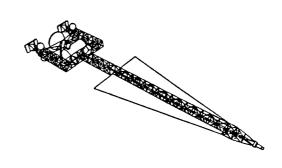
Integrated Technology Plan for the Civil Space Program

512-31 N93-777885

1-40


€.

FOCUSED TECHNOLOGY: NUCLEAR PROPULSION

Nuclear Thermal Propulsion

Nuclear Electric Propulsion

JUNE 27th, 1991 Washington, D.C.

OVERVIEW)

Thomas J. Miller
Head, Nuclear Propulsion Office
NASA Lewis Research Center

FOCUSED TECHNOLOGY: NUCLEAR PROPULSION SUMMARY

IMPACT:

- Nuclear Propulsion Enables and/or Enhances Space Exploration Missions

Enables: Enhances:

Nuclear Electric Propulsion (NEP) Robotic Science Missions Lunar & Mars Cargo, & Mars

Piloted Space Exploration

Nuclear Thermal Propulsion (NTP)

Mars Piloted

Lunar & Mars Cargo, Lunar Piloted & Robotic Science Space Exploration

USER COORDINATION:

- Exploration Studies Identify Nuclear Propulsion as a Key Technology

- OAET/RZ - Provide Performance Predictions for NASA Studies

- OSSA Study on NEP for Robotic Science Missions

- DOE, DoD & NASA Included on Steering Committee (also Astronaut Office)

TECHNICAL REVIEWS:

- Interagency Design Review Teams will Periodically Review Technical Progress

OVERALL TECHNICAL AND PROGRAMMATIC STATUS:

- High Priority Technology Areas Identified (some efforts initiated)
- Budget Deliberations Continue
- Single Multi Agency Plan Defined for FY92 Implementation

MAJOR TECHNICAL/PROGRAMMATIC ISSUES:

- Agency/Department Roles
- Funding to Initiate Technical Efforts
- Projected Budget Does Not Support Schedules

Nuclear Thermal Propulsion

PERFORMANCE OBJECTIVES

PARAMETER	STATE-OF-THE ART	OBJECTIVE
THRUST (Lbf)	75K (NERVA)	75K-125K/Engine
	250K (PHOEBUS)	(May shorter multiple orginas)
SPECIFIC IMPULSE (900)		≥ 925
CHAMBER PRESSURE	450	500 - 1000
EXHAUST TEMP. (°K)	2300-2500	≥ 2,700 (or Approp. Solety & Reliability Harging)
POWER (MWt)	1100 (NERVA)	≥ 1,600
	4,200 (PHOEBUS)	1.0
LIFETIME (Hrs) Single Burn	1.0	4.5 (31 Montan ma)
Cumulative	15	2.00 LEVE
REUSABILITY (No. Missions)	1	Control of the Contro

CHALLENGES

- · High Temperature Fuel and Materials
- · Hot Hydrogen Environment
- · Test Facilities
- Safety
- · Environmental Impact Compliance
- · Concept Development

MISSION BENEFITS

- Short Transit Time Missions are Enabled
- Reduced IMLEO (~ 1/2 of Chemical)
- · Crew Safety Enhanced
- · Wider Launch Windows
- More Mars Opportunities
- · High Thrust Available
- · Aerobrake Not Required

Nuclear Electric Propulsion

PE	RFORMANCE O	BJECTIVES		
PARAMETER	STATE-OF-	THE ART	OBJECTI	VE
POWER	SP-100			
POWER LEVEL (MWe)	0.1		≥10.0	
SPECIFIC MASS (Kg/KWe)	30		s 10	
PROPULSION	ION	MPD	ION	MPD
SPECIFIC IMPULSE (sec)	2000-9000	1000-5000	2000-9000	1000-7000
EFFICIENCY	0.7-0.8	0.3	0.7-0.8	>0.5
POWER LEVEL (MWe)	0.01-0.03	0.01-0.5	1 - 2	1 - 5
LIFETIME (Hrs)	10,000	7	10,000	≥ 2000
PMAD				
EFFICIENCY	0.90	1	0.95	5
SPECIFIC MASS (Kg/KWe)	4		≤ 2.5	
REJECTION TEMP. (*K)	400		500	

CHALLENGES

- · Long Operational Lifetime
- · High Temperature Reactors, Turbines, Radiators
- · High Fuel Burn-up Reactor Fuels, Designs
- · Efficient, High Temperature Power Conditioning
- · High Efficiency, Long Life Thrusters
- Environmental Impact Compliance
- Concept Development

MISSION BENEFITS

- · Low Resupply Mass
- · Availability of Onboard Power
- Reduced IMLEO Sensitivity w/Mission Opportunity
- Broad Launch Windows
- Commonality with Surface Nuclear Power
- Aerobrake Not Required

TRANSPORTATION TECHNOLOGY SPACE TRANSPORTATION

Nuclear Thermal Propulsion

OBJECTIVES

-- Programmatic

Develop propulsion technologies capable of fulfilling requirements, such as performance, long life, and multiple starts, for future piloted and cargo missions to Mars and the Moon, and robotic precursor missions.

Technical

Fuel Temperature **Fuel Lifetime**

2700-3100K (1995)

4.5 hrs (cyclic)

Man-Rated **Ground Testing**

Autonomous Robotic Operation Full System (TRL-6) by 2006

SCHEDULE

1992 Lab-Scale Demonstration of 2700K reactor fuel

1994 Complete conceptual designs of selected concepts for piloted Mars mission

1996 Nuclear Furnace Facility Complete

1998 Select NTR Concept(s) for Systems Testing

1999 Systems Facility Construction Complete

2002 First NTR Reactor Test Complete

2006 Full System Ground Testing Complete Verifying Technology Readiness Level 6 (TRL-6) for NTR

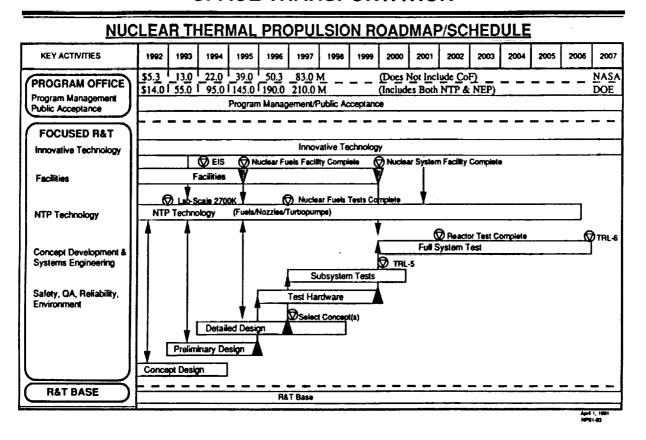
RESOURCES*

NASA**	DOE.
1991 \$00.4M	0044034
1992 \$05.0M	\$014.0M
1993 \$13.0M	\$055.0M
1994 \$22.0M	\$095.0M
1995 \$39.0M	\$145.0M
1996 \$50.3M	\$190.0M
1997 \$83.0M	\$210.0M

^{*} DOE current estimate for both NTP & NEP

PARTICIPANTS

Lewis Research Center Lead Center


DOE Laboratories INEL, LANL, SNL, ORNL, ANL, BNL...

Marshall Space Flight Center **Participating Center**

Johnson Space Center Supporting Center

^{**} NASA dollars do not include CoF

TRANSPORTATION TECHNOLOGY **SPACE TRANSPORTATION**

TRANSPORTATION TECHNOLOGY SPACE TRANSPORTATION

Nuclear Electric Propulsion

OBJECTIVES

Programmatic

Develop propulsion technologies capable of fulfilling requirements, such as performance, long life, and multiple starts, for future piloted and cargo missions to Mars and the Moon, and robotic precursor missions.

Technical

Power

> 10MWe

Specific Mass

< 10kg/kwe by 2006

< 5 kg/kwe by TBD

Lifetime

3-10 years

- SCHEDULE 1993 Comple Complete 500 kW electric propulsion testing facility and designs for high power (MW class) electric thrusters
- 1994 Complete candidate systems study for reactor power source, power conversion, power processing, thruster and control concepts
- Complete breadboard demo of megawatt class electric thruster technology
- Verify 1000 hours of life for 500 kW electric propulsion 2000 system
- Complete ground tests to verify megawatt class power/propulsion system
- Verify TRL-6 through flight test of 500 kW subscale NEP vehicle

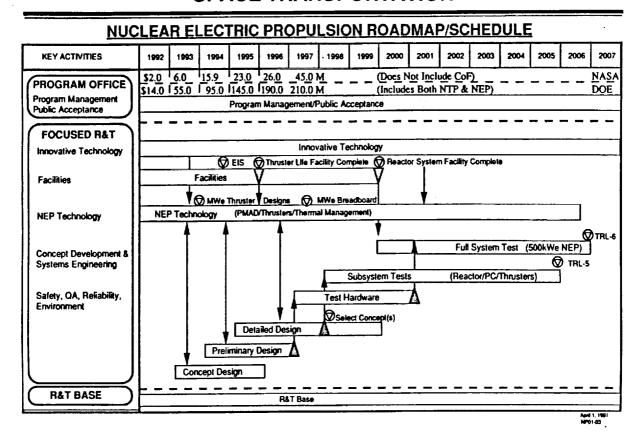
RESOURCES

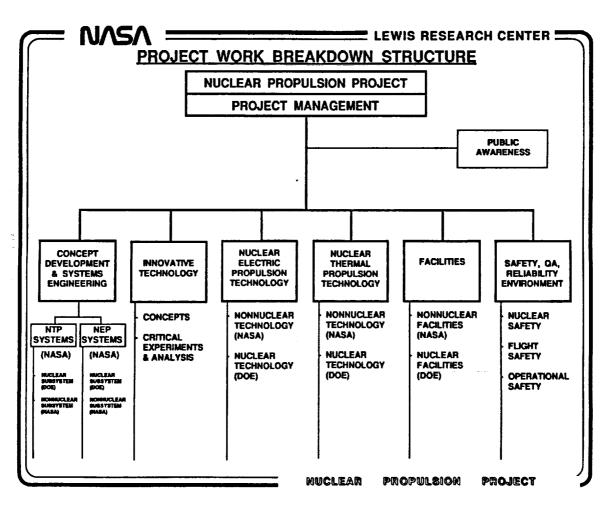
NASA**	DOE.
1991 -	
1992 \$02.0M	\$014.0M
1993 \$06.0M	\$055.0M
1994 \$15.9M	\$095.0M
1995 \$23.0M	\$145.0M
1996 \$26.0M	\$190.0M
1997 \$45.0M	\$210.0M

