPROXIMATELY \$1.4 BILLION. (FI	ND TESTED BETWEEN 1955 AND 1973 AT A COST OF RST REACTOR TEST: KIWI-A, JULY 1959)
DEMONSTRATED PERFORMANCE	
POWER (MWI) THRUST (kibi)	~1100 (NRX SERIES) - 4100 (PHOEBUS -2A) ~55 (NRX SERIES) - 210 (PHOEBUS -2A)
PEAK/EXIT FUEL TEMPS. (K) EQUIV. SPECIFIC IMPULSE(S)	~2750/2550 (PEWEE)
BURN ENDURANCE	1.2 HOURS
- NRX-A6 - NUCLEAR FURNACE START/STOP	62 MINUTES AT 1125 MWL (SINGLE BURN) 109 MINUTES ACCUMULATED (4 TESTS) AT 44 MWL 28 AUTO START-UPS/SHUTDOWNS WITH XE
 BROAD AND DEEP DATABASE ACH DESIGN (1972) 	IEVED/USED IN PRELIMINARY NERVA "FLIGHT ENGINE"
ANTICIPATED PERFORMANCE	
BURN ENDURANCE SPECIFIC IMPULSE	~10 HOURS (DEMONSTRATED IN ELECTRIC FURNACE TESTS AT WESTINGHOUSE) UP TO 925s (COMPOSITE)/UP TO 1020s (CARBIDE FUELS)
	SI'SE EXPLORATION INITIATIVE OFFIC
	SI'NE EXPLORATION INITIATIVE OFFIC

. . .

=



Ţ


. سينا

R	ELATIVE PERFOR CL	ASS_SC/NTR			
PARAMETERS	'72_NERV	A NERV	A DERIVAT	IVES	PBR*
ENGINE CYCLE	HOT BLEEI TOPPING	р/ тор	PING (EXPAN	DER)	HOT BLEED
FUEL FORM	GRAPHITE	GRAPHITE	COMPOSITE	CARBIDE	UC ₂ /ZrC KERNEL
EXHAUST TEMP. (K) 2,350-2,500	2,500	2,700	3,100	3,200
HAMBER PRESS. osia)	450	1,000	1,000	1,000	1,000
OZZLE EXP. RATIO	D 100:1	500:1	500:1	500:1	100:1
PECIFIC IMPULSE	(s) 825-850/ 845-870	885	925	1,020	971
VGINE WEIGHT++(kg) 11,250	8,000	8,816	9,313	1702
GINE THRUST/ EIGHT (W/INT. SH	3.0 IELD)	4.3	3.9	3.7	20
CHNOLOGY	6*	5*	4-5*	3-4•	2*
	DE TO FLIGHT CON WEIGHT RATIOS FO	DR NERVA/NDR	SYSTEMS - EXPLORA - PERFOR	5-6 AT 250 1 TION 1000 MANCE (COMPARISON
TRL = 6 (PRELU OTE: THRUST-TO INTE: THRUST-TO INTE: THRUST-TO ON-NUCLEAR -SSME vs. '7 DROGEN TURBOI LOW SIGNIFICAN	DE TO FLIGHT CON WEIGHT RATIOS FO ENGINE COM 2 NERVA vs. " PUMPS: AN EXTEN T REDUCTIONS IN	DR NERVA/NDR	SYSTEMS	5-6 AT 250 1 THOM 1001 MANCE ('COMPO	COMPARISON
TRL = 6 (PRELU DTE: THRUST-TO IU/)/ N-NUCLEAF -SSME vs. '7 ROGEN TURBOI OW SIGNIFICAN ELOPMENT TIM	DE TO FLIGHT CON WEIGHT RATIOS FO ENGINE COM	PONENTS	SYSTEMS	5-6 AT 250 1 THOM 1001 MANCE ('COMPO	COMPARISON
TRL = 6 (PRELU DTE: THRUST-TO IU/ D/ D/ N-NUCLEAR -SSME vs. 7 ROGEN TURBOI OW SIGNIFICAN ELOPMENT TIMI	DE TO FLIGHT CON WEIGHT RATIOS FO ENGINE COM 2 NERVA vs. " PUMPS: AN EXTEN T REDUCTIONS IN E FOR NTR APPLIC	PONENTS	SYSTEMS - EXPLORA - PERFOR THE-ART SE DEVELO REASES IN R OTAL MASS	5-6 AT 250 1 THOM 1001 MANCE (COMPO PED SINCE ELIABILITY	COMPARISON
TRL = 6 (PRELU DTE: THRUST-TO IU/ D/ D/ N-NUCLEAR -SSME vs. '7 ROGEN TURBOI OW SIGNIFICAN ELOPMENT TIMI SSME: NERVA:	DE TO FLIGHT CON WEIGHT RATIOS FO LENGINE COM 2 NERVA vs. " PUMPS: AN EXTEN T REDUCTIONS IN E FOR NTR APPLIC 72.6 KG/S @ 7040 ~ 40 KG/S @ 1360	PONENTS PONENTS STATE-OF- SIVE DATABA WEIGHT, INCE ATIONS PSI, 350 KG T PSI, 243 KG T	SYSTEMS - EXPLORA - PERFOR THE-ART SE DEVELO REASES IN R OTAL MASS	5-6 AT 250 1 THOM 1001 MANCE (COMPO PED SINCE ELIABILITY	COMPARISON
TRL = 6 (PRELU OTE: THRUST-TO THRUST-TO THRUST-TO THRUST-TO ON-NUCLEAR -SSME vs. '7 OROGEN TURBOI OW SIGNIFICAN /ELOPMENT TIMI - SSME: - NERVA: - "SOTA" NTR: ZLE DESIGN AND ORETICAL EFFIC	DE TO FLIGHT CON WEIGHT RATIOS FO LENGINE COM 2 NERVA vs. " PUMPS: AN EXTEN T REDUCTIONS IN E FOR NTR APPLIC 72.6 KG/S @ 7040 ~ 40 KG/S @ 1360	PONENTS PONENTS STATE-OF- SIVE DATABA WEIGHT, INCF ATIONS PSI, 350 KG T PSI, 243 KG T PSI, 304 KG T CAL NOZZLE I	SYSTEMS - EXPLORA - PERFOR THE-ART SE DEVELO REASES IN R OTAL MASS OTAL MASS OTAL MASS	5-6 AT 250 1 TION 1000 MANCE (COMPO PED SINCE ELIABILITY	COMPARISON SITE NTR- NERVA SHOULD AND REDUCED
TRL = 6 (PRELU OTE: THRUST-TO THRUST-TO THRUST-TO THRUST-TO THRUST-TO THRUST-TO THRUST-TO THRUST-TO THRUST-TO THRUST - SSME: - NERVA: - "SOTA" NTR: ZLE DESIGN ANI ORETICAL EFFIC NERVA - SSME:	DE TO FLIGHT CON WEIGHT RATIOS FO LENGINE COM Z NERVA vs. " PUMPS: AN EXTEN T REDUCTIONS IN E FOR NTR APPLIC 72.6 KG/S @ 7040 ~ 40 KG/S @ 1360 ~ 37 KG/S @ 1627 D COOLING: TYPIC	DR NERVA/NDR	SYSTEMS - EXPLORA - PERFOR THE-ART SE DEVELO REASES IN R OTAL MASS OTAL MASS OTAL MASS OTAL MASS OTAL MASS DESIGNS NO GNIFICANTL T FLUX CAPA	5-6 AT 250 1 THOM 1001 MANCE (<u>'COMPO</u> PED SINCE ELIABILITY W CAPABLI Y GREATER	COMPARISON SITE NTR- NERVA SHOULD AND REDUCED
OTE: THRUST-TO ON-NUCLEAF -SSME vs. '7 DROGEN TURBOI LOW SIGNIFICAN VELOPMENT TIME - SSME: - NERVA: - 'SOTA' NTR: ZZLE DESIGN AND CORETICAL EFFIC NERVA - SSME: - NERVA:	DE TO FLIGHT CON WEIGHT RATIOS FO ENGINE COM 2 NERVA vs. " 2 NERVA vs. " 2 NERVA vs. " 2 NERVA vs. " 72.6 KG/S @ 7040 ~ 40 KG/S @ 1360 ~ 37 KG/S @ 1627 D COOLING: TYPK CIENCY WITH PERF	PONENTS PONENTS STATE-OF- SIVE DATABA WEIGHT, INCE ATIONS PSI, 350 KG T PSI, 243 KG T PSI, 304 KG T CAL NOZZLE E ORMANCE SI 3150 PSI, HEA ENERATIVE CO PC ~450 PSI, H	SYSTEMS - EXPLORA - PERFOR THE-ART SE DEVELO REASES IN R OTAL MASS OTAL MASS	5-6 AT 250 1 THOM INIT MANCE (<u>'COMPO</u> PED SINCE ELIABILITY W CAPABLI Y GREATER ABILITY ~ 16 ZZLE MASS APABILITY	COMPARISON SITE NTR- NERVA SHOULD AND REDUCED

