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NATIONAL ADVISORY COHIiIITTEE FOR AERONAUTICS. 

TECHNICAL MEMORANDUM NO. 336. 

PRESSURE DISTRIBUTION ON JCUKOWSKI WINGS.* 

By Otto Blumenthal. 

In the winter semester of 1911-12, I described, in a lec-

ture on the hydrodynamic bases of the problem of flight, the 

potential flow about a Joukowski wing.** In connection with 

this lecture, Karl Toepfer and Erich Trefftz computed the 

pressure distribution on several typical wings and plotted 

their results. I now publish these diagrams accompanied by a 

qualitative discussion of the pressure distribution, which 

sufficiently indicates the various possible phenomena. For a 

quicker survey, I have divided the article into two parts, 

the first part dealing with the more mathematical and hydrody-

namic aspects and the second part, which is comprehensible in 

itself, taking up the real discussion frril the practical stand-

point. 

* From "Zeitschrift fur Flugtechnik und Motorluftschiffahrt,u 
Hay 31, 1913. 

** Soo above magazine, Vol. 1 (1910), p. 281.
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I 

We obtain the entire number of all Joukowsk± wings of the 

length 21 with the trailing edge at the point x = - 1, by 

laying, in a	 = + i Ti plane through the point	 = 1/2, 

the cluster of all the circles which contain the point t = 1/2, 
either inside or on their circumference, and plotting these 

circles by means of the formula

(i) -	 4	 - 

on the z	 x + i y plane. The circles, which contain the 

point	 = 1/2 on their circumference, thus become doubly in-

tersected arcs and, in particular, the circle, which has the 

distance (-1/2, + 1/2) for its diameter, becomes the recti-

linear distance of the length 2 1 . The circles which contain 

the point I = 1/2 inside, furnish the real Joukowski fig-
ures. The point	 -1/2 passes every time into the sharp 


trailing edge. The individual Joukowski wings are character-

ized by the following quantities (Fig. 1). The center M of 

the circle K is connected with the point H, C = - 1/2, and 
the point of intersection ,of this connecting line with the 

axis is designated by P. The distance O' on the Ti axis 

is equal to half the height of the arc produced by describing 

the circle about M' as its center and is therefore designated 

by f/2 1 as half the camber of the Joukowski wing, f being 

its first characteristic dimension. We have chosen as the
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second characteristic dimension, tho radii difference MM' = 6. 

This gives a measurement for the thicknss of the Joukowski 

wing.

We will now consider the determination of the velocity 

and pressure distribution which produce an air flow along the 

wing, in infinity, with the velocity V at an angle of TT-  

with the positive x axis, I being the angle of attack of the 

wing.

The absolute velocity q of this flow is calculated. thus: 

If K (,r) is the absolute velocity of the air flow, of ve-

locity V and angle of attack , around the circle K in 

the I plane, then
-- K 

q (x,y) -
aZL 

It is, iIOWOVCT, 

and alOng the circle K 

K ( ,p) = -----	 V Q sins + 0 cos) + c 
V V2	 6 

2 

where 2 ii c is the circulation. This constant is dot ormined 

according to Kutta, by the condition that the velocity at the 

trailing edge is finite and therefore, since dz/d 	 there dis-

appears, K must also disappear at the point H. Thus we ob-

tain
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K (,i)	 +	 sin +	
cos1 

-	 _____ 
2 ) bbsI (2) 

2	 /(02Ii	 +t2;	

I 

2+
112 

This rather involvoci expression is simplified by the in-

troduction of a new vriable, the angle w at the center of 

the circle K, measured from tho radius NH. In this angle, 

the coordinates	 ,r and the quantities connected with them 

are exp ressed as follows: For abbreviation, we designate the 
/i2+f2 radius of the circle K with r =2	 + .ö and introauce 

the angle A by

eQs A = -__________ 
A! 12 +

Sifl A
A! 

The geometric significance of A and w is obvious from Fig. 1. 

By simple calculations we now obtain 

r sin 	 sin (+A),

(3) 
-2 r sin	 coo (+ A 

2.1 r Sfl . 3fl (	 + A + 4 r2 Sifl2 ü) 
1-	 2	 1	 2

(4) 
+4r sir	 [8 sin	 _ 	 Cos (+A)]
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Formula 2 for q is simplified by the introduction of the 

angle ü . , to

Vt 

... bbs - + A + 

COS2 (+ COS	 + A)J 
2 -2

From this we next derive a few general results which hold 

good for all the quantities f, 6 , 

a) On the trailing edge q = 1 cos (A + 
' 	 21, 

b) On top of the wing, there is always a portion along 

which the velocity q > V, hence where there is a negative 

pressuret As proof of this, we will consider the center of 

the upper side, the point U) = 3TT - A. At this point a > r, 

as can easily be soon geometrically (Fig. 1) or from formula 4. 