^{*}DOE current estimate for both NTP & NEP

PARTICIPANTS

Lewis Research Center Lead Center


Jet Propulsion Laboratory Participating Center

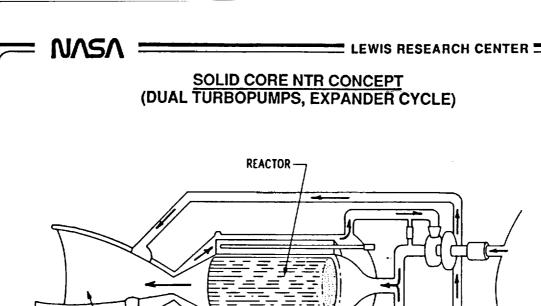

Johnson Space Center Supporting Center

DOE Laboratories INEL, LANL, SNL, ORNL, ANL, BNL...

^{**} NASA dollars do not include CoF

SPACE TRANSPORTATION

NUCLEAR THERMAL ROCKET (NTR) PROPULSION


Dr. Stanley K. Borowski
NASA Lewis Research Center

NASA

LEWIS RESEARCH CENTER

OUTLINE OF PRESENTATION

- RATIONALE FOR NASA DEVELOPMENT OF NTR PROPULSION
- NTR MISSION APPLICATIONS AND BENEFITS
 - LUNAR MISSION BENEFITS
 - MARS MISSION BENEFITS
- ROVER/NERVA PROGRAM ACCOMPLISHMENTS
- NTR TECHNOLOGY NEEDS
- TECHNOLOGY CHALLENGES/APPROACHES FOR RESOLUTION
- "STATE-OF-THE-ART" ASSESSMENT
- TECHNOLOGY PERFORMANCE OBJECTIVES
- SYNERGY WITH OTHER TECHNOLOGY AREAS
- SUMMARY
- SUPPLEMENTAL INFORMATION

NTR: A SPACE PROPULSION DEVISE WHICH USES HEAT FROM A NUCLEAR FISSION REACTOR TO RAISE THE TEMPERATURE OF A PROPELLANT (LH₂) AND THEN EXPANDS IT THROUGH A NOZZLE TO PROVIDE THRUST.

REFLECTOR -

___sp/ : Exploration initiative office

CONTROL DRUM

NOZZLE

LEWIS RESEAROR CENTER

PUMPS -TURBINES -

WHY IS NTR PROPULSION NECESSARY? -SYNTHESIS GROUP OBSERVATIONS-

- SAFETY TO CREW GREATLY ENHANCED
 - SHORTER TRIP TIMES REDUCES RADIATION EXPOSURES AND PSYCHOLOGICAL STRESSES
 - FEWER MOVING PARTS AND ELEMENTS INCREASE RELIABILITY, REDUCE RISK
 - WIDER LAUNCH WINDOWS LEAVING EARTH AND FOR MARS RETURN
 - MORE OPPORTUNITIES TO GO TO MARS, ALL TWO YEAR INTERVALS FEASIBLE
 - LESS ASSEMBLY OF MARS SPACECRAFT NEEDED IN EARTH ORRIT
- REDUCED MISSION COSTS
 - MASS IN LOW EARTH ORBIT GREATLY REDUCED (ONE-THIRD TO ONE-HALF) WITH A CORRESPONDING REDUCTION IN MISSION COSTS
 - FLEXIBILITY IN SCHEDULES

LEWIS RESEARCH CENTER

NUCLEAR THERMAL ROCKET MISSION APPLICATIONS

- NTR TECHNOLOGY HAS A WIDE RANGE OF MISSION APPLICATIONS: PROBES, OTVs, CARGO AND PILOTED VEHICLES
- "1# GENERATION" NTR FLIGHT ENGINE CAN SATISFY ENTIRE SPECTRUM OF SEI MISSIONS -ADVANCED DESIGNS DESIRABLE BUT NOT REQUIRED FOR CURRENT MISSIONS OF INTEREST

LUNAR TRANSFER VEHICLES

CARGO

- SEP (MULTI 100kWe MWe CLASS)
- NEP (MWe CLASS, α≥ 15 kg/kWe)
- SCINTR (\$ 75 kibl "NERVA" CLASS)
- "DUAL MODE" SC/NTR (≤ 75 klb! & MULTI - 10 kW_B CLASS)

PILOTED

- SC/NTR (≤ 75 klbf)
- "DUAL MODE" SC/NTR (≤ 75 klbf & MULTI - 10 kW_B CLASS)

MARS TRANSFER VEHICLES

CARGO

- SEP/NEP (≥ 5 MWe, α ≤ 15 kg/kWe)
- SC/NTR (≥ 75 klbf)
- "DUAL MODE" SC/NTR (~ 75 klbf & 10's kWe-MWe)

PILOTED

- NEP/SEP (\geq 10 MW₈, $\alpha \leq$ 10 kg/kW₈)
- SC/NTR (≥ 75 klbf)
- "DUAL MODE" SC/NTR (~ 75 klbf 250 klbf & ~ 10's kWe-MWe FOR EP)
- COMBINED HIGH & LOW THRUST CONCEPTS

"QUICK PILOTED TRIPS" (≤ 1 YEAR)

- SC/NTR (SPLIT/SPRINT MISSIONS)
- "DUAL MODE" SC/NTR + MMWe EP
- GC/NTR
- "SUPER" NEP (10's MW_e, α ≤ 5 kg/kW_e)

A LEAR PROPULSION PROJECT

NASA

LEWIS RESEARCH CENTER

RATIONALE FOR NASA DEVELOPMENT OF NTR PROPULSION

- THE ROVER/NERVA PROGRAMS ESTABLISHED A SIGNIFICANT DATA BASE ON SC/NTRs
 - -1.4 B\$ INVESTMENT IN 1960-1970 TIME FRAME EQUIVALENT TO >9.5 B\$ TODAY
- THE SC/NTR CONCEPT HAS BEEN SUCCESSFULLY GROUND TESTED (TO TRL 6) AT THE POWER AND THRUST LEVELS, AND HYDROGEN EXHAUST TEMPERATURES/EQUIVALENT SPECIFIC IMPULSES SUFFICIENT TO PERFORM A 434 DAY 2016 MARS MISSION IN "REUSE" MODE I.e., WITH PROPULSIVE RETURN OF ENTIRE VEHICLE TO LEO
 - -A STATE-OF-THE-ART GRAPHITE CORE NTR (AT 1000 psi, ϵ = 500:1) OPERATING AT 2360 K/850 s HAS IMLEO \approx 725 t, 102 t LIGHTER THAN REFERENCE CHEWAB VEHICLE WITH ECCV RETURN TO EARTH
- NTR CAN PROVIDE REDUCTIONS IN TRANSIT TIMES ACROSS THE 15 YEAR CYCLE.

 MAGNITUDE WILL DEPEND ON TRAJECTORY TYPE, PARTICULAR OPPORTUNITY, MISSION MODE, AND IN-PLACE INFRASTRUCTURE
 - WITH MODEST TECHNOLOGY ADVANCES BEYOND 72 VINTAGE NERVA (COMPOSITE FUEL DELIVERING 925 s), A 1 YEAR ROUND-TRIP MARS MISSION (2016) IS POSSIBLE, IN SPLIT/SPRINT MODE, WITH ACCEPTABLE TOTAL IMLEO (<1000 t) FOR BOTH PILOTED AND CARGO VEHICLES

NTR TECHNOLOGY OFFERS POTENTIAL FOR SIGNIFICANT EVOLUTIONARY GROWTH

- SOLID CORE: GRAPHITE (2500 K) → COMPOSITE (2700 K) → CARBIDES (>3000 K)
- SOLID CORE --- LIQUID CORE --- GAS CORE

LEWIS RESEARCH CENTER

PERFORMANCE CHARACTERISTICS OF NTR SYSTEMS

PARAMETER

GOODNESS

IMPORTANCE

SPECIFIC IMPULSE (SECONDS)

MODERATE → HIGH

IMPROVED FUEL

EFFICIENCY

SPECIFIC MASS (RECIPROCAL OF SPECIFIC POWER, LOW

ENGINE HAS GOOD

POWER PRODUCING

CAPABILITY

kg/kWj)

ENGINE THRUST/WEIGHT

MODERATE → HIGH

OPERATIONAL FLEXIBILITY

si e exploration initiative offic

IVIDI

LUNAR NTR APPLICATIONS

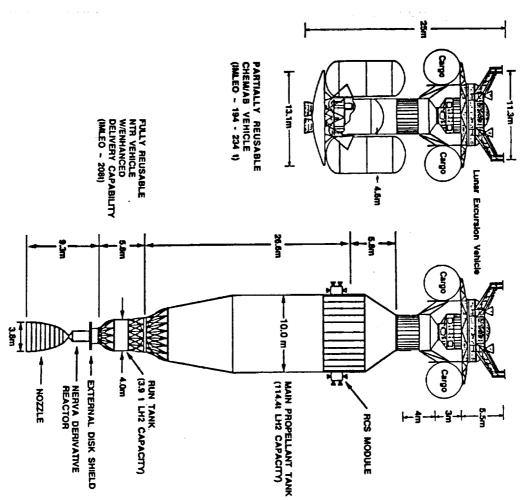
Space exploration initiative office

WHY NTR FOR LUNAR MISSIONS?