E

PR12-15

// NASA	LEWIS RESEARCH CENTER
ELEMENT: NUC	LEAR THERMAL PROPULSION
IV. TECHNOLOGY PERFORMANCE (OBJECTIVES
• INNOVATIVE CONCEPTS	 TURBOPUMPS: HIGH PRESSURES (~500-1000 ATMS) REQUIRED FOR CRITI- CALITY WILL REQUIRE TECHNOLOGY ADVANCES BEYOND SSME
CLOSED CYCLE ~10,000K GAS CORE OPEN CYCLE 20,000K	1500- 3000 • MATERIALS: LIGHTWEIGHT, HIGH STRENGTH PRESSURE VESSEL MATERIALS TO IMPROVE ENGINE THRUST-TO-WEIGHT PERFORMANCE
GAS CORE	NOZZLES: TRANSPIRATION-COOLED NOZZLE DESIGNS TO ENABLE HIGH-ISP OPERATION
	 LIGHTWEIGHT, HIGH TEMPERATURE RA- DIATORS TO ALLOW HIGH ISP OPERA- TION AND IMPROVE ENGINE THRUST- TO-WEIGHT
	Juclear propulsion project
CHEMICAL ROCKET SYSTEM EX: HYDROGEN TURBOPUI REGENERATIVELY-COO	
• LIGHTWEIGHT, HIGH STRENG EX: AL/LI, COMPOSITE MAT	DLED NOZZLES
 LIGHTWEIGHT, HIGH STRENG EX: AL/LI, COMPOSITE MAT CRYO FLUID SYSTEMS EX: LH₂ STORAGE AND TRA 	DLED NOZZLES TH CRYOGENIC TANKS ERIALS
CRYO FLUID SYSTEMS	OLED NOZZLES TH CRYOGENIC TANKS ERIALS ANSFER
 CRYO FLUID SYSTEMS EX: LH₂ STORAGE AND TRA THERMAL PROTECTION EX: LIGHTWEIGHT SUPER-I REFRIGERATION "SLUSH HYDROGEN" TECHNOL 	TO REDUCE/ ELIMINATE LH2
 CRYO FLUID SYSTEMS EX: LH₂ STORAGE AND TRA THERMAL PROTECTION EX: LIGHTWEIGHT SUPER-I REFRIGERATION "SLUSH HYDROGEN" TECHNO PROGRAM CAN IMPROVE PER VOLUME AND MASS "DUAL MODE" NTR OPERATION 	DLED NOZZLES TH CRYOGENIC TANKS ERIALS ANSFER MLI ("SUPERFLOC") TO REDUCE/ ELIMINATE LH2 BOHLOFF OLOGY BEING PURSUED IN NASP
 CRYO FLUID SYSTEMS EX: LH₂ STORAGE AND TRA THERMAL PROTECTION EX: LIGHTWEIGHT SUPER-I REFRIGERATION "SLUSH HYDROGEN" TECHNO PROGRAM CAN IMPROVE PER VOLUME AND MASS "DUAL MODE" NTR OPERATION 	DLED NOZZLES TH CRYOGENIC TANKS ERIALS ANSFER MLI ("SUPERFLOC") TO REDUCE/ ELIMINATE LH2 BOILOFF DLOGY BEING PURSUED IN NASP RFORMANCE BY REDUCING TANK DN - LOW LEVEL POWER PRODUCTION

÷

• IMPACT:

- Nuclear Propulsion Enables and/or Enhances Space Exploration Missions

Enables: *Enhances:*

<u>Nuclear Electric Propulsion (NEP)</u> Robotic Science Missions Lunar & Mars Cargo, & Mars Piloted Space Exploration Nuclear Thermal Propulsion (NTP) Mars Piloted Lunar & Mars Cargo, Lunar Piloted & Robotic Science Space Exploration

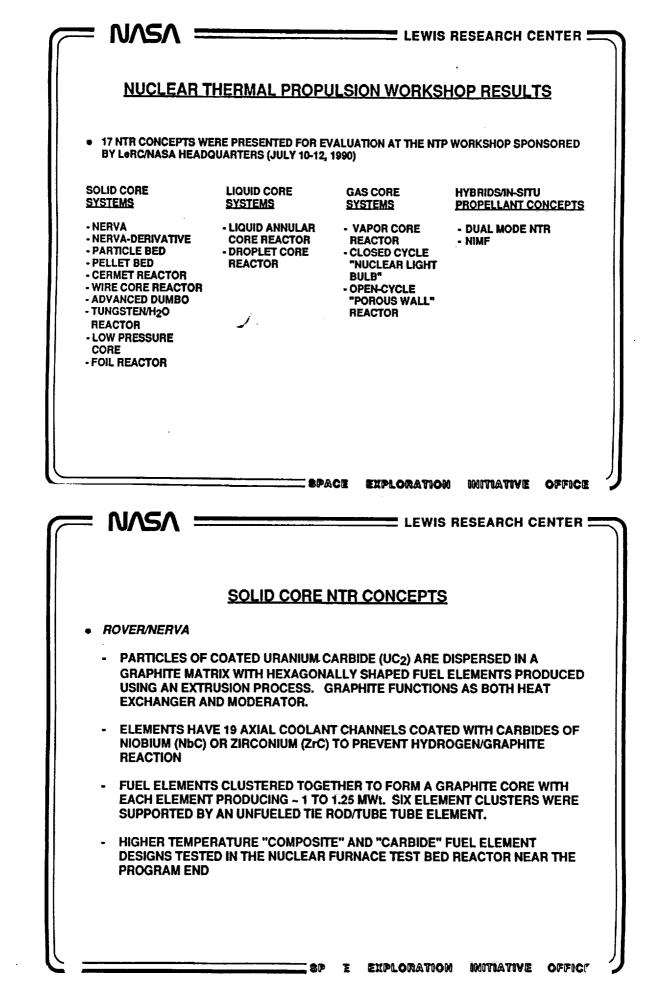
<u>____</u>

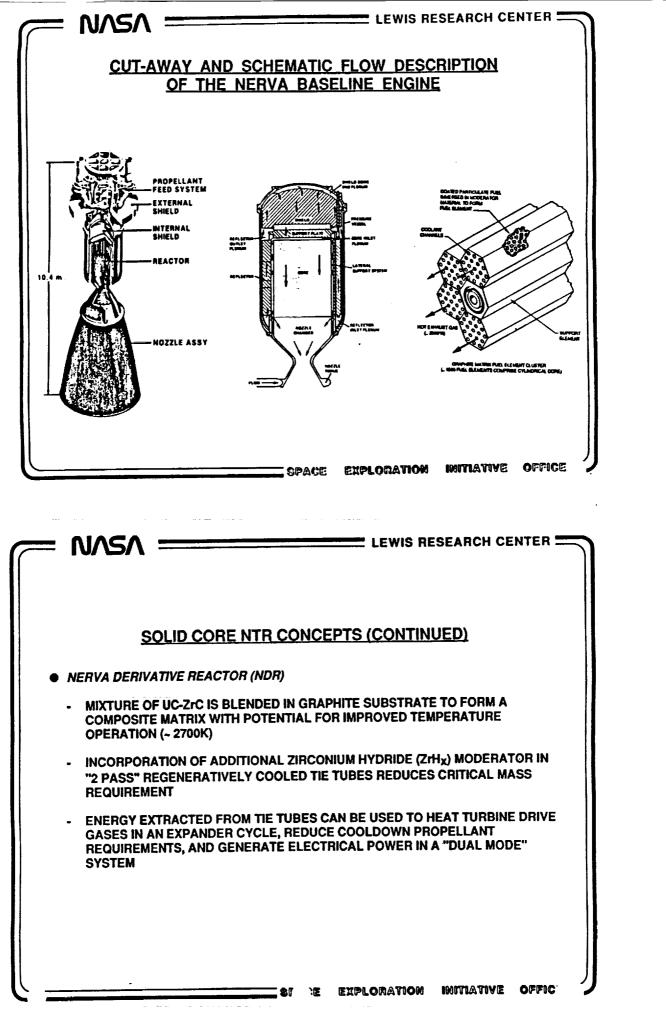
USER COORDINATION:

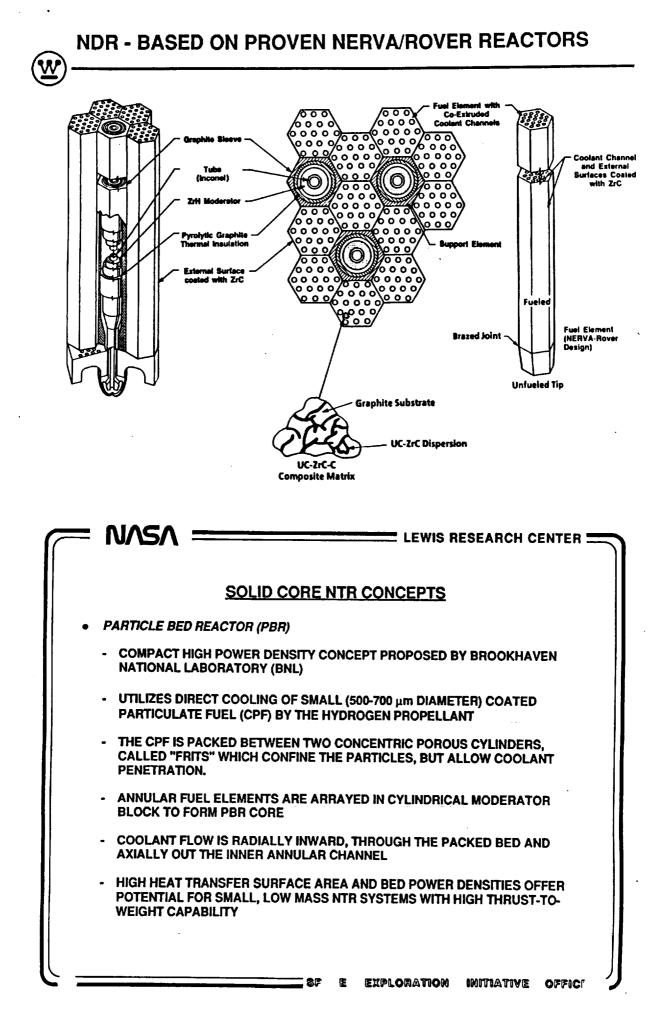
- Exploration Studies Identify Nuclear Propulsion as a Key Technology
- OAET/RZ Provide Performance Predictions for NASA Studies
- OSSA Study on NEP for Robotic Science Missions
- DOE, DoD & NASA Included on Steering Committee (also Astronaut Office)

