FOR THE CIVIL SPACE PROGRAM

N93-71878

55-81 157472 P, 13

SPACE R&T BASE: PROPULSION

HIGH THRUST CHEMICAL

S. Gorland

6/26/91

SPACE R&T BAS PROPULSION					
OBJECTIVES PROGRAMMATIC Provide a technic tutional capabili development of systems to supp transfer and asc TECHNICAL Validated design cryogenic turbo Full 3D codes fo heat transfer. Design methodo for combustion Reduced Operat Higher energy d In-situ engine co	blogy base and ty for continued advanced spac oort launch, upp ent/descent end and analytical pump bearings r turbopump in blogies and diag stability. ions cost, Incre ensity propellar oncepts.	maintain an instl- d advances in the e propulsion per stage, orbit gines. codes for and seals. ternal flow and gnostic capabilities ease life, safety. hts.	 MILESTONES - (BASE PROGRAM) FY93 - Demonstrate metallized RP-1 performanc FY94 - Complete 3D Pump Code Development FY94 - Complete H/O Stability Model FY94 - Complete Subscale testing of Ceramic Brush seals. FY95 - Complete assessment of cryogenic magnetic bearings. FY96 - Complete combined cycle analysis. FY96 - Complete atomic hydrogen engine/feed system fabrication. FY97 - Complete generation of tribomaterials da base for turbopump bearings. 		
RESOURCES (\$M) PLANNED 3X GUIDELI FY91 3.5 3.5 FY92 3.5 3.5		3X GUIDELINE 3.5 3.5	PARTICIPANTS LEWIS RESEARCH CENTER • High Thrust Chemical		
FY93 FY94 FY95 FY96 FY97	3.6 3.8 3.9 4.1 4.3	4.8 6.1 7.4 8.2 9.2			

_

SPACE R&T BASL 'ROPULSION HIGH THRUST CHEMICAL

LUNAR AND PLANETARY PROPELLANTS

NEEDS

- Reduce cost of SEI missions
- Validate performance potential of In-situ propellants
- Demonstrate compatibility between production and propulsion systems

CHALLENGE/APPROACH

- Develop propulsion technology for engines that operate on propellants produced at the moon and Mars
- Insure engines operate with high degree of reliability and autonomy

BENEFITS

- Significantly reduce Earth launch-to-orbit mass requirements
- Increase self-sufficiency of planetary bases
- Significantly reduce trip-time for manned Mars missions

SPACE R&T BASL PROPULSION HIGH THRUST CHEMICAL

LUNAR AND PLANETARY PROPELLANTS

CURRENT PROGRAM

- Complete Carbon Monoxide/Oxygen sub-scale combustion experiments
- Identify technology issues for dual-fuel engine design
- Define Metal/oxygen monopropellant hazard classification
- Establish Metal/Oxygen monopropellant formulation

AUGMENTED PROGRAM

- Validate Sub-Scale Metal/Oxygen monopropellant combustion
- Demonstrate Carbon Monoxide/Oxygen engine at large scale
- Demonstrate capability for Large-batch production of Metal/Oxygen monopropellant

Filli

SPACE R&T BASL PROPULSION HIGH THRUST CHEMICAL

Metallized Propellants:

Metallized Propellants Offer

Higher Specific Impulse and Higher Propellant Density Safer Propellants (Gelled)

Significant Performance Increases Are Possible

Higher Delivered Payload Lower Initial Mass in LEO

Oxidizer +	Fuel	+	Metal
0 ₂	H ₂		AI
0 ₂	Hydrocarbon		AI
N204	MMH		ΑΙ

COMBUSTION

TECHNOLOGY REQUIREMENTS

- Develop Atomization, Supercritical Vaporization, Mixing Models
- Develop Damping Device Models
- Develop Diagnostics To Make Measurements In The Combustor
- Develop Performance & Stability Database

TECHNOLOGY CHALLENGES

- Designing High Performance Stable Engines
- Reducing The Amount Of Development & Qualification Testing

BENEFITS

- Reduced Engine Weight
- Increased Engine Design Margin
- Reduced Engine Development Time

SPACE R&T BASE: PROPULSION HIGH THRUST CHEMICAL

AUGMENTED PROGRAM

INJECTOR ATOMIZATION CHARACTERIZATION - Develop Supercritical Spray Combustion Model

ROCKET ENGINE COMBUSTION DIAGNOSTICS - Develop Devices To Measure Rocket Combustor Fluid Properties

NEW STABILITY RATING TECHNIQUES

- Develop High Energy Frequency Controlled Technique

PERFORMANCE & STABILITY DATABASE
- Create Standardized Reporting Format & Database

INTEGRATED BAFFLE/CAVITY MODEL - Develop Hub Baffle & Baffle/Cavity Interaction Model

CURRENT PROGRAM

SHEAR COAXIAL INJECTOR ATOMIZATION CHARACTERIZATION

- Compare Cold Flow & Hot Fire Atomization Measurements
- Verify Existing Models & Develop New Model If Appropriate

INJECTOR/CHAMBER FREQUENCY COUPLING INVESTIGATION

- Investigate LOX Tube Resonance Coupling Instability
- Create Validation Database For Model & CFD Code Development

SPACE R&T BASL ROPULSION HIGH THRUST CHEMICAL

l

TURBOMACHINERY CODES/TOOLS

NEEDS

- Model secondary flows in the turbomachinery of liquid propellant rocket engines.
- Integrate these models into current design techniques