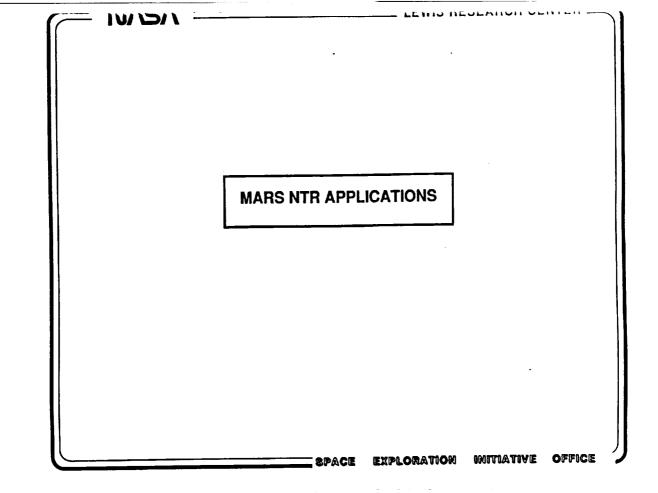
Potential Performance Benefits

- High Isp and T/We allows both piloted and cargo missions
- Enables single stage, fully reusable lunar transfer vehicle
- Enables more demanding mission profiles (e.g., "courier" and polar orbit missions with significant plane change)
- Reduces IMLEO/fewer Earth to orbit launches

Early Operations Experience


- NTR vehicle assembly
- Refueling, rendezvous, and docking in radiation environment
- Disposal of "end-of-life" engines

Technology Test Bed and "Dress Rehearsal" for Mars

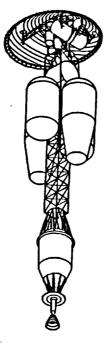

- Interplanetary mission "in miniature" requiring major impulsive maneuvers and multiple engine restarts
- Reduced performance requirements: ΔV , flight time/thrust time
- Operations in "nearby" space environment
- "Free Return" trajectory available without penalty

NUCLEAR PROPULSION PROJECT

LUNAR TRANSPORTATION VEHICLE SIZE COMPARISON

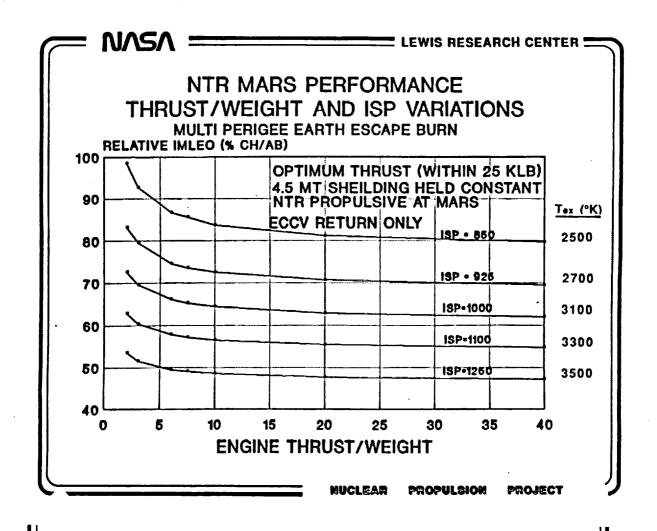
PR12-10

Nuclear Thermal A copulsion Vehicle Opposition/Swingby Mission Mass Statement


NERVA: Isp = 925 8

T/W_{eng} = 4.0

ADV. NTR: $I_{SP} = 1050 \text{ s}$ $T/W_{eng} = 20.0$


Crew of 4, 30-day stay; Inbound Venus swingby; Elliptic parking orbit at Mars, 250 km x 24 hrs; Apsidal rotation penalty optimized; 25 t. surface cargo; 925 lsp;

Reusable return

(SOURCE: MSFC)

2016 opposition with Venus swingby 434 day mission time				
Element	NERVA *	Advanced NTR		
MEV desc aerobrake	7000	7000		
MEV ascent stage	22464	22464		
MEV descent stage	18659	18659		
MEV surface cargo	25000	<u>25000</u>		
MEV total	73118	73118		
MTV crew hab module 'dry'	28531	28531		
MTV consumables & resupply	5408	5408		
MTV science	1000	1000		
MTV crew habitat system tol	34939	34939		
MTV frame, struts & RCS inert wt	4808	4808		
Reactor/engine weight	9684	1701		
Radiation shadow shield weight	4500	4500		
EOC propellant (dV= 1799 m/s)	17598	13075		
TEI propellant (dV= 4230 m/s)	61951	44301		
EOC/TEI common tank wt (1)	13358	10501		
MOC propellant (dV= 2830 m/s)	101810	75163		
MOC tanks (2)	19128	15696		
TMI propellant (dV=4105 m/s)	237850	165190		
TMI tanks (2)	36636	27503		
ECCV	7000	7000		
Cargo to Mars orbit only	0	0		
IMLEO	622380	477495		

NTR TECHNOLOGY

- PAST ACCOMPLISHMENTS
- "STATE-OF-THE-ART" PROJECTIONS
- TECHNOLOGY CHALLENGES AND NEEDS

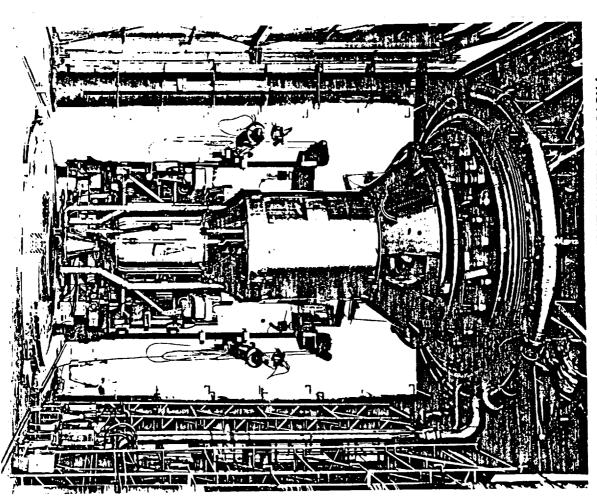
ROVER/NERVA PROGRAM SUMMARY

- 20 REACTORS DESIGNED, BUILT, AND TESTED BETWEEN 1955 AND 1973 AT A COST OF APPROXIMATELY \$1.4 BILLION. (FIRST REACTOR TEST: KIWI-A, JULY 1959)
- DEMONSTRATED PERFORMANCE

POWER (MWI)
THRUST (kibf)
PEAK/EXIT
FUEL TEMPS. (K)
EQUIV. SPECIFIC IMPULSE(S)
BURN ENDURANCE
- NRX-A6

-55 (NRX SERIES) - 210 (PHOEBUS -2A)
-2750/2550 (PEWEE)
-850 (PEWEE)

~1100 (NRX SERIES) - 4100 (PHOEBUS -2A)


- NUCLEAR FURNACE START/STOP 1-2 HOURS
62 MINUTES AT 1125 MWt (SINGLE BURN)
109 MINUTES ACCUMULATED (4 TESTS) AT 44 MWt
28 AUTO START-UPS/SHUTDOWNS WITH XE

- BROAD AND DEEP DATABASE ACHIEVED/USED IN PRELIMINARY NERVA "FLIGHT ENGINE" DESIGN (1972)
- ANTICIPATED PERFORMANCE
 BURN ENDURANCE

SPECIFIC IMPULSE

~10 HOURS (DEMONSTRATED IN ELECTRIC FURNACE TESTS AT WESTINGHOUSE)
UP TO 925s (COMPOSITE)/UP TO 1020s (CARBIDE FUELS)

18/ :e exploration initiative offic

PROTOTYPE NERVA ENGINE - THE NRX/XE -

RELATIVE PERFORMANCE CHARACTERISTICS FOR 75klbf CLASS SC/NTR SYSTEMS

<u>PARAMETERS</u>	72 NERVA	NERVA DERIVATIVES			PBR*
ENGINE CYCLE	HOT BLEED/ TOPPING	TOPPING (EXPANDER)			HOT BLEED
FUEL FORM	GRAPHITE	GRAPHITE	COMPOSITE	CARBIDE	UC2/ZrC KERNEL
EXHAUST TEMP. (K)	2,350-2,500	2,500	2,700	3,100	3,200
CHAMBER PRESS. (psia)	450	1,000	1,000	1,000	1,000
NOZZLE EXP. RATIO	100:1	500:1	500:1	500:1	100:1
SPECIFIC IMPULSE (s)	825-850/ 845-870	885	925	1,020	971
ENGINE WEIGHT++(kg)	11,250	8,000	8,816	9,313	1702
ENGINE THRUST/ WEIGHT (W/INT. SHIELD)	3.0	4.3	3.9	3.7	20
TECHNOLOGY READINESS LEVEL**	6.	5*	4-5*	3-4*	2*