TECHNICAL REVIEWS:

- Interagency Design Review Teams will Periodically Review Technical Progress

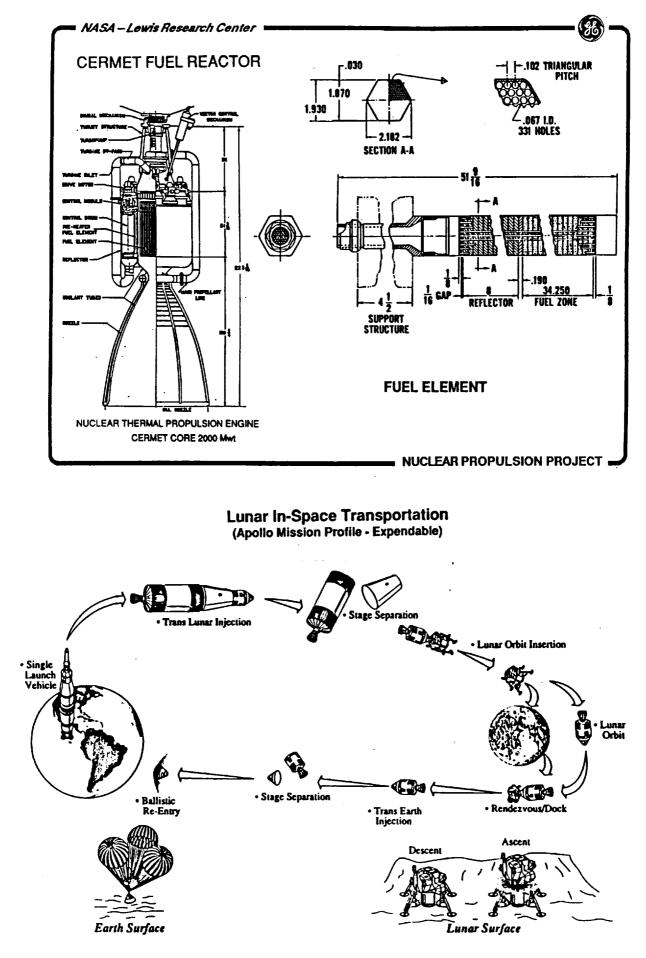

OVERALL TECHNICAL AND PROGRAMMATIC STATUS:


- High Priority Technology Areas Identified (some efforts initiated)
- Budget Deliberations Continue
- Single Multi Agency Plan Defined for FY92 Implementation

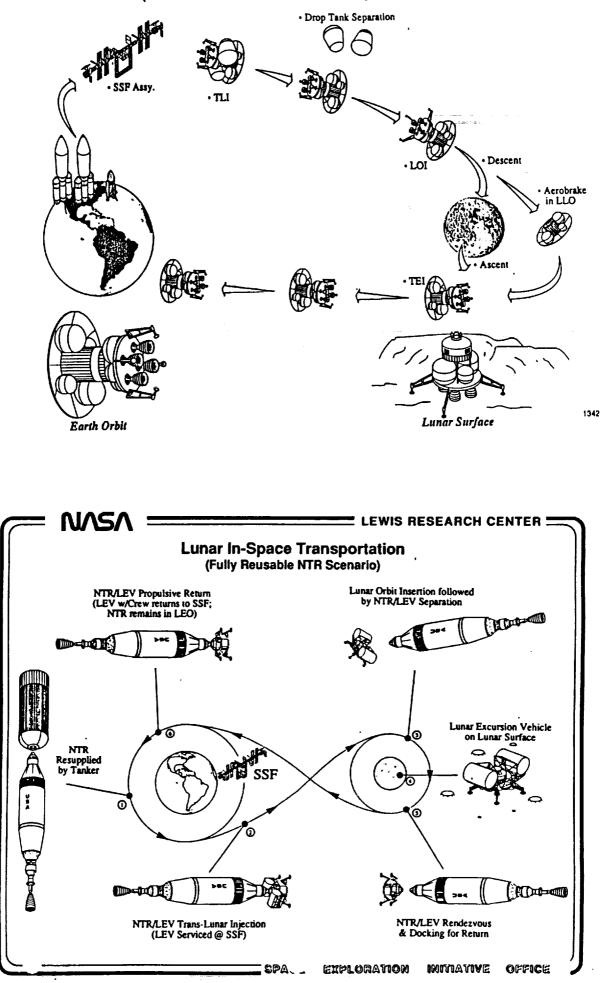

MAJOR TECHNICAL/PROGRAMMATIC ISSUES:

- Agency/Department Roles
- Funding to Initiate Technical Efforts
- Projected Budget Does Not Support Schedules

	LEWIS RESEARCH	CENTER =	
SUPPLEMENTAL INFORMATION			
 MUCLEAR	PROPULSION PRO	Dje c t	



SCHEMATIC REPRESENTATION OF A PARTICLE BED REACTOR BASED ROCKET CONCEPT

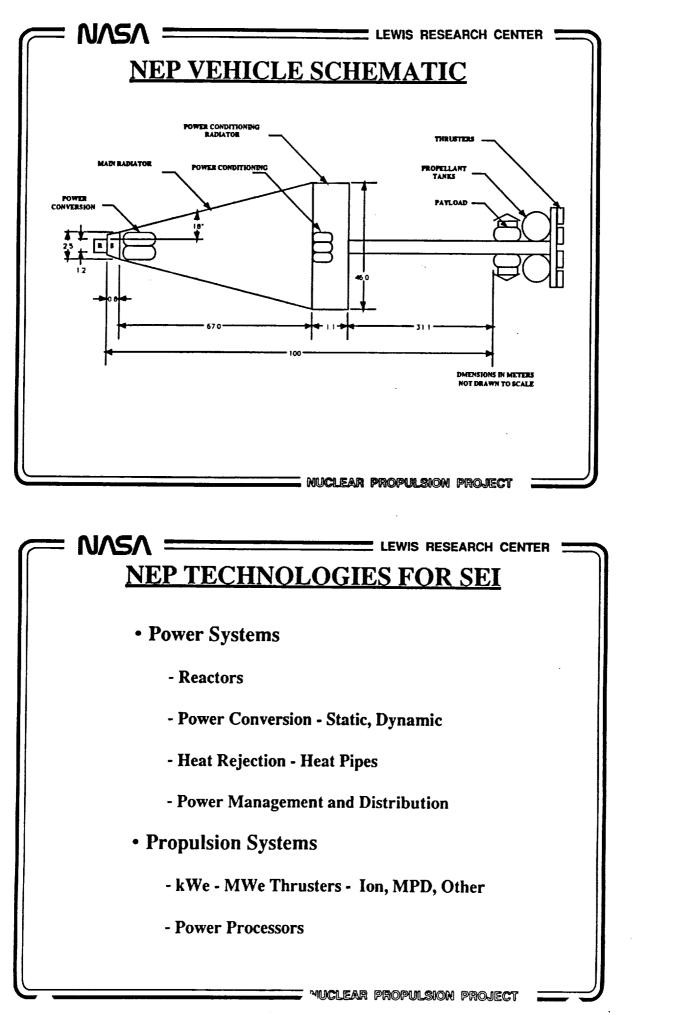

ROCKET

PROPELLANT **BASELINE FUEL ELEMENT** INLET PLENUM **& MODERATOR BLOCK FUEL PARTICLE** REFLECTOR FUEL ELEMENTS OUTLET PLENUM THROAT NOZZLE SKIAT WRITELEN NASA LEWIS RESEARCH CENTER SOLID CORE NTR CONCEPTS CERMET REACTOR - TECHNOLOGY INVESTIGATED/DEVELOPED BY GE/ANL DURING 1960'S FOR THE ROVER PROJECT AND THE AIRCRAFT NUCLEAR PROPULSION ROGRAM - FUEL IS 60% U02/40% TUNGSTEN, HIGHLY ENRICHED IN A FAST REACTOR CONFIGURATION/~163 HEX-SHAPED FUEL ELEMENTS - FUEL ELEMENT IS CLAD WITH TUNGSTEN-RHENIUM PROVIDING RETENTION OF FISSION PRODUCT GASES - FUEL SPECIMEN TESTS CONDUCTED UP TO ~2800 K - SPECIFIC IMPULSE: 832 s WITH CAPABILITY IN THE 800-900 s RANGE /ENGINE THRUST-TO-WEIGHT RATIO: ≤5

NUCLEAR PROPULSION PROJECT

Lunar In-Space Transportation (FY 90 Lunar Mission Scenario - Partially Reusable)

.....