However, if we put U) =	 - A in formula 5, it then becomes 

Co) 
( f'1i	 A	 c 

	

q - a2	
-

 

	

,	
-)	
i7

(u A 
cOb -- 	 COS, 

- 
—

 
— 

> 	 > ------- 

/11	 A'\	 /12	 /	 /11	 A'\ 

	

cos - - -	 / -- + ( 6 + -	 cos ( — - — 
\4	 2)	 4	 '4	 2

(5)
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c) The velocity is zero at the point i = it - 2A - 2, 

which is always located on the lower side. At this point the 

streamline enters the wing. Further general conclusions (i.e., 

applying to all f, 5, Q can hardly be drawn. We obtain 

considerably more accurate expressions in the especially int-

eresting practical case where, in the vicinity of the leading 

edge, a pionounced velocity maximum and consequently a strong 

suction is produced. We will confine ourselves to this case 

in all that follows. Hereby we can, in formula 5, first of 

all disregard the slight fluctuation of the factor 02 for 

small values of f and.5 and consider only the factor F, 

which must be alone decisive for the great changes in velocity. 

This factor, however, enables a simple explanation. 

For this purpose, we introduce the angle	 = A -TI- A + B 

The entering point of the streamline then lies at r = 

where F disappears. In general, we have 

1. = (a2 + sin2 3) tan2 V - 2 (ab - sinP cos) tan* + 
F

+ (b2 + COS2), 

a = ? 1 5 cos (A + 3) -	 sin), 

L	
(6) 

b =	 S sin (A +	 + f cos) .1 

Consequently, F attains its maximum value at the angle 

which is given by the formula 

tan 1Jf0	 ab -sincosf	 (7) 
a2 +
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and this value is

Ôcos ( + 'y_- sin B) + 
max	

S cos A 

We now make the assumption, corresponding to the already 

announced purpose of our investigation, that F has a high 

maximum in relation to the value of cos (A + ) on the trail--

ing edge. We require, e.g., that Friax shall equal or exceed 

2. This is mathematically the most favorable. Formula 7' 

with the aid of a rough estimate, then gives 

sinB	 5 cos (A + @) (i +- 
2

5 cos (A + p ) (1 +. sin A) ....	 (s) 

With this insertion, the nuorator. of tan ifr0 is smaller than 

-	 cos (A + )	
12+	

cos• - 5 sin (A + ) 11-sin] 

For small f, S	 and !, this value is always negative and there-

fore the maximum value of	 F is assumed to be at a point 10-

catod between the entering point and the trailing edge on the 

portion of the surface belonging to the upper side.* On the 

* Generally the point is located on the upper side. It lies 
between the entering point and the leading edge, only when 5 
is very small in comparison with f. For S = O f it lies on 
the leading edge.

7

(71) 
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other hand, it can be shown that the maximum is located not 

far from tho entering point. In fact the greatly preponderat-

ing member in the numerator of tan * 0 , on account of formula 

8, is cosp sin P . The case is not quite so simple with the 

denominator, which is

a2 + sir 

A. j 62 	 2 =	 cos (A + 3) - 5 f cos (A + )sinf3 +	
f2 	

2sin 
L	 4 

If we introduce into the first member, on the right side of 

formula 8, the above limit for 5 1 the denominator is then 

smaller than 2	 ' sin2 . Hence tan	 is either smaller 

or at most only unosscntially* greater than -	 cot, which 

shows that IV is either smaller or or at most only slightly great-

er than - + 2 . The point w, at which F assumes its max-2 
imum value, is located between the entering point of the stream-

line and the upper side and, at most, only slightly farther 

than 4 from the entering point. 

Lastly, it may be remarked that in formula 6 for	 , both 

the powers, tan2 4r 	 and tan V. appear to be multiplied by 

small coefficients. Both these members therefore assume quite 

large values for large values of tan \V, i.e., in the immedi-

ate vicinity of the entering point and the leading edge. Hence 

F diners but little over the wholo surface, with the excep-

tion of the specified region, from the value cos (A + ) on 

the trailing _edge and therefore only slightly from unity.________ 
* UjJnsntillyII means that the deviations are of the order of 
magnitude f/i , 6/1
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II 

The results of the computations in I arc as follows: A 

Joukoweki wing is characterized, by the thrce dimensions, name-

ly, the length 21, the camber f and the radii difference 

5, which is expressed in the thickness of the wing. To these 

is added the angle of attack fi . The points on the surface 

are most conveniently computed with the aid of a variable w of 

the angle at the center of the circle in Fig. 1. The formulas 

for the coordinates will not be given here. In pradtice, a 

graphic -rocess is employed which is explained in the accompa-

nying note by E. Trefftz (pages 130-131 of this same volume 

of "Zeitschrift Or Flugtechnik und hotorluftschiffahrt.") 

We require only the following data:	 0 gives the trailing 

edge; co	 'vi - 2A (tan A = 'i-) gives the leading edge and the 

intermediate values of w correspond to the lower surface of 

the wing0 c iT - 2A - 2 gives the entering point, i.e., 

the point where the air flow strikes the surface and hence 

where the velocity is zero. 

The ratio of the absolute velocity q of the airflow 

on the wing to the velocity V in infinity is given by 

q

	

	
F
	

(5)

r .- 

	

r 2	 2 

	

'	 + 6 is the radius of the circle in Fig. 1 and
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the distance OB in the same figure. Both factors, a and 

F, depend on w	 For small f and 5, the value of the factor' 

differs but little from Unity; The propertiesof the fac-

tor F, as obtained by the calculations of I, can be summarized 

as follows. 

On the trailing edge, F has the value cos (A + ) and 

decreases at the customary angles of attack (about 60), from 

the leading edge to