^{*} PERFORMANCE PARAMETERS/TECHNOLOGY MATURITY ESTIMATES PRESENTED AT THE NTP WORKSHOP HELD AT NASA/Lerc, JULY 10-12, 1990

NOTE: THRUST-TO-WEIGHT RATIOS FOR NERVANDR SYSTEMS - 5-6 AT 250 kibf LEVEL

ESPACE EXPLORATION INITIATIVE OFFICE

- IWWI --

NON-NUCLEAR ENGINE COMPONENTS - PERFORMANCE COMPARISON -SSME vs. '72 NERVA vs. "STATE-OF-THE-ART" COMPOSITE NTR-

- HYDROGEN TURBOPUMPS: AN EXTENSIVE DATABASE DEVELOPED SINCE NERVA SHOULD ALLOW SIGNIFICANT REDUCTIONS IN WEIGHT, INCREASES IN RELIABILITY AND REDUCED DEVELOPMENT TIME FOR NTR APPLICATIONS
 - SSME:

72.6 KG/S @ 7040 PSI, 350 KG TOTAL MASS

- NERVA:
- ~ 40 KG/S @ 1360 PSI, 243 KG TOTAL MASS
- "SOTA" NTR:
- ~ 37 KG/S @ 1627 PSI, 304 KG TOTAL MASS
- NOZZLE DESIGN AND COOLING: TYPICAL NOZZLE DESIGNS NOW CAPABLE OF ~ 98% THEORETICAL EFFICIENCY WITH PERFORMANCE SIGNIFICANTLY GREATER THAN THAT USED ON NERVA
 - SSME:

 $T_{\rm ex} \sim 3116^{\circ} \rm K$, Pc ~ 3150 PSI, HEAT FLUX CAPABILITY ~ 16.4 KW/CM² (HYDROGEN REGENERATIVE COOLING), NOZZLE MASS ~ 600 KG

- NERVA:

 $T_{\rm ex}\sim 2350\text{-}2500^{\circ}\text{K}, \ Pc \sim \!\!\!450 \ PSI, \ HEAT FLUX CAPABILITY \sim 4.1 \ KW/CM^2, NOZZLE MASS \sim 1050 \ KG (UNCOOLED GRAPHITE EXTENSION FROM$

~ 25:1 TO 100:1)

- "SOTA" NTR:

 $T_{\rm ex}$ ~ 2500-3100°K, Pc ~ 1000 PSI, HEAT FLUX CAPABILITY ~ 6.5 KW/CM², NÖZZLE MASS ~ 440 KG (UNCOOLED CARBON/CARBON EXTENSION

FROM ~ 150:1 TO 500:1)

NUCLEAR PROPULSION PROJECT

The second secon

⁺⁺ W/O EXTERNAL DISK SHIELD

^{**} TRL = 6 (PRELUDE TO FLIGHT CONCEPT), TRL = 2 (CONCEPT FORMULATION)

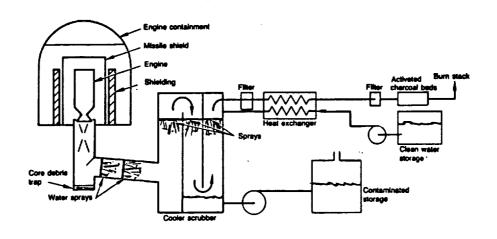
ELEMENT: NUCLEAR THERMAL PROPULSION

I. TECHNOLOGY NEEDS: TO DEVELOP THE TECHNOLOGIES NECESSARY FOR FLIGHT QUALIFIED NUCLEAR THERMAL PROPULSION SYSTEMS TO SUPPORT SEI MISSIONS

TARGETS: • HIGH PERFORMANCE (HIGH T_{ex} AND I_{sp})

- REDUCED IMLEO (LESS PROPELLANT REQUIRED)
- HIGHER PAYLOADS
- REDUCED TRANSIT TIMES
- MISSION FLEXIBILITY

for given propellent loading


- SAFE, RELIABLE OPERATIONS
 - AUTONOMOUS ROBOTIC OPERATIONS
 - MAN-RATED SYSTEMS
 - IMPROVED RETURN-TO-EARTH OPTIONS
- RADIATION-HARDENED EQUIPMENT
 - ELECTRONICS
 - TURBOPUMPS, VALVES, ...
 - NOZZLES
 - SHIELDING
- FULL SYSTEM GROUND TESTING
 - TECHNOLOGY VALIDATION FLIGHT QUALIFICATION

"UCLEAR PROPULSION PROJECT

EFFLUENT TREATMENT SYSTEMS

SCHEMATIC OF TEST CELL SHOWING SYSTEMS FOR REMOVING SOLUBLE FISSION PRODUCTS, PARTICULATES, AND NOBLE GAS FROM THE ENGINE EXHAUST

SOURCE: INEL

ELEMENT: NUCLEAR THERMAL PROPULSION

II. TECHNOLOGY CHALLENGES/APPROACHES

CHALLENGE

APPROACH

- HIGH TEMPERATURE REACTOR FUELS
- FABRICATION/PRODUCTION DEVELOPMENT BENCH SCALE TESTING ELECTRIC HEATING TESTS NUCLEAR FURNACE TESTING REACTOR DESIGN/TEST
- HIGH PERFORMANCE NOZZLES
- REGENERATIVELY-COOLED SECTION DESIGN/TEST

FULL ENGINE SYSTEM TESTING

UNCOOLED SKIRT (TO 500:1)

IMPROVED TURBOPUMPS

- HIGH PRESSURE
 (EXPANDER/TOPPING CYCLE)
 IMPROVED MATERIALS
 FULL ENGINE SYSTEM TESTING
- IMPROVED REACTOR HEAT TRANSFER
- CONCEPTUAL DESIGNS/TESTING PRELIMINARY DESIGNS/TESTING DETAILED DESIGN/ELEMENT TESTS REACTOR TESTS
 FULL ENGINE SYSTEM TESTS
- SAFE, RELIABLE AUTONOMOUS OPERATION
- INSTRUMENTATION, CONTROLS DEVELOPMENT/TESTS FULL ENGINE SYSTEM TESTS

NUCLEAR PROPULSION PROJECT

ELEMENT: NUCLEAR THERMAL PROPULSION

III. "STATE-OF-THE-ART" ASSESSMENT

• REACTOR FUELS:

- FULL SYSTEM TESTING TO 2500°K (850 SEC I_m) FOR FULL OPERATING LIFE AND MULTIPLE CYCLES WAS COMPLETED IN NERVA/ROVER PROGRAM (CIRCA 1970)
- COMPOSITE FUEL (2500-2900°K) TESTED IN NUCLEAR FURNACE TO 2450°K (2750°K FOR 10 HRS/60 CYCLES IN ELECTRIC FURNACE TESTS CIRCA 1972)
- BINARY CARBIDE FUEL (2900-3300°K) TESTED IN NUCLEAR FURNACE TO 2450°K, FURTHER TESTS/FUEL ELEMENT DESIGN WORK REQUIRED
- TERNARY CARBIDE FUEL (3300-3500°K) HAVE BEEN PROPOSED BUT NOT VERIFIED

· NOZZLES:

- NOZZLE TECHNOLOGY HAS IMPROVED SIGNIFICANTLY COMPARED TO NERVA DESIGNS. (E.G., SSME CAN ACCOMMODATE EXHAUST TEMPS >3100°K AND NOZZLE HEAT FLUXES 4 TIMES GREATER THAN IN NERVA)
- UNCOOLED CARBON COMPOSITE NOZZLE SKIRTS ARE USED ON SMALLER NOZZLE APPLICATIONS. MUCH ENGINEERING/ VALIDATION IS REQUIRED FOR SIZES PROPOSED

• TURBOPUMPS:

- 3000-7000 PSI SSME TURBOPUMP REPRESENT THE SOA FOR TURBOPUMP TECHNOLOGY. COMPOSITE ROTOR COMPONENTS HAVE BEEN PROPOSED, BUT NOT VALIDATED

I nuclear propulsion project

$N \wedge S \wedge =$

LEWIS RESEARCH CENTER

ELEMENT: NUCLEAR THERMAL PROPULSION

IV. TECHNOLOGY PERFORMANCE OBJECTIVES

• INNOVATIVE CONCEPTS

• TURBOPUMPS: HIGH PRESSURES (~500-1000 ATMS) REQUIRED FOR CRITI-CALITY WILL REQUIRE TECHNOLOGY ADVANCES BEYOND SSME

 CLOSED CYCLE
 ~10,000K
 1500

 GAS CORE
 3000

 MATERIALS: LIGHTWEIGHT, HIGH STRENGTH PRESSURE VESSEL MATERIALS TO IMPROVE ENGINE THRUST-TO-WEIGHT PERFORMANCE

 OPEN CYCLE
 20,000K
 3000

 GAS CORE
 5000

 NOZZLES: TRANSPIRATION-COOLED NOZZLE DESIGNS TO ENABLE HIGH-ISP OPERATION

 LIGHTWEIGHT, HIGH TEMPERATURE RA-DIATORS TO ALLOW HIGH ISP OPERA-TION AND IMPROVE ENGINE THRUST-TO-WEIGHT

AUCLEAR PI

propulsion

Project

NASA

LEWIS RESEARCH CENTER

SYNERGY WITH OTHER TECHNOLOGY AREAS

CHEMICAL ROCKET SYSTEMS
 EX: HYDROGEN TURBOPUMPS
 REGENERATIVELY-COOLED NOZZLES

• LIGHTWEIGHT, HIGH STRENGTH CRYOGENIC TANKS EX: AL/LI, COMPOSITE MATERIALS

• CRYO FLUID SYSTEMS EX: LH, STORAGE AND TRANSFER

• THERMAL PROTECTION
EX: LIGHTWEIGHT SUPER-MLI ("SUPERFLOC")
REFRIGERATION

TO REDUCE/ ELIMINATE LH2 BOILOFF

- "SLUSH HYDROGEN" TECHNOLOGY BEING PURSUED IN NASP PROGRAM CAN IMPROVE PERFORMANCE BY REDUCING TANK VOLUME AND MASS
- "DUAL MODE" NTR OPERATION LOW LEVEL POWER PRODUCTION (~ 50 kWe) FOR REFRIGERATION MAY LEAD TO MORE "ROBUST" NTR VEHICLE