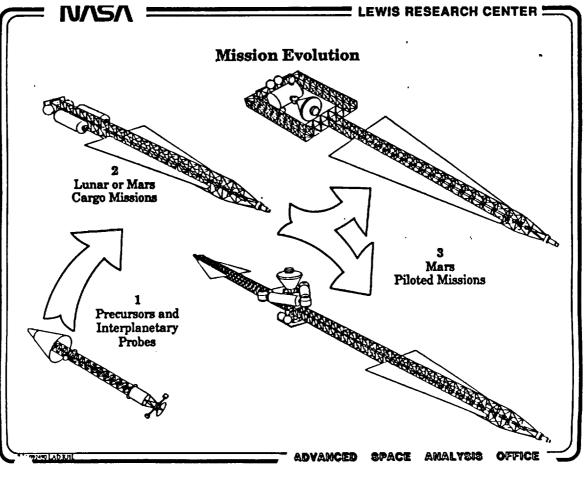

PR12-24

PARAMETERS	APO	LLO	CHEM/AB	NTR
● IMLEO (t)	123	•	234	208
MISSION MODE	EXPEN	ABLE	PARTIALLY REUSABLE	FULLY REUSABLE
PROPULSION				
- ENGINE/# - PROPELLANT - TOTAL THRUST (kibf) - Isp(s)	J-2/1 LOX/LH2 225 425	SPS ⁺ /1 STORABLES 22 256	ASE/4 LOX/LH2 80 481	NERVA-DERIVATIVE/1 LH2 75 915
• BURN DURATION/ENGINE				
(mins) - TLI	5.2	—	26.0/4	28.4
- LOC	-	6.3	4.9/4	7.2
- TEI - EOC	DIREC	2.5 T ENTRY	1.6/4 AEROCAPTURE	4.3 9.2
• EARTH ENTRY VELOCITY (km/s)/"g-loading"	11.2/ <u>≤</u>	7g	≤ 11.2/ <u>≤</u> 5g	0.5 g - 0.7 g (begin-end EOC)
• RETURN MASS FRACTION (%)	4.8		11.5	23.4

NUCLEAR ELECTRIC PROPULSION

James H. Gilland

NASA Lewis Research Center

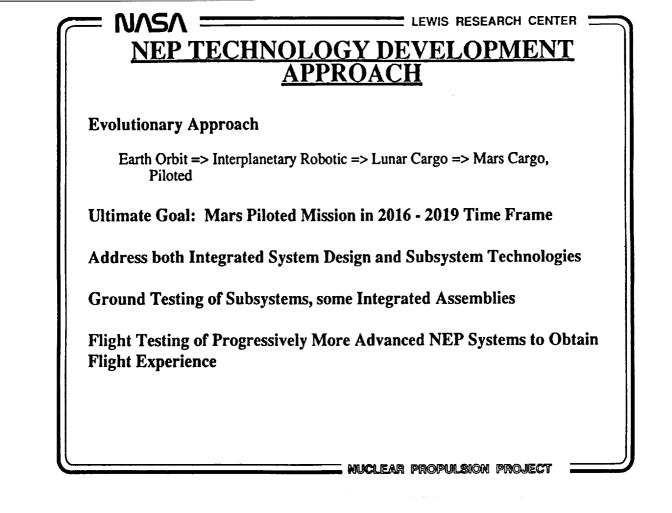


NUCLEAR ELECTRIC PROPULSION MISSION ADVANTAGES

Progressive Technology Development Paths

- Evolutionary Development to Meet a Wide Range of Missions
- Commonality with Surface Power Technology
- Low Propellant Requirements
 - Low Vehicle Mass
 - Small Resupply Mass
- Reduced Interplanetary Trip Times
- Tolerant of Mission Variations
 - Changes in Payload
 - Broad Launch Windows
 - Reduced Dependence on Mission Opportunity

NUCLEAR PROPULSION PROJECT


	an as Danamatana	
NEP Perform	ance Parameters	
Specific Imp	oulse (Isp): Determines Prop	ellant Mass
Power Level	(P _e): Affects Trip Time	
System Spec	ific Mass (α): Determines Ti	rip Time Limits
Thruster Ef	ficiency (໗): Affects Trip Tir	ne, Vehicle Mass
MISSION BENEFIT	ENABLING PARAMETER	NEP CAPABILITIES
Reduced Propellant Mass	Isp	2000 - 10000 seconds
	α	<10 kg/kWe
	η	>50%
Reduced Trip Time	α	<10 kg/kWe
-	Pe	>=10 MWe
	η	>50%

- ---

.....

<u> </u>		
PA'	THWAYS TO EVOI	LUTION
MISSION	EVOLVING SP-100 TECHNOLOGY	EVOLVING HIGHER RISK TECHNOLOGIES
INTERPLANETARY PROBES/PRECURSORS	SP-100 THERMOELECTRIC 100 kWe	SP-100 THERMOELECTRIC 100 kWe
LUNAR/MARS CARGO	GROWTH SP-100 K-RANKINE 1-5 MW+	ADVANCED REACTOR ADVANCED POWER CONVERSION 1-5 MWe
MANNED MARS	GROWTH SP-100 K-RANKINE	ADVANCED REACTOR ADVANCED POWER CONVERSION
"ALL UP" "QUICE TRIP"	10-20 MWe	10-20 MWe 40-60 MWe
		ed space analysis office

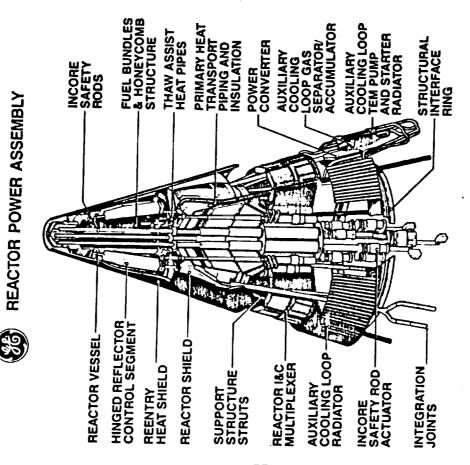
	PRESE	ENT	GOAL	
Power	INLU			
Nuclear SP-100	100 kWe ~45 kg/k GES 200 UN Fuel TE Conv 1350 K K Heat F	We 91 Pin version	>=10 MV <= 10 kg/ TRL 6 by	kWe
Propulsion				
Thrusters Isp (s)	Ion 2000 - 9000	MPD 1000 - 5000	Ion 2000 - 9000	MPD 1000 - 7000
η	.78	.3	.78	>.5
Pe (MWe) Lifetime(h)	.0103 10000	.015 ?	1 - 2 10000	1 - 5 >= 2000
Power Managem	ent and Distrib	ution (PMAD)		
_	η ~ 0.90		η~0	
	4 kg/kWe		<= 2.5 kg/kWe	
= NASA	400 K Rejecti	on Temp.	700 K Re Propulsion pro Lewis Resear	jection Temp. DJECT
= NASA ASSOCIA	400 K Rejecti	on Temp.	700 K Re	jection Temp. DJECT
ASSOCIA	400 K Rejecti	on Temp.	700 K Re Propulsion pro Lewis Resear	jection Temp. DJECT
ASSOCIA Space Nuclear	400 K Rejecti TED NE Power	on Temp.	700 K Re PROPULSION PR LEWIS RESEAR JOLOGY J	jection Temp. DJECT
Space Nuclear	400 K Rejecti TED NEJ Power e Program - 10	on Temp. WUCLEAF P TECHN	700 K Re PROPULSION PR LEWIS RESEAR JOLOGY J	jection Temp. Difect CH CENTER EFFORTS
Space Nuclear DOE MMW DoD/DOE/N	400 K Rejecti TED NEJ Power e Program - 10 IASA SP-100 F	on Temp. WUCLEAF P TECHN	700 K Re PROPULSION PRO LEWIS RESEAR IOLOGY J	jection Temp. Difect CH CENTER EFFORTS
Space Nuclear DOE MMW DoD/DOE/N	400 K Rejecti TED NEJ Power e Program - 10 IASA SP-100 F sion	on Temp. WUCLEAF P TECHN 's - 100's MWe Program - 100 k	700 K Re PROPULSION PR LEWIS RESEAR IOLOGY I	jection Temp. Difect CH CENTER EFFORTS
SSOCIA Space Nuclear DOE MMW DoD/DOE/N Electric Propuls NASA OAE Thrusters	400 K Rejecti TED NE Power e Program - 10 IASA SP-100 F sion T Base R&T in	on Temp. WUCLEAF PTECHN 's - 100's MWe Program - 100 k Electric Propul	700 K Re PROPULSION PR LEWIS RESEAR IOLOGY I	jection Temp. DJECT CH CENTER EFFORTS 99 - 2001 Arcjet, Ion, MPD

