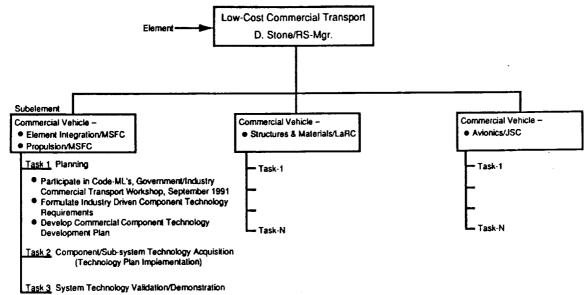

Transportation Technology Low-Cost Commercial Transport

N93-71887


TRANSPORTATION TECHNOLOGY EARTH-TO-ORBIT TRANSPORTATION

LOW COST COMMERCIAL TRANSPORT

HC ETOT 2 5/17

ELEMENT LEVEL – WORK BREAKDOWN STRUCTURE CODE-RS

Near Term (3-5 yr) Feed Bridging Program

Far Term Accommodates New Vehicle System

LOW-COST COMMERCIAL TRANSPORT TECHNOLOGY APPROACH

COMSTAC REPORT RECOMMENDATIONS (October, 1990);

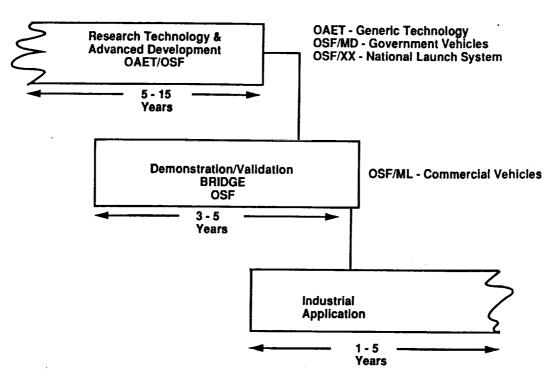
- 2/3 of NASA's effort for the next five years should be directed toward the development and infusion of component technology enhancements into the existing fleet of U.S. Commercial ELV's.
- 1/3 of NASA's efforts should go toward a next generation family of launch vehicles that could serve the future U.S.
 Commercial, Civil and Military needs; (NLS) 1

NASA's RESPONSE:

- OSF / Code-ML, proposes a 3-to-5yr, technology demonstration / validation "Bridging" program to meet the near-term ELV enhancement objectives.
- OAET / Code-RS, will support the Code-ML Bridging Program by providing:
 - Transfer of existing (on-the-shelf) matured technologies to the private sector.
 - Accelerate relevant, on-going technology developments to comply with commercial schedule requirements.
 - Initiate new starts where required to meet the commercial needs.
- OAET / Code-RS, will work with industry to plan and implement a comprehensive systems technology
 program to enable development of the "next generation" low-cost, commercial ELV's.

EVOLUTION OF SPACE TRANSPORTATION TECHNOLOGY

Ì


CONTRACT NAMES

THE DOLL

Ē

10000

Ē

"COMMERCIAL VEHICLE PROPULSION SYSTEM NEEDS"

Desired Enabling Capabilities	Technology Requirements
Low-Cost O2/H2 Liquid Booster Engine System	NLS /STME To Provide
Evolved Improvements in Existing Hydrocarbon Engine Systems (ATLAS, DELTA)	 Implement existing advancements in materials, mfg processes, and mechanical elements to affect moderniza- tion of turbomachinery, combustion devices, valves, etc.
Family of Mid-Sized O2/H2 Upper Stage Engines (35 to 200 K-Lb. Thrust Class)	 Advanced Expander Cycle Engine Technology Issues: Improved heat transfer methods Vacuum Start Techniques Automated Engine System Checkout Processes Code-RP / LeRC-MSFC Advanced Cryogenic Engine
Low-Cost, Low-Pressure Pump Fed Liquid Rocket Boosters - 02/HC - 02/H2	 Code-RP / MSFC Component Technology Program Ablative Thrust Chamber and Nozzles Simple Low-Cost injectors Low Pressure Rise Industrial Grade Pumps Low-Cost Lightweight Tank Pressurization Systems
Hybrid Boosters and/or Upper Stage Propulsion Systems	 Hybrid Propulsion Technology Issues: Ignition System Optimization Baliistic Assessment; Combustion Process Analyses Performance Prediction, Fuel Formulation, Flow Analy. Fuel Grain Design; Strength, Support, Producibility Propellant Tailoring, Oxidizer Injection optimization insulation Characterization, Case & Nozzie High regression rate fuel chemistry

FOCUSED TEC: ... NOLOGY

LOW-COST COMMERCIAL TRANSPORT / PROPULSION TECHNOLOGIES

SUMMARY

- Impact:
 - Through the transfer of existing technological advancements in materials, manufacturing processes, and mechanical elements the existing cadre of O2/HC engines may be enhanced to provide improved reliability with reductions in manufacturing and operations cost.
 - Technologies that will enable the family of O2/H2 expander cycle engines will provide efficient, lowcost, reliable, robust, competitive upper stage propulsion to minimize the dollar/lb. cost to orbit.
 - Low pressure liquid booster engines (O2/HC & O2/H2) and hybrid engines will provide options and new capabilities to commercial ELV's that will reduce operations cost and improve safety and reliability while mitigating environmental effects.
- User Coordination:
 - Top level commercial needs are reasonably well understood
 - · Detail technology requirements, priority, schedule, and level of maturity required, are TBD
 - Implementation strategy with other Codes is TBD
 - Coordination between NASA, USAF, DOT, and the Commercial Industry is required
- Overall Technical and Programmatic Status:
 - Code-ML's Bridging program has merit and momentum
 - Code-RS/RP will participate in the September 1991 Bridging program workshop to drive out technology requirements both near term and long range.
- Major Technical / Programmatic Issues:
 - Absence of firm technical requirements (workshop will rectify)
 - The synergy between propulsion technology elements within related ongoing programs
 (ETO & NLS/ADP) need to be defined in the context of the commercial requirements
 - Lack of inter- and intra-agency strategy and plan
 - · There is a need to establish the scope and bounds of the Code-R participation

.

. 1990 - State Marine, and a state of the state 1991 - State of the s