FOCUSED TECHNOLOGY: NUCLEAR PROPULSION SUMMARY

IMPACT:

- Nuclear Propulsion Enables and/or Enhances Space Exploration Missions

Enables: Enhances:

Nuclear Electric Propulsion (NEP)
Robotic Science Missions
Lunar & Mars Cargo, & Mars

Piloted Space Exploration

Nuclear Thermal Propulsion (NTP)

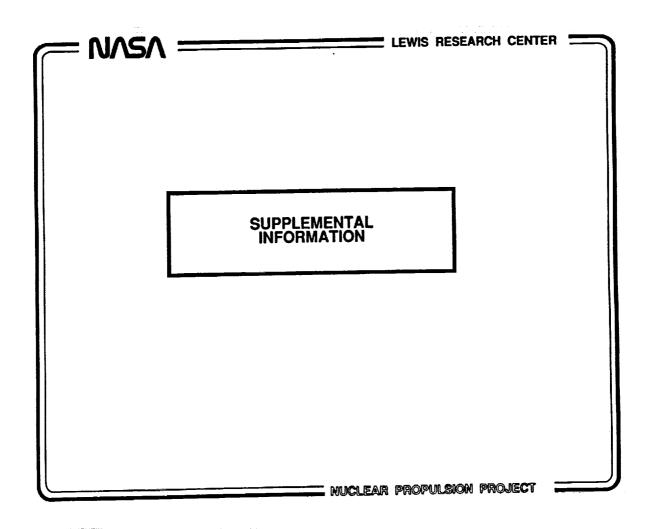
Mars Piloted

Lunar & Mars Cargo, Lunar Piloted & Robotic Science Space Exploration

USER COORDINATION:

- Exploration Studies Identify Nuclear Propulsion as a Key Technology
- OAET/RZ Provide Performance Predictions for NASA Studies
- OSSA Study on NEP for Robotic Science Missions
- DOE, DoD & NASA Included on Steering Committee (also Astronaut Office)

TECHNICAL REVIEWS:


- Interagency Design Review Teams will Periodically Review Technical Progress

OVERALL TECHNICAL AND PROGRAMMATIC STATUS:

- High Priority Technology Areas Identified (some efforts initiated)
- Budget Deliberations Continue
- Single Multi Agency Plan Defined for FY92 Implementation

MAJOR TECHNICAL/PROGRAMMATIC ISSUES:

- Agency/Department Roles
- Funding to Initiate Technical Efforts
- Projected Budget Does Not Support Schedules

NASA =

LEWIS RESEARCH CENTER

NUCLEAR THERMAL PROPULSION WORKSHOP RESULTS

 17 NTR CONCEPTS WERE PRESENTED FOR EVALUATION AT THE NTP WORKSHOP SPONSORED BY LeRC/NASA HEADQUARTERS (JULY 10-12, 1990)

SOLID CORE

- NERVA
- NERVA-DERIVATIVE
- PARTICLE BED
- PELLET BED
- CERMET REACTOR
- WIRE CORE REACTOR
- ADVANCED DUMBO
- TUNGSTEN/H₂O REACTOR
- LOW PRESSURE CORE
- FOIL REACTOR

LIQUID CORE SYSTEMS

- LIQUID ANNULAR CORE REACTOR
- DROPLET CORE REACTOR

GAS CORE SYSTEMS

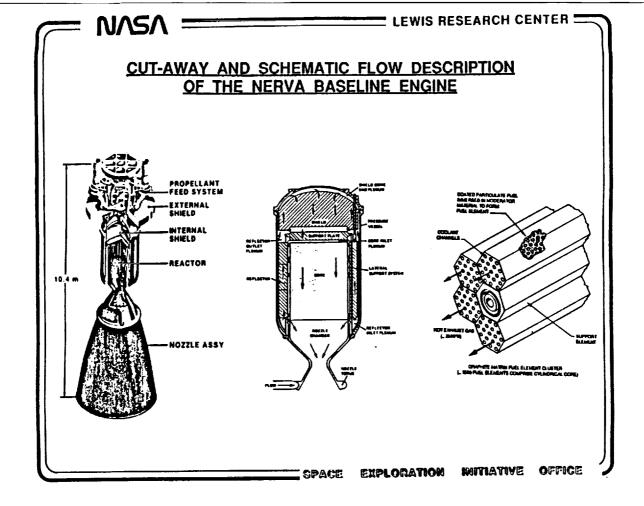
- VAPOR CORE REACTOR
- CLOSED CYCLE
 "NUCLEAR LIGHT
 BULB"
- OPEN-CYCLE
 "POROUS WALL"
 REACTOR

HYBRIDS/IN-SITU PROPELLANT CONCEPTS

- DUAL MODE NTR
- NIMF

-Space exploration in

mitiative office

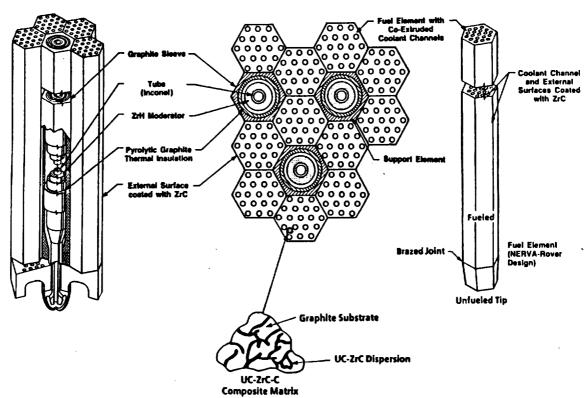

NASA

LEWIS RESEARCH CENTER

SOLID CORE NTR CONCEPTS

- ROVER/NERVA
 - PARTICLES OF COATED URANIUM CARBIDE (UC2) ARE DISPERSED IN A GRAPHITE MATRIX WITH HEXAGONALLY SHAPED FUEL ELEMENTS PRODUCED USING AN EXTRUSION PROCESS. GRAPHITE FUNCTIONS AS BOTH HEAT EXCHANGER AND MODERATOR.
 - ELEMENTS HAVE 19 AXIAL COOLANT CHANNELS COATED WITH CARBIDES OF NIOBIUM (NbC) OR ZIRCONIUM (ZrC) TO PREVENT HYDROGEN/GRAPHITE REACTION
 - FUEL ELEMENTS CLUSTERED TOGETHER TO FORM A GRAPHITE CORE WITH EACH ELEMENT PRODUCING ~ 1 TO 1.25 MWt. SIX ELEMENT CLUSTERS WERE SUPPORTED BY AN UNFUELED TIE ROD/TUBE TUBE ELEMENT.
 - HIGHER TEMPERATURE "COMPOSITE" AND "CARBIDE" FUEL ELEMENT DESIGNS TESTED IN THE NUCLEAR FURNACE TEST BED REACTOR NEAR THE PROGRAM END

8P E EXPLORATION INITIATIVE OFFICE


LEWIS RESEARCH CENTER

SOLID CORE NTR CONCEPTS (CONTINUED)

- NERVA DERIVATIVE REACTOR (NDR)
 - MIXTURE OF UC-ZrC IS BLENDED IN GRAPHITE SUBSTRATE TO FORM A COMPOSITE MATRIX WITH POTENTIAL FOR IMPROVED TEMPERATURE OPERATION (~ 2700K)
 - INCORPORATION OF ADDITIONAL ZIRCONIUM HYDRIDE (ZrH_X) MODERATOR IN "2 PASS" REGENERATIVELY COOLED TIE TUBES REDUCES CRITICAL MASS REQUIREMENT
 - ENERGY EXTRACTED FROM TIE TUBES CAN BE USED TO HEAT TURBINE DRIVE GASES IN AN EXPANDER CYCLE, REDUCE COOLDOWN PROPELLANT REQUIREMENTS, AND GENERATE ELECTRICAL POWER IN A "DUAL MODE" SYSTEM

NDR - BASED ON PROVEN NERVA/ROVER REACTORS

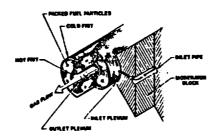
NASA

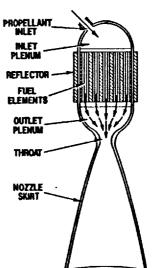
LEWIS RESEARCH CENTER

SOLID CORE NTR CONCEPTS

- PARTICLE BED REACTOR (PBR)
 - COMPACT HIGH POWER DENSITY CONCEPT PROPOSED BY BROOKHAVEN NATIONAL LABORATORY (BNL)
 - UTILIZES DIRECT COOLING OF SMALL (500-700 µm DIAMETER) COATED PARTICULATE FUEL (CPF) BY THE HYDROGEN PROPELLANT
 - THE CPF IS PACKED BETWEEN TWO CONCENTRIC POROUS CYLINDERS, CALLED "FRITS" WHICH CONFINE THE PARTICLES, BUT ALLOW COOLANT PENETRATION.
 - ANNULAR FUEL ELEMENTS ARE ARRAYED IN CYLINDRICAL MODERATOR BLOCK TO FORM PBR CORE
 - COOLANT FLOW IS RADIALLY INWARD, THROUGH THE PACKED BED AND AXIALLY OUT THE INNER ANNULAR CHANNEL
 - HIGH HEAT TRANSFER SURFACE AREA AND BED POWER DENSITIES OFFER POTENTIAL FOR SMALL, LOW MASS NTR SYSTEMS WITH HIGH THRUST-TO-WEIGHT CAPABILITY