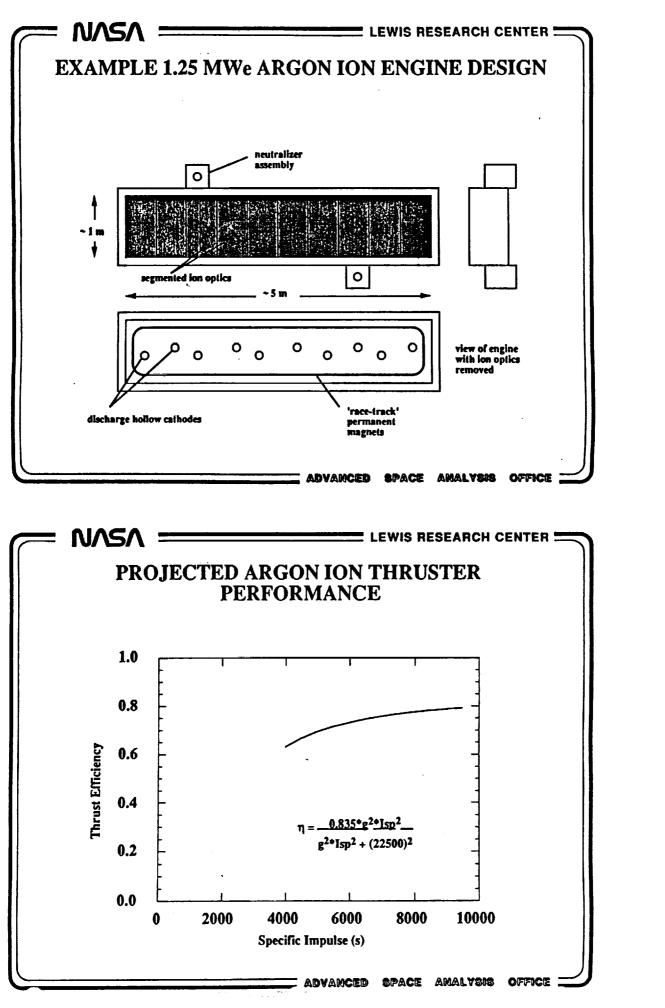
Ī

.

PR12-30

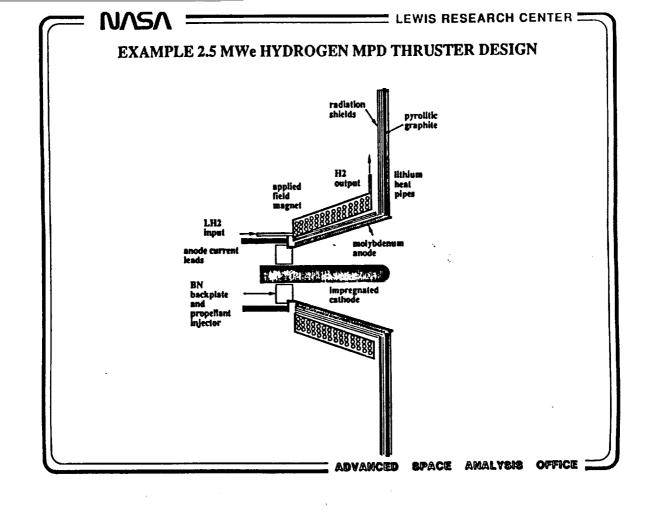
REPRESENTATIVE MARS NEP SYSTEM


POWER (10 MWe):


UN Fuel Pin, Li Cooled Reactor (SP-100 Technology) 1350 K Reactor Outlet Temperature K-Rankine Power Conversion System K Heat Pipe Radiator (5.5 kg/m²) Man-Rated Shadow Shield - 5 Rem/year 100 m from Shield, 40 m Diameter Dose Plane 10 Year Lifetime 5000 V DC Shielded Coaxial Transmission Line 600 K Power Conditioning

PROPULSION:

Argon Ion Thrusters 1.25 MWe thrusters 5000 - 9000 s Isp 1 m X 5 m Grids 10,000 hours Lifetime


NUCLEAR PROPULSION PROJECT

PR12-32

_

			LEWIS RE	
NEP	SUBSYST	<u>CEM TRA</u>	ADE S	PACE
	Power			
Reactor	<u>Conversion</u>	<u>Radiator</u>	<u>PMAD</u>	<u>Thruster</u>
Fuel Pin (SP-100)	Themoelectric	Pumped Loop	Si	Ion
Advanced Fuel Pin	Brayton	• •	GaAs	MPD
		Refractory		
NERVA- Derived	Rankine	Metal HP	SiC	Pulsed Inductive (PIT)
Cermet	Adv. Brayton	Carbon	AC	
		Composite HF		Electron Cyclotron
Thermionic	Thermionic		DC	Resonance (ECR)
	• • • • • • • • •	Ceramic		
Particle Bed	MHD/Rankine	Fabric HP		Ion Cyclotron
		n		Resonance (ICR)
Pellet Bed		Bubble		 .
To Com Dalling IZ		Membrane		Pulsed
In-Core Boiling K		T *. • •	1	Electrothermal (PET)
		Liquid		
		Droplet		Deflagration
				VariableIsp
				Pulsed Plasmoid
		MUCLEAR	PROPULS	on project

NVSV EWIS RESEARCH CENTER NEP TECHNOLOGY EMPHASIS TECHNOLOGY SYSTEM IMPACT Reactor Low α - reduced radiator mass **High Temperature Fuels, Materials High Fuel Burnup** Low α - compact reactor design **Power Conversion High Temperature Materials** Low α - reduced radiator mass **Power Management and Distribution (PMAD) High Power Electronics Enabling - Reliability Radiation Resistant Electronics Enabling - Reliability** Low α - reduced PMAD radiator **High Temperature Electronics** mass

Efficient Electronics

Low α , Pe - reduced PMAD radiator mass ; lower power source requirements

NUCLEAR PROPULSION PROJECT

NASA LEWIS RESEARCH CENTER **NEP TECHNOLOGY EMPHASIS**

TECHNOLOGY

SYSTEM IMPACT

Heat Rejection (Radiator)

High Temperature, Low **Mass Materials**

Low α - Dominant mass in MWe space power systems

Thrusters

High Power

Long Lifetime

Efficient

Enabling - System reliability, simplicity

Improved vehicle mass, trip time; lower power source requirements

Maximize reliability; Minimize complexity; Reduce mass

NUCLEAR PROPULSION PROJECT

ADDITIONAL INFORMATION

NUCLEAR PROPULSION PROJECT

- Mission System Requirement Guidelines
- Robotic Probe Missions
- NEP Lunar Cargo Assessment
 - 10 kg/kWe System compared to Chem Aerobrake over 5 year cargo mission cycle
- Sensitivity of Mars Mission to α
 - α values range from 7 to 15 kg/kWe
 - Power, Isp optimized
 - Lines are optimum performance for each α
- Sensitivity of Mars Mission to Power, Isp
 - Constant α of ~10 kg/kWe
 - Performance insensitive to Isp above 5000 seconds
 - Dashed line is optimum performance "envelope"