CHALLENGE/APPROACH

- Reduce the prohibitive CPU time of numerical simulation
- Use approximation techniques until the availability of massively parallel processing

BENEFITS

- Improved turbomachinery reliability, performance and life
- Decreased time and cost of development

TURBOMACHINERY CODES/TOOLS

CURRENT PROGRAM

 Develop alternative approaches to numerically simulate 3D, unsteady viscous flow in space turbopumps to better predict aerothermal loads and component efficiencies

AUGMENTED PROGRAM

- Develop parallel processing capability for turbine design
- Develop deep throttling capability for space turbopumps
- Complete unsteady model for analysis of complete pump stage
- Verify aerodynamic performance for unique, space propulsion turbine blades

SPACE CHEMICAL PROPULSION PROGRAM Advanced Expander Test Bed (AETB) Hydrogen Turbine (First Stage)

Pratt & Whitney SSME HPFTP Second Vane Suction Side Effect of First Blade Leakage Vortex on Second Vane Flow

SPACE R&T BASE TOPULSION HIGH THRUST CHEMICAL

BEARINGS

TECHNOLOGY NEEDS:

- Validated design codes and methodologies
- Advanced materials and coatings
- Improved bearing and bearing damper design
- Improved thermohydrodynamic models

TECHNOLOGY CHALLENGES:

- Measure complete bearing fluid mechanic and thermal properties to thoroughly validate codes
- Standardize measurement techniques to determine bearing dynamic coefficients
- Identify propellant compatible and wear resistant materials
- Develop bearing designs tolerant to wide operating ranges and pump transients

TECHNOLOGY BENEFITS:

- Longer Life: Increased reliability, improved maintainability, multimission capability
- Improved Performance: Higher speeds, greater stiffness & damping, improved stability

SPACE R&T BAS. ROPULSION HIGH THRUST HEMICAL

BEARINGS

CURRENT PROGRAM

- Experimental testing of LH2 Foil Bearings
- Development of Foil Bearing design and performance prediction code
- Development of dynamic coefficients measurement technique
- Development of hydrostatic bearing steady state and dynamic characteristics code
- Flow visualization experiments of fluid film bearings for code validation
- Experimental testing of a hybrid magnetic bearing to identify technical issues

AUGMENTED PROGRAM

- Demonstration testing of foll bearings in a turbopump
- Experimental testing of LOX foil bearings
- Development of advanced hydrodynamic, hydrostatic and hybrid bearing concepts
- Experimental testing of fluid film bearings to validate codes
- Development of magnetic and superconducting magnetic bearing technology
- Demonstration of magnetic bearings in a turbopump
- Advancement of cryogenic fluid flow and thermal fundamentals to model bearing thermohydrodynamics (turbulence modeling, two-phase flow, cavitation, Inertia)
- Establishment of tribomaterials design data base and methodology

- Space Basing capability due to improved reliability and maintainability
- Increased payload by reducing purge gases needed
- Increased component efficiency
- Improved reliability and maintainability

TURBOPUMP SEALS TECHNOLOGY

CURRENT PROGRAM

- BRUSH SEALS FOR CRYOGENIC APPLICATIONS (IN-HOUSE) FABRICATION INITIATED FOR TESTER MODS.
- BRUSH SEALS FOR HIGH TEMPERATURE APPLICATIONS (IN-HOUSE) ACQUIRED TEST RIG FROM THE AIR FORCE.
- NUMERICAL, ANALYTICAL, EXPERIMENTAL STUDY OF FLUID DYNAMIC FORCES IN SEALS (MECHANICAL TECHNOLOGY, INC.) THREE INDUSTRIAL CODES READY FOR USER EVALUATION

PROPOSED AUGMENTATION

- DEFINE AND EXPERIMENTALLY VALIDATE CERAMIC BRUSH SEALS
- EXPERIMENTALLY VALIDATE ANALYSIS AND DESIGN CODE FOR 2-PHASE
 CRYOGENIC SEALS
- DESIGN AND DEMONSTRATE ACTIVELY-CONTROLLED OR "SMART" SEALS FOR AEROSPACE APPLICATIONS AND DEVELOP THE NECESSARY ANALYSIS AND DESIGN TOOLS

A TYPICAL BRUSH SEAL

PR5-12

t

SUMMARY

TECHNICAL CHALLENGE

- Long life turbopump components.
- Improved stability and performance of combustion devices.
- Reduced launch mass and cost, enabling SEI missions.

APPROACH

- Validated models, codes and algorithms for component design and analysis.
- Develop benchmark data for supercritical spray dynamics.
- Evaluate advanced turbomachinery sub-components (seals and bearings) design concepts.
- System and cycle analysis for design optimization.
- Fundamental combustion research and material characterization.

PAYOFF

- Improved life, durability, performance and safety in the evolution of high thrust chemical propulsion systems, e.g., SSME and liquid rocket boosters, through advanced concepts and methodologies.
- Reduce SEI costs.

RELATIONSHIP TO FOCUSED ACTIVITIES AND OTHER PROGRAMS

Develop fundamental technologies in direct support of earth-to-orbit, orbit transfer and upper stage propulsion programs. Efforts are coordinated with other Centers and DOD as appropriate.

TECHNOLOGY CONTRIBUTIONS

- Expertise and technology in turbomachinery code development utilized by ATD and NLS designers.
- Combustion stability methodology applied to MSFC TTB and RCS thrusters at JSC.