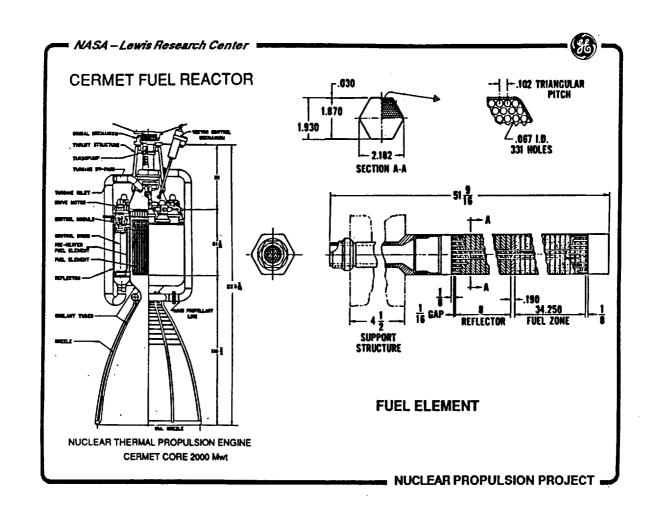
isp e exploration initiative offici


SCHEMATIC REPRESENTATION OF A PARTICLE BED REACTOR BASED ROCKET CONCEPT

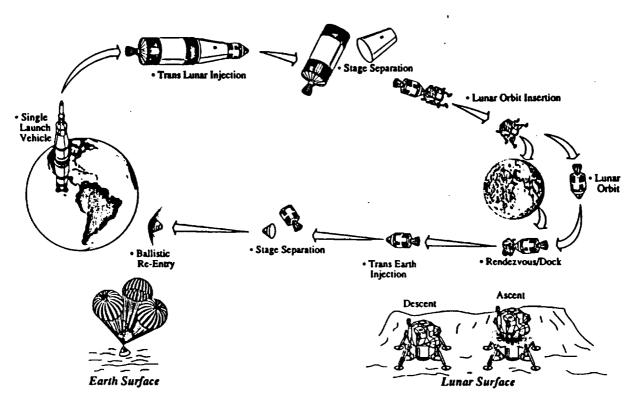

ROCKET

FUEL PARTICLE

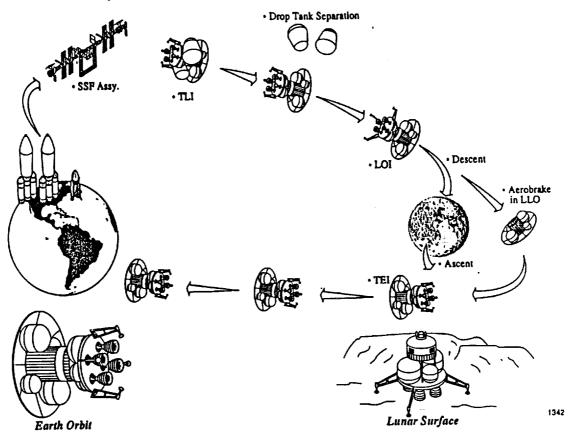
A MODERATOR BLOCK

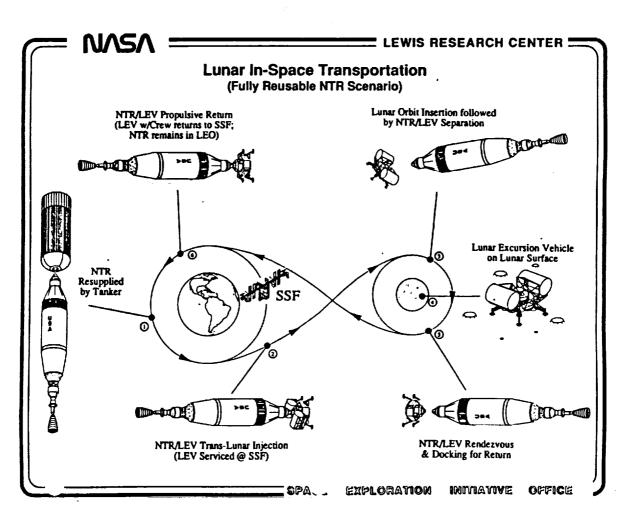

NASA

LEWIS RESEARCH CENTER


SOLID CORE NTR CONCEPTS

- CERMET REACTOR
 - TECHNOLOGY INVESTIGATED/DEVELOPED BY GE/ANL DURING 1960'S FOR THE ROVER PROJECT AND THE AIRCRAFT NUCLEAR PROPULSION ROGRAM
 - FUEL IS 60% U02/40% TUNGSTEN, HIGHLY ENRICHED IN A FAST REACTOR CONFIGURATION/~163 HEX-SHAPED FUEL ELEMENTS
 - FUEL ELEMENT IS CLAD WITH TUNGSTEN-RHENIUM PROVIDING RETENTION OF FISSION PRODUCT GASES
 - FUEL SPECIMEN TESTS CONDUCTED UP TO ~2800 K
 - SPECIFIC IMPULSE: 832 s WITH CAPABILITY IN THE 800-900 s RANGE /ENGINE THRUST-TO-WEIGHT RATIO: ≤5


" Nuclear Propulsion Project



Lunar In-Space Transportation (Apollo Mission Profile - Expendable)

Lunar In-Space Transportation (FY 90 Lunar Mission Scenario - Partially Reusable)

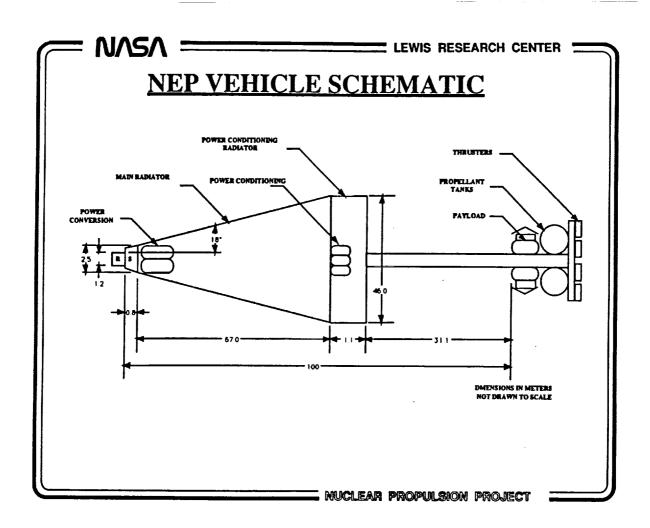
NNSN =

LEWIS RESEARCH CENTER

LUNAR IN-SPACE TRANSPORTATION SYSTEM COMPARISON

PARAMETERS	APOLLO		CHEM/AB	NTR		
● IMLEO (t)	123*		234	208		
• MISSION MODE	EXPENDABLE		PARTIALLY REUSABLE	FULLY REUSABLE		
PROPULSION ENGINE/# PROPELLANT TOTAL THRUST (kibf) Isp(s)	J-2/1 LOX/LH2 225 425	SPS ⁺ /1 STORABLES 22 256	ASE/4 LOX/LH2 80 481	NERVA-DERIVATIVE/1 LH2 75 915		
BURN DURATION/ENGINE (mins) TLI LOC TEI EOC	5.2 - -	 6.3 2.5 I ENTRY	26.0/4 4.9/4 1.6/4 AEROCAPTURE	28.4 7.2 4.3 9.2		
EARTH ENTRY VELOCITY (km/s)/"g-loading"	11.2/ <u>≤</u> 7g				≤ 11.2/≤ 5g	0.5 g - 0.7 g (begin-end EOC)
• RETURN MASS FRACTION (%)	4.8		11.5	23.4		

^{*} S-IVB STAGE PRIOR TO TLI W/44.7 1 PAYLOAD - CSM, LEM AND 3 CREW

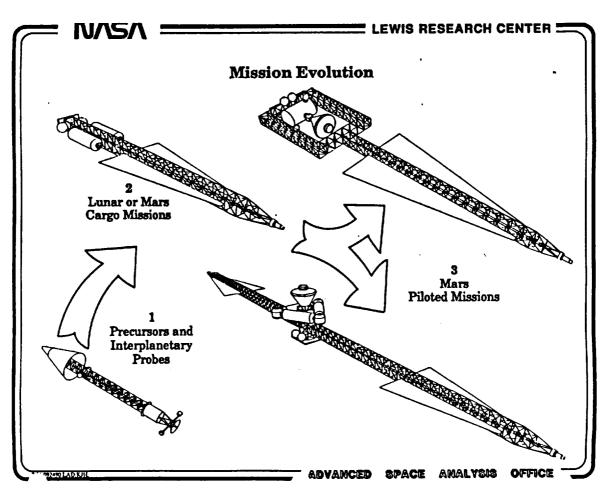

space Exploration

NUCLEAR ELECTRIC PROPULSION

James H. Gilland

NASA Lewis Research Center

⁺ SERVICE MODULE PROPULSION SYSTEM


LEWIS RESEARCH CENTER

NEP TECHNOLOGIES FOR SEI

- Power Systems
 - Reactors
 - Power Conversion Static, Dynamic
 - Heat Rejection Heat Pipes
 - Power Management and Distribution
- Propulsion Systems
 - kWe MWe Thrusters Ion, MPD, Other
 - Power Processors