NUCLEAR PROPULSION PROJECT

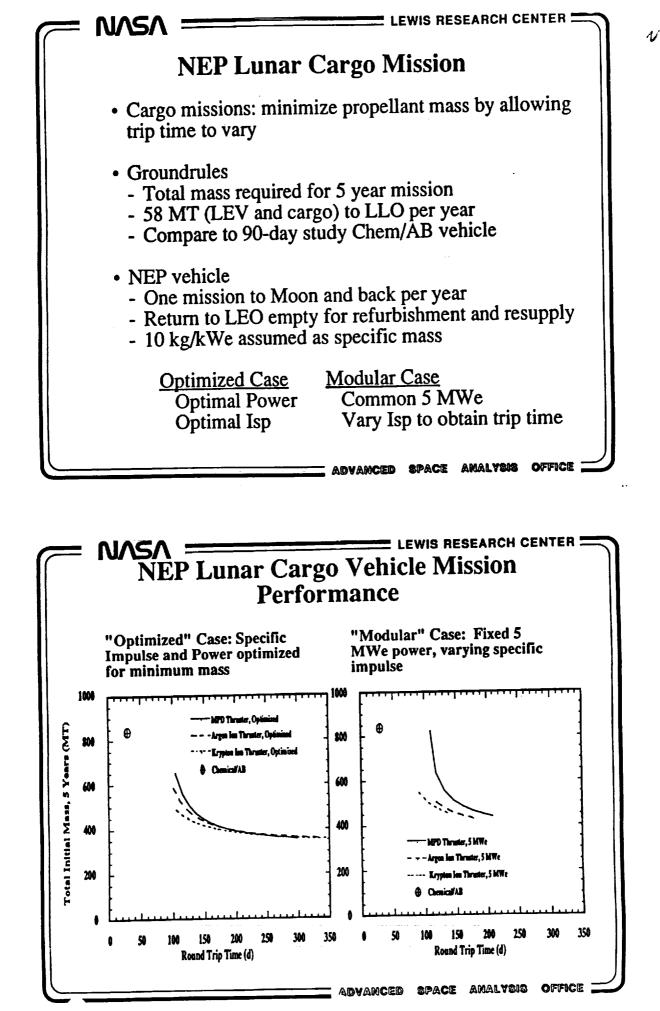
LEWIS RESEARCH CENTER

NEP MISSION GUIDELINES

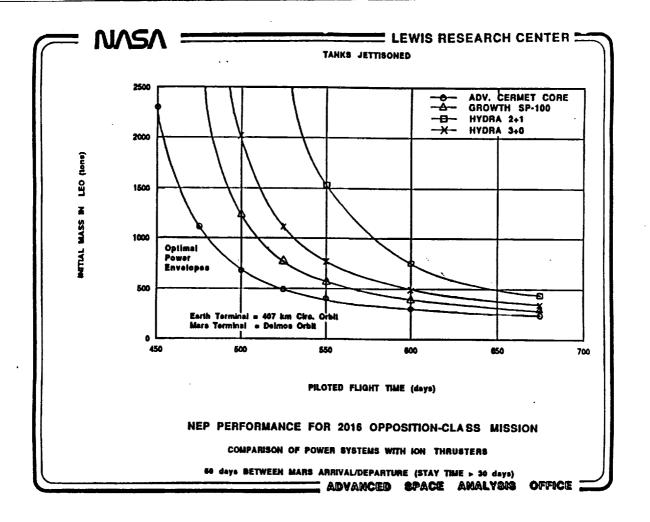
Mission	Total Power <u>(MWe)</u>	Thruster Power (MWe)	Operating Time <u>(y)</u>	Thruster Time (y)	Isp (s)	η <u>(%)</u>	α <u>(kg/kWe</u>	Need Date
Orbital Transfer Precursor	/ 0.1 - 1	0.01 - 0.05	3 - 10	1 - 2	2000 -8000	>50	10 - 30	1990- 2005
Interplanetary Probe	0.1 - 1	0.01 - 0.05	10-12	6 - 10	5000 -10000	>50	30 - 50	1990- 2005
Lunar Cargo	0.5 - 5	0.1 - 1	3 -1 0	1 - 2	3000 -10000	>50	10 - 20	2005-
Mars Cargo	2 - 10	0.5 - 2	5 - 10	2 - 3	5000 -10000	>50	10 - 20	2010-
Mars Piloted	5 - 20*	1 - 5	5 - 10	1 - 2	5000 -10000	>50	10 - 20	2014-
Mars Fast	10 - 60*	5 - 10	3 - 10	1 - 2	6000 -10000	>50	1 - 5	2016-
Total Power Inc	ludes Oj	ption for M	ultiple Prop	ulsion Mo	dules			

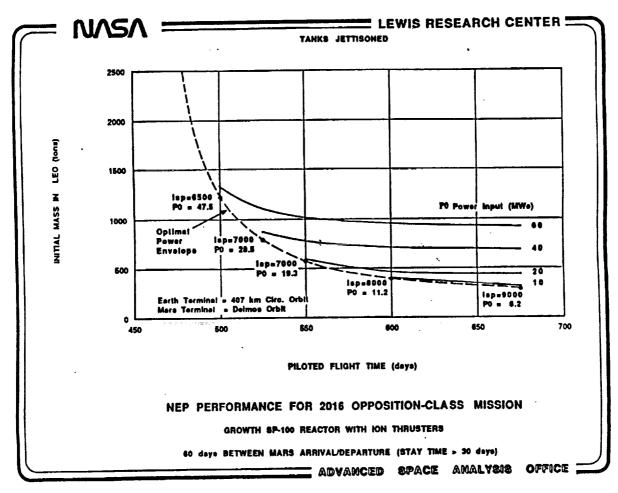
NUCLEAR PROPULSION PROJECT

ROBOTIC SCIENCE MISSIONS

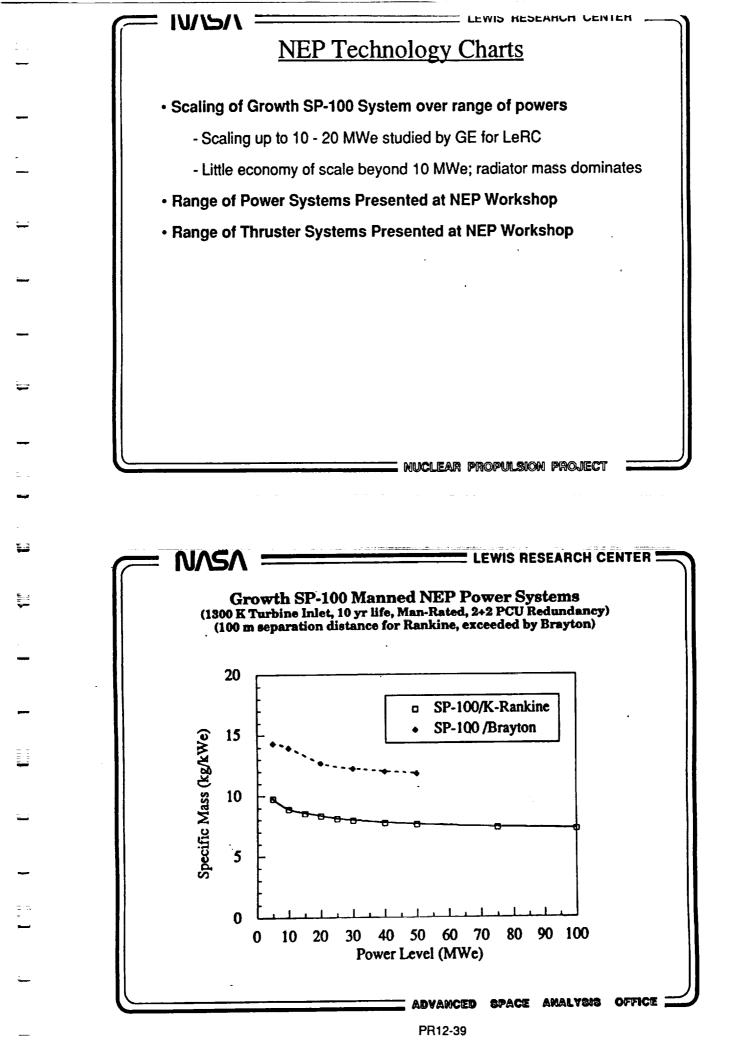

FUTURE CANDIDATE DEEP SPACE MISSIONS UTILIZING NUCLEAR ELECTRIC PROPULSIONS

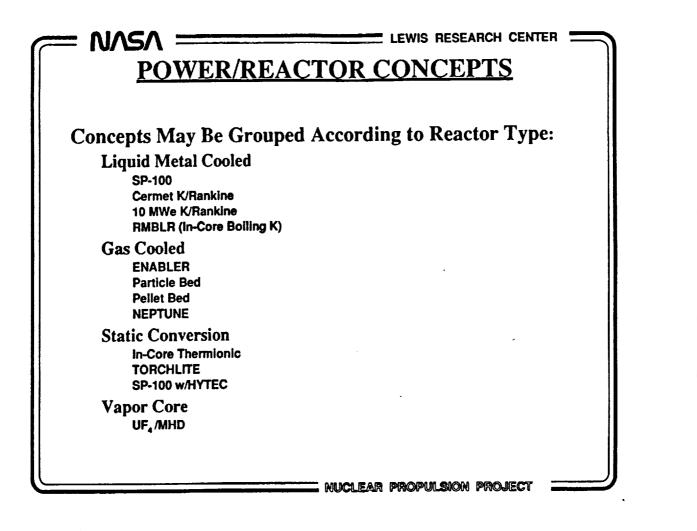
NEPTUNE ORBITER/PROBE


JPL


- PLUTO/CHARON ORBITER/PROBE
- URANUS ORBITER/PROBE
- COMET NUCLEUS SAMPLE RETURN (a.k.a. ROSETTA)
- JUPITER GRAND TOUR
- MULTIPLE MAIN-BELT ASTEROID RENDEZVOUS
- INTERSTELLAR PROBE

RJB 4-30-81




PR12-37

PR12-38

NASA ______ LEWIS RESEARCH CENTER : PROPULSION CONCEPTS

Concepts May Be Grouped According to Acceleration Mechanism:

Electrostatic

Steady Electromagnetic

MPD Thruster Electron Cyclotron Resonance Engine Ion Cyclotron Resonance Engine NEPTUNE (High Power MPD Thruster) Variable Isp Plasma Rocket

Pulsed Electromagnetic

Pulsed Inductive Thruster Pulsed Electrothermal Thruster Deflagration Thruster Pulsed Plasmoid Thruster

NUCLEAR PROPULSION PROJECT

513-81 157480 N93-7/1886

SPACECRAFT ON-BOARD PROPULSION

FOCUSED TECHNOLOGY

INTEGRATED TECHNOLOGY PLAN EXTERNAL REVIEW

JUNE 27, 1991

FOCUSED TECHNOLOGY

AGENDA

INTRODUCTION

. . . . **.**

- PLANETARY DUAL MODE
 - CONCEPT
 - IMPACTS
 - PROGRAM
- SPACE STATION H/O AND H₂O/GAS RESISTOJET
 - CONCEPT
 - IMPACTS
 - PROGRAM
- SUMMARY

PR13-1

SPACECRAFT ON-BOARD PROPULSION

FOCUSED TECHNOLOGIES

INTRODUCTION

- FOCUSED TECHNOLOGY PROGRAMS PROPOSED FOR:
 - PLANETARY DUAL-MODE RETRO & "DELTA V"
 - SPACE STATION DRAG MAKEUP

SPACECRAFT ON-BOARD PROPULSION

PLANETARY DUAL-MODE PROPULSION

CONCEPT

- NTO/N₂H₄, 100LBF-CLASS ROCKET(S) FOR MAJOR RETRO & "DELTA V"
- N₂H₄ 1LBF-CLASS ROCKETS FOR ACS
- SINGLE N₂H₄ TANK FOR 100LBF & 1LBF ROCKETS
- LIGHTWEIGHT ADVANCED TANKS