NUCLEAR ELECTRIC PROPULSION MISSION ADVANTAGES

- Progressive Technology Development Paths
 - Evolutionary Development to Meet a Wide Range of Missions
 - Commonality with Surface Power Technology
- Low Propellant Requirements
 - Low Vehicle Mass
 - Small Resupply Mass
- Reduced Interplanetary Trip Times
- Tolerant of Mission Variations
 - Changes in Payload
 - Broad Launch Windows
 - Reduced Dependence on Mission Opportunity

300

350

400

LEWIS RESEARCH CENTER :

NEP SYSTEM/MISSION CHARACTERISTICS

NEP Performance Parameters

Specific Impulse (Isp): Determines Propellant Mass

Power Level (Pe): Affects Trip Time

System Specific Mass (α): Determines Trip Time Limits

Thruster Efficiency (η): Affects Trip Time, Vehicle Mass

MISSION BENEFIT	ENABLING PARAMETER	NEP CAPABILITIES
Reduced Propellant Mass	Isp	2000 - 10000 seconds
	α	<10 kg/kWe
	η	>50%
Reduced Trip Time	α	<10 kg/kWe
	Pe	>=10 MWe
	η	>50%
Mission Tolerance	Isp	2000 - 10000 seconds

NEP PERFORMANCE FOR PILOTED MARS

MISSION 2016 OPPOSITION

1 Year

1500

(65 MWe)

3 kg/k We

(18 MWe)

(18 MWe)

10 MWe

10 MWe

10 MWe

10 MWe

10 MWe

10 MWe

500

Round Trip Time (d)

450

550

650

600

NUCLEAR PROPULSION PROJECT

700

LEWIS RESEARCH CENTER

NEP TECHNOLOGY DEVELOPMENT

Evolutionary Approach

Earth Orbit => Interplanetary Robotic => Lunar Cargo => Mars Cargo, **Piloted**

Ultimate Goal: Mars Piloted Mission in 2016 - 2019 Time Frame

Address both Integrated System Design and Subsystem Technologies

Ground Testing of Subsystems, some Integrated Assemblies

Flight Testing of Progressively More Advanced NEP Systems to Obtain Flight Experience

I NUCLEAR PROPULSION PROJECT

= LEWIS RESEARCH CENTER =

PATHWAYS TO EVOLUTION

MISSION

EVOLVING SP-100 TECHNOLOGY

EVOLVING HIGHER RISK TECHNOLOGIES

INTERPLANETARY

SP-100

SP-100

PROBES/PRECURSORS

THERMOELECTRIC 100 kWe

THERMOELECTRIC 100 kWe

LUNAR/MARS CARGO

GROWTH SP-100 K-RANKINE

ADVANCED REACTOR ADVANCED POWER CONVERSION

1-5 MWe

GROWTH SP-100

ADVANCED REACTOR

1-5 MWe

K-RANKINE

ADVANCED POWER CONVERSION 10-20 MWe

"ALL UP" "QUICK TRIP"

MANNED MARS

10-20 MWe

40-80 MWe

advanced space analysis

$N \wedge S \wedge =$

🗖 LEWIS RESEARCH CENTER 🚍

EVOLUTION OF NEP TECHNOLOGIES

PRESENT

GOAL

Power

Nuclear SP-100

100 kWe ~45 kg/kWe GES 2001 UN Fuel Pin >=10 MWe <= 10 kg/kWe TRL 6 by 2006

TE Conversion 1350 K K Heat Pipe

Propulsion

Thrusters Isp (s)	Ion 2000 - 9000	MPD 1000 - 5000	Ion 2000 - 9000	MPD 1000 - 7000
η	.78	.3	.78	>.5
Pe (MWe)	.0103	.015	1 - 2	1 - 5
Lifetime(h)	10000	?	10000	>= 2000

Power Management and Distribution (PMAD)

η ~ 0.90 4 kg/kWe 400 K Rejection Temp. η ~ 0.95 <= 2.5 kg/kWe 700 K Rejection Temp.

NUCLEAR PROPULSION PROJECT

NASA

LEWIS RESEARCH CENTER

ASSOCIATED NEP TECHNOLOGY EFFORTS

Space Nuclear Power

DOE MMWe Program - 10's - 100's MWe in Earth Orbit

DoD/DOE/NASA SP-100 Program - 100 kWe, TRL 6 in 1999 - 2001

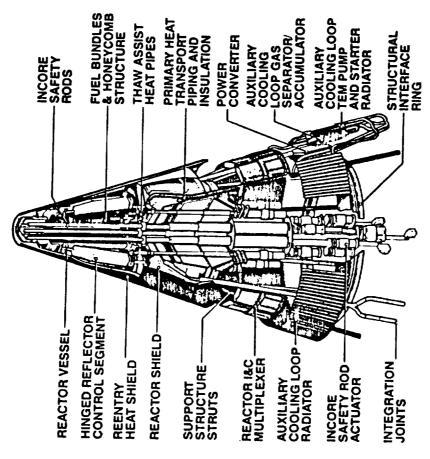
Electric Propulsion

NASA OAET Base R&T in Electric Propulsion - Resistojet, Arcjet, Ion, MPD Thrusters

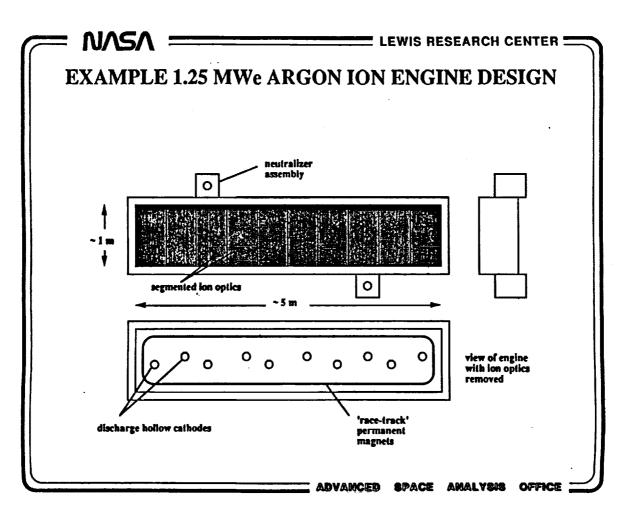
Air Force Electric Propulsion Program - Arcjet, MPD Thrusters, SEP Flight Tests

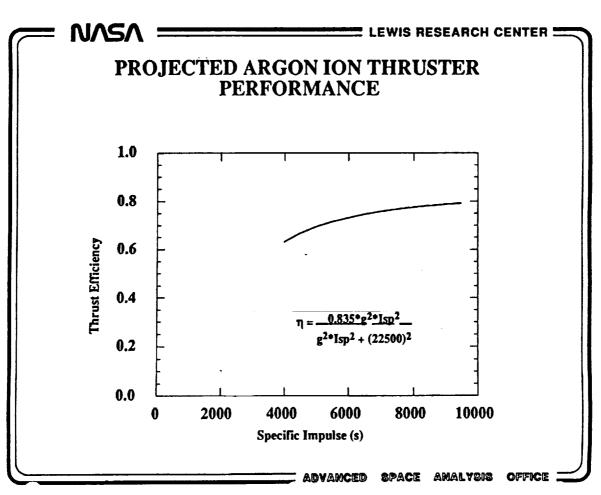
International - USSR (MPD, Closed Drift Hall Thrusters)
Japan (Ion, MPD Thrusters)
ESA (Arcjet, Ion, MPD Thrusters)

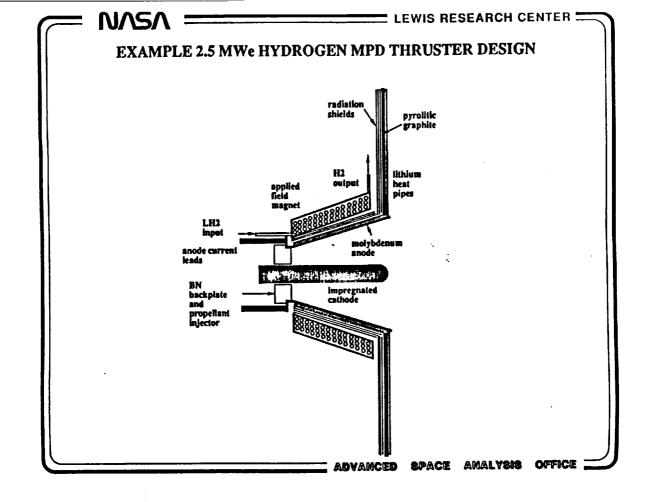
REPRESENTATIVE MARS NEP SYSTEM


POWER (10 MWe):

UN Fuel Pin, Li Cooled Reactor (SP-100 Technology)
1350 K Reactor Outlet Temperature
K-Rankine Power Conversion System
K Heat Pipe Radiator (5.5 kg/m²)
Man-Rated Shadow Shield - 5 Rem/year 100 m from Shield,
40 m Diameter Dose Plane
10 Year Lifetime
5000 V DC Shielded Coaxial Transmission Line
600 K Power Conditioning


PROPULSION:


Argon Ion Thrusters
1.25 MWe thrusters
5000 - 9000 s Isp
1 m X 5 m Grids
10,000 hours Lifetime