TECHNOLOGY IMPACTS

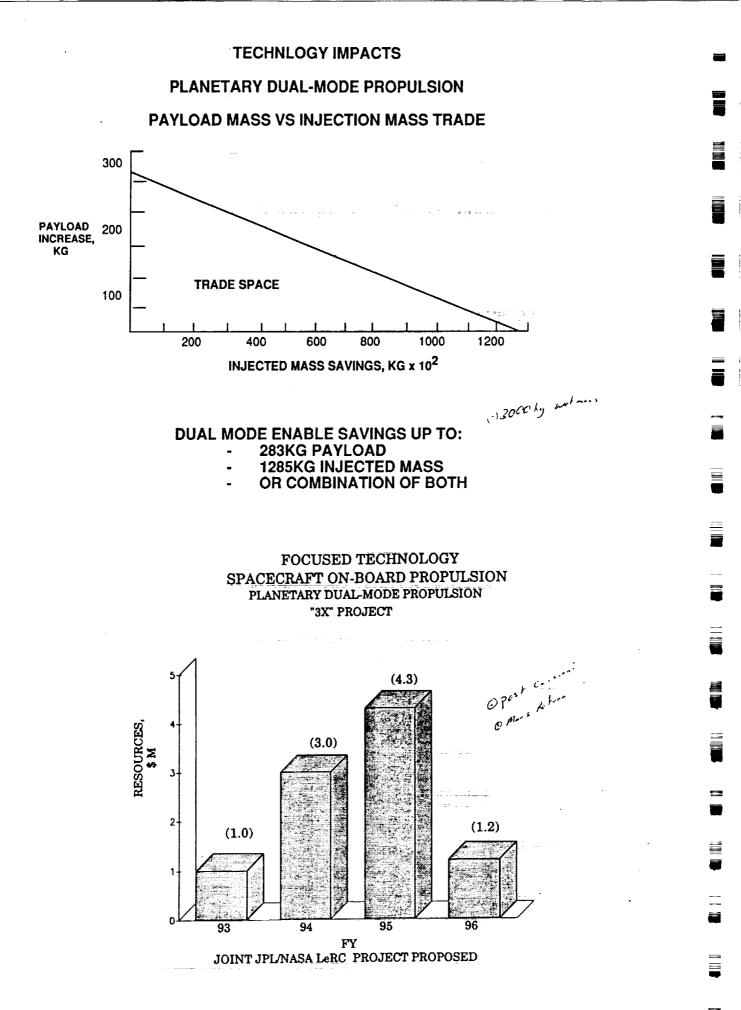
PLANETARY DUAL-MODE PROPULSION

STUDY CONDUCTED BY JPL FOR MMII CLASS MISSION

- CRAF USED TO QUANTIFY IMPACTS

SPECIFIC TECHNOLOGIES EVALUATED

- DUAL MODE (NTO/N₂H₄) ROCKET
- ADVANCED PROPELLANT TANKS


TECHNOLOGY IMPACTS

PLANETARY DUAL-MODE PROPULSION

BENEFITS EVALUATED⁽¹⁾

320 50 A 320 fr.b.blr 330 fr.b.blr

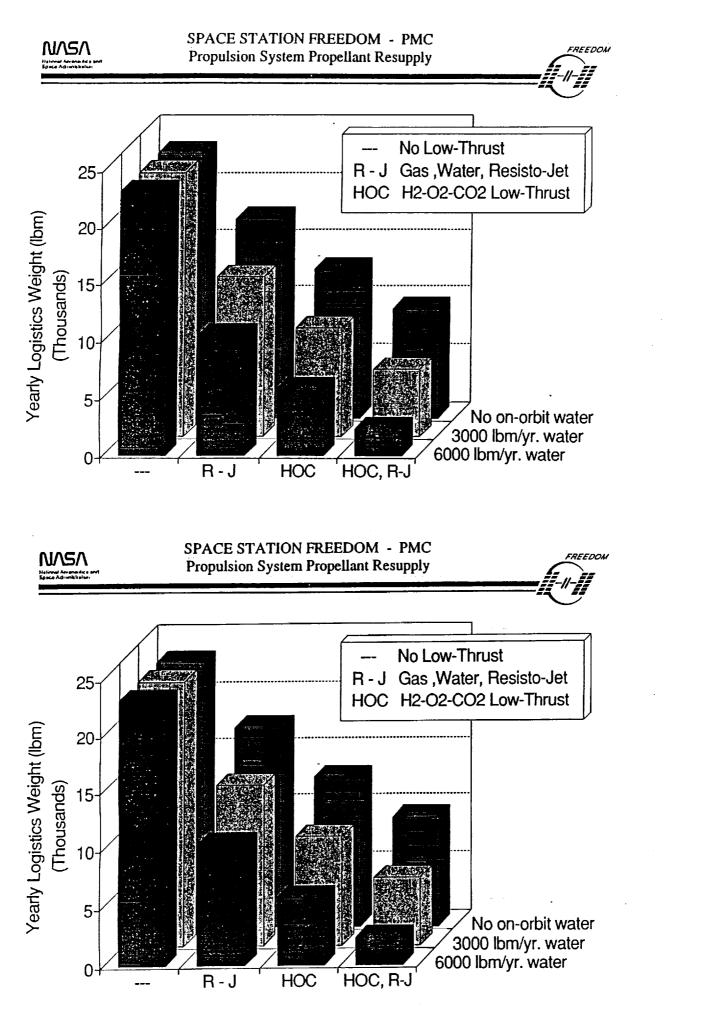
- INCREASED SPECIFIC IMPULSE (308 → 325)
- REDUCED RESERVE REQUIREMENTS
- REDUCED TANKAGE
 - ELIMINATE MONOPROPELLANT ACS TANK
 - REDUCED VOLUME & MASS
- NON QUANTIFIED
 - CONTAMINATION REDUCTIONS
 - WET MASS SAVING OF 283KG
 - ESTIMATED FOR DUAL-MODE CONCEPT
 - SIGNIFICANT CONTAMINATION BENEFITS
 - VIA SWITCH TO N₂H₄
- (1) CRAF USED FOR QUANTIFICATION

PR13-4

TECHNOLOGY IMPACTS

SPACE STATION PROPULSION

•


.

STUDIES OF RESTRUCTURED SPACE STATION CONDUCTED BY SSF PROGRAM PERSONNEL

TECHNOLOGY IMPACTS

SPACE STATION PROPULSION

STUDIES OF RESTRUCTURED SPACE STATION CONDUCTED BY SSF PROGRAM PERSONNEL

FREEDOM

	Current Baseline	Potentlat Baseline
Propulsion Element Upmass	1 flight per year	1 flight per 5 years
Ground Processing (Man-Hours)	\$200 K/Year	\$200 K/ 5 Years
Dedicated SSF Hazardous Processing Facility	\$50 Million	N/A

NASA

=

E_____

-

÷

. ا Potential Cost Surings from Reduced Hydrazine Logistics

FREEDOM

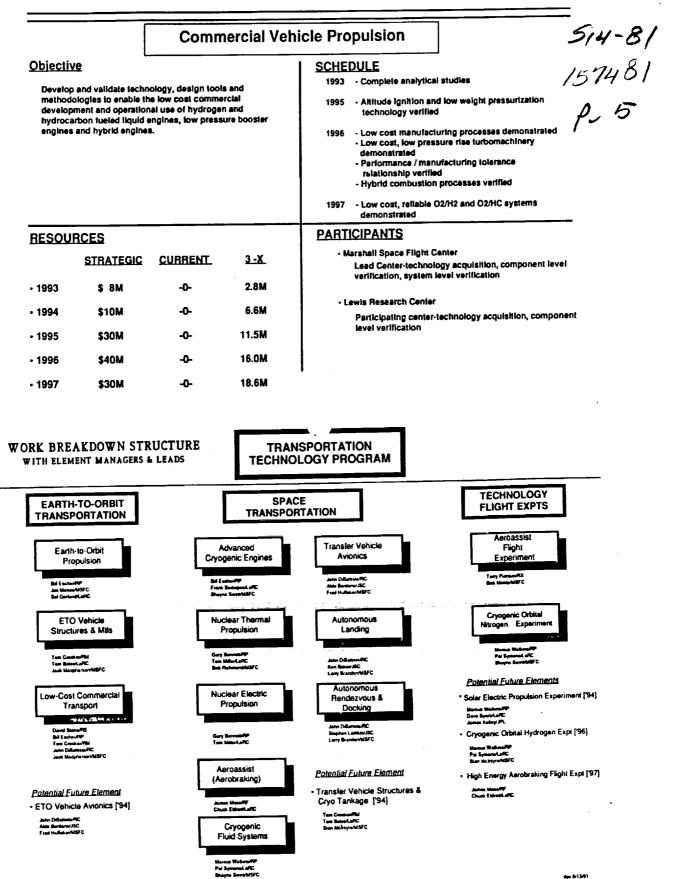
	Current Baseline	Potential Baseline
Propulsion Element Upmass	1 filght per year	1 filght per 5 years
Ground Processing (Man-Hours)	\$200 K/Year	\$200 K/ 5 Years
Dedicated SSF Hazardous Processing Facility	\$50 Million	N/A

FOCUSED PROGRAMS

- PLANETARY DUAL-MODE "3X"
- ADVANCED SPACE STATION PROPULSION "STRATEGIC"
- MAJOR BENEFITS IDENTIFIED BY USERS:
 - 280KG PAYLOAD FOR MMII CRAF CLASS MISSION
 - ELIMINATE ~ ORBITER/YEAR & N₂H₄ COF