Nuclear Propulsion Project

REACTOR POWER ASSEMBLY

= NASA	SUBSYS1	TEM TRA		PACE
	Power			
Reactor	Conversion	Radiator	<u>PMAD</u>	<u>Thruster</u>
Fuel Pin (SP-100)	Themoelectric	Pumped Loop	Si	Ion
Advanced Fuel Pin	Brayton	· •	GaAs	MPD
		Refractory		
NERVA- Derived	Rankine	Metal HP	SiC	Pulsed Inductive (PIT)
Cermet	Adv. Brayton	Carbon	AC	
	.	Composite HP		Electron Cyclotron
Thermionic	Thermionic	C!-	DC .	Resonance (ECR)
Particle Bed	MHD/Rankine	Ceramic Fabric HP		Ion Cualatran
I al ticle Deu	WIIID/Maiiniiit	raviic III		Ion Cyclotron Resonance (ICR)
Pellet Bed		Bubble		resonance (ICR)
		Membrane		Pulsed
In-Core Boiling K			E	lectrothermal (PET)
		Liquid		
		Droplet		Deflagration
				VariableIsp
				Pulsed Plasmoid
			PROPULSIO	N DOOMERT

LEWIS RESEARCH CENTER

NEP TECHNOLOGY EMPHASIS

TECHNOLOGY

SYSTEM IMPACT

Reactor

High Temperature Fuels,

Low α - reduced radiator mass

Materials

High Fuel Burnup

Low α - compact reactor design

Power Conversion

High Temperature Materials

Low α - reduced radiator mass

Power Management and Distribution (PMAD)

High Power Electronics

Enabling - Reliability

Radiation Resistant Electronics

Enabling - Reliability

High Temperature Electronics

Low α - reduced PMAD radiator

mass

Efficient Electronics

Low α, Pe - reduced PMAD radiator mass; lower power source requirements

NUCLEAR PROPULSION PROJECT

NASA

LEWIS RESEARCH CENTER :

NEP TECHNOLOGY EMPHASIS

TECHNOLOGY

SYSTEM IMPACT

Heat Rejection (Radiator)

High Temperature, Low Mass Materials Low α - Dominant mass in MWe

space power systems

Thrusters

High Power

Enabling - System reliability,

simplicity

Efficient

Improved vehicle mass, trip time; lower power source requirements

Long Lifetime

Maximize reliability; Minimize

complexity; Reduce mass

ADDITIONAL INFORMATION

MINCHEAR PROPINSION PROJECT

NIASA

LEWIS RESEARCH CENTER

NEP Mission Charts

- Mission System Requirement Guidelines
- Robotic Probe Missions
- NEP Lunar Cargo Assessment
 - 10 kg/kWe System compared to Chem Aerobrake over 5 year cargo mission cycle
- \bullet Sensitivity of Mars Mission to α
 - α values range from 7 to 15 kg/kWe
 - Power, Isp optimized
 - Lines are optimum performance for each $\boldsymbol{\alpha}$
- Sensitivity of Mars Mission to Power, Isp
 - Constant α of ~10 kg/kWe
 - Performance insensitive to Isp above 5000 seconds
 - Dashed line is optimum performance "envelope"

NEP MISSION GUIDELINES

Mission	Total Power (MWe)	Thruster Power (MWe)	Operating Time (y)		Isp (s)	η <u>(%)</u>	α (kg/kWe	Need Date
Orbital Transfer Precursor	0.1 - 1	0.01 - 0.05	3 - 10	1 - 2	2000 -8000	>50	10 - 30	1990- 2005
Interplanetary Probe	0.1 - 1	0.01 - 0.05	10-12	6 - 10	5000 -10000	>50	30 - 50	1990- 2005
Lunar Cargo	0.5 - 5	0.1 - 1	3 -1 0	1 - 2	3000 -10000	>50	10 - 20	2005-
Mars Cargo	2 - 10	0.5 - 2	5 - 10	2-3	5000 -10000	>50	10 - 20	2010-
Mars Piloted	5 - 20*	1 - 5	5 - 10	1 - 2	5000 -10000	>50	10 - 20	2014-
Mars Fast	10 - 60*	5 - 10	3 - 10	1 - 2	6000 -10000	>50	1 - 5	2016-

Total Power Includes Option for Multiple Propulsion Modules

NUCLEAR PROPULSION PROJECT

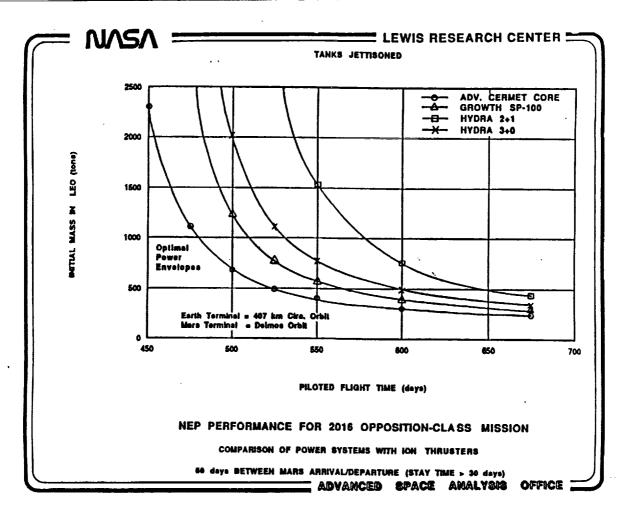
JPL

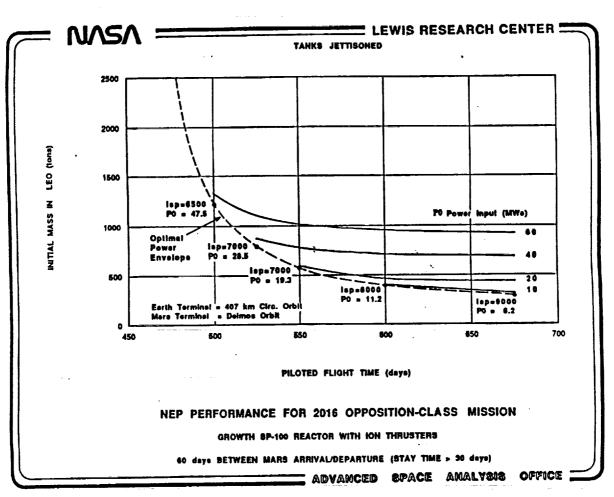
ROBOTIC SCIENCE MISSIONS

FUTURE CANDIDATE DEEP SPACE MISSIONS UTILIZING NUCLEAR ELECTRIC PROPULSIONS

- NEPTUNE ORBITER/PROBE
- PLUTO/CHARON ORBITER/PROBE
- URANUS ORBITER/PROBE
- COMET NUCLEUS SAMPLE RETURN (a.k.a. ROSETTA)
- JUPITER GRAND TOUR
- MULTIPLE MAIN-BELT ASTEROID RENDEZVOUS
- INTERSTELLAR PROBE

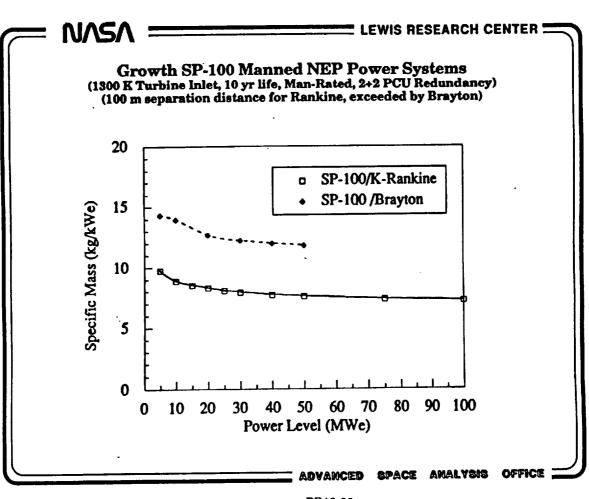
NEP Lunar Cargo Mission


- Cargo missions: minimize propellant mass by allowing trip time to vary
- Groundrules
 - Total mass required for 5 year mission
 - 58 MT (LEV and cargo) to LLO per year
 - Compare to 90-day study Chem/AB vehicle
- NEP vehicle
 - One mission to Moon and back per year
 - Return to LEO empty for refurbishment and resupply
 - 10 kg/kWe assumed as specific mass


Optimized Case
Optimal Power
Optimal Isp

Modular Case
Common 5 MWe
Vary Isp to obtain trip time

advanced space analysis office



NEP Technology Charts

- Scaling of Growth SP-100 System over range of powers
 - Scaling up to 10 20 MWe studied by GE for LeRC
 - Little economy of scale beyond 10 MWe; radiator mass dominates
- Range of Power Systems Presented at NEP Workshop
- Range of Thruster Systems Presented at NEP Workshop

POWER/REACTOR CONCEPTS

Concepts May Be Grouped According to Reactor Type:

Liquid Metal Cooled

SP-100

Cermet K/Rankine

10 MWe K/Rankine

RMBLR (In-Core Boiling K)

Gas Cooled

ENABLER

Particle Bed

Pellet Bed

NEPTUNE

Static Conversion

In-Core Thermionic

TORCHLITE

SP-100 w/HYTEC

Vapor Core

UF,/MHD

NUCLEAR PROPULSION PROJECT

NASA

LEWIS RESEARCH CENTER

PROPULSION CONCEPTS

Concepts May Be Grouped According to Acceleration Mechanism:

Electrostatic

Ion Engine

Steady Electromagnetic

MPD Thruster

Electron Cyclotron Resonance Engine

Ion Cyclotron Resonance Engine

NEPTUNE (High Power MPD Thruster)

Variable Isp Plasma Rocket

Pulsed Electromagnetic

Pulsed Inductive Thruster

Pulsed Electrothermal Thruster

Deflagration Thruster

Pulsed Plasmoid Thruster