SPACECRAFT ON-BOARD PROPULSION

FOCUSED PROGRAMS


- PLANETARY DUAL-MODE "3X"
- ADVANCED SPACE STATION PROPULSION "STRATEGIC"

MAJOR BENEFITS IDENTIFIED BY USERS:

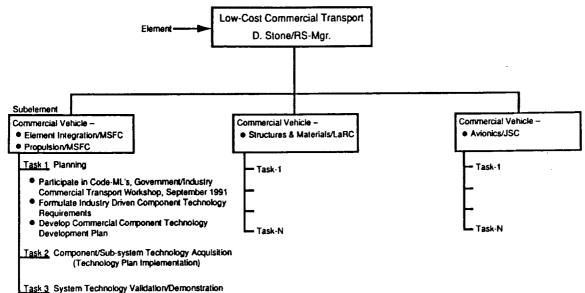
- 280KG PAYLOAD FOR MMII CRAF CLASS MISSION
- ELIMINATE ~ ORBITER/YEAR & N2H4 COF

Transportation Technology Low-Cost Commercial Transport

N93-71887

TRANSPORTATION TECHNOLOGY EARTH-TO-ORBIT TRANSPORTATION

LOW COST COMMERCIAL TRANSPORT


ELEMENT OBJECTIVE: DEVELOP AND VALIDATE TECHNOLOGIES WHICH SHOW PROMISE FOR SIGNIFICANT REDUCTION IN THE COST OF MANUFACTURING, CHECKOUT AND OPERATION OF COMMERCIAL LAUNCH VEHICLES AND UPPER STAGES WHILE PROVIDING IMPROVEMENTS IN SYSTEM RELIABILITY AND AVAILABILITY (REDUCED TURN AROUND TIME) **TWO KEY AREAS OF CONSIDERATION APPLICATION (TRANSFER) OF NASA DEVELOPED** TECHNOLOGIES NOT BEING PURSUED IN TECHNOLOGIES TO MEET SPECIFIC COMMERCIAL OTHER ELEMENTS OF SPACE TECHNOLOGY NEED PROGRAM **DEFINITION OF INDUSTRY-UNIQUE** TAILORED TO A COMMERCIAL NEED REQUIREMENTS CURRENTLY BEING EVALUATED UNDER VERIFICATION IN COMMERCIAL SYSTEM INDUSTRY SPONSORSHIP **ENVIRONMENT (NASA OR INDUSTRY TEST** BEDS) NASA CAPABILITIES/FACILITIES CAN CONTRIBUTE • MAY PROVIDE EARLY VERIFICATION OF **TECHNOLOGIES FOR NASA NEEDS** MAY PROVIDE ALTERNATE TECHNOLOGY TO MEET NASA NEEDS HC ETOT 1 5/17 TRANSPORTATION TECHNOLOGY **EARTH-TO-ORBIT TRANSPORTATION** LOW COST COMMERCIAL TRANSPORT -----**GROUND RULES:** INDUSTRY IDENTIFIED INTEREST TECHNOLOGY REQUIRES SIGNIFICANT LEVEL OF DEVELOPMENT AND/OR VALIDATION AT OR NEAR FULL SCALE PRIOR TO DEVELOPMENT (NOT FLIGHT HARDWARE DEVELOPMENT ACTIVITY) BENEFIT FROM NASA INVOLVEMENT (NOT JUST \$) IMPLEMENTATION APPROACHES: SPACE ACT AGREEMENT BETWEEN NASA CENTERS AND INDUSTRY (NO NASA FUNDING PROVIDED DIRECTLY TO INDUSTRY) JOINTLY PLANNED PROGRAMS UTILIZING NASA FUNDING AND INDUSTRY IR&D (NASA RESEARCH ANNOUNCEMENT TO SOLICIT COMPETITIVE APPROACHES)

CONDUCTS:

WORKSHOPS WITH INDUSTRY TO DISSEMINATE TECHNICAL DATA EARLY AND MORE
 EFFICIENTLY

HC ETOT 2 5/17

ELEMENT LEVEL – WORK BREAKDOWN STRUCTURE CODE-RS

Near Term (3-5 yr) Feed Bridging Program

Far Term Accommodates New Vehicle System

LOW-COST COMMERCIAL TRANSPORT TECHNOLOGY APPROACH

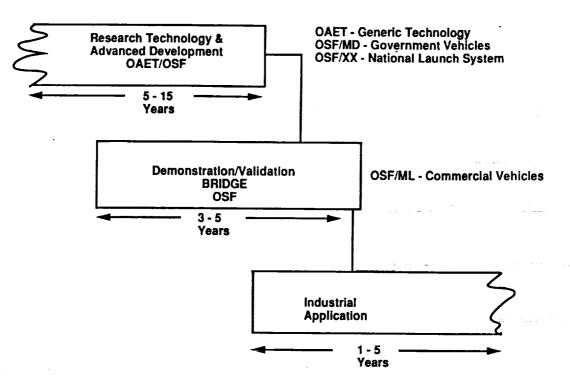
COMSTAC REPORT RECOMMENDATIONS (October, 1990):

- 2/3 of NASA's effort for the next five years should be directed toward the development and infusion of component technology enhancements into the existing fleet of U.S. Commercial ELV's.
- 1/3 of NASA's efforts should go toward a next generation family of launch vehicles that could serve the future U.S. Commercial, Civil and Military needs; (NLS) !

NASA's RESPONSE;

- OSF / Code-ML, proposes a 3-to-5yr, technology demonstration / validation "Bridging" program to meet the near-term ELV enhancement objectives.
- OAET / Code-RS, will support the Code-ML Bridging Program by providing:
 - Transfer of existing (on-the-shelf) matured technologies to the private sector.
 - Accelerate relevant, on-going technology developments to comply with commercial schedule requirements.
 Initiate new starts where required to meet the commercial needs.
- OAET / Code-RS, will work with Industry to plan and implement a comprehensive systems technology
 program to enable development of the "next generation" low-cost, commercial ELV's.

EVOLUTION OF SPACE TRANSPORTATION TECHNOLOGY


.

11-11

ABUS INNERSE.

Ē

_ 2

"COMMERCIAL VEHICLE PROPULSION SYSTEM NEEDS"

Desired Enabling Capabilities	Technology Requirements
Low-Cost O2/H2 Liquid Booster Engine System	NLS /STME To Provide
Evolved Improvements in Existing Hydrocarbon Engine Systems (ATLAS, DELTA)	 Implement existing advancements in materials, mfg processes, and mechanical elements to affect moderniza- tion of turbomachinery, combustion devices, valves, etc.
Family of Mid-Sized O2/H2 Upper Stage Engines (35 to 200 K-Lb. Thrust Class)	 Advanced Expander Cycle Engine Technology Issues: Improved heat transfer methods Vacuum Start Techniques Automated Engine System Checkout Processes Code-RP / LeRC-MSFC Advanced Cryogenic Engine
Low-Cost, Low-Pressure Pump Fed Liquid Rocket Boosters - 02/HC - 02/H2	 Code-RP / MSFC Component Technology Program Ablative Thrust Chamber and Nozzles Simple Low-Cost Injectors Low Pressure Rise Industrial Grade Pumps Low-Cost Lightweight Tank Pressurization Systems
Hybrid Boosters and/or Upper Stage Propulsion Systems	 Hybrid Propulsion Technology Issues: ignition System Optimization Ballistic Assessment; Combustion Process Analyses Performance Prediction, Fuel Formulation, Flow Analy Fuel Grain Design; Strength, Support, Producibility Propellant Tailoring, Oxidizer Injection optimization Insulation Characterization, Case & Nozzle High regression rate fuel chemistry

FOCUSED TECHNOLOGY

LOW-COST COMMERCIAL TRANSPORT / PROPULSION TECHNOLOGIES

SUMMARY

- Impact:
 - Through the transfer of existing technological advancements in materials, manufacturing processes, and mechanical elements the existing cadre of O2/HC engines may be enhanced to provide improved reliability with reductions in manufacturing and operations cost.
 - Technologies that will enable the family of O2/H2 expander cycle engines will provide efficient, lowcost, reliable, robust, competitive upper stage propulsion to minimize the dollar/lb. cost to orbit.
 - Low pressure liquid booster engines (O2/HC & O2/H2) and hybrid engines will provide options and new capabilities to commercial ELV's that will reduce operations cost and improve safety and reliability while mitigating environmental effects.
- User Coordination:
 - Top level commercial needs are reasonably well understood
 - Detail technology requirements, priority, schedule, and level of maturity required, are TBD
 - Implementation strategy with other Codes is TBD
 - Coordination between NASA, USAF, DOT, and the Commercial Industry is required
- Overall Technical and Programmatic Status:
 - Code-ML's Bridging program has merit and momentum
 - Code-RS/RP will participate in the September 1991 Bridging program workshop to drive out technology requirements both near term and long range.
- Major Technical / Programmatic Issues:
 - Ábsence of firm technical requirements (workshop will rectify)
 - The synergy between propulsion technology elements within related ongoing programs (ETO & NLS/ADP) need to be defined in the context of the commercial requirements
 - Lack of inter- and intra-agency strategy and plan
 - There is a need to establish the scope and bounds of the Code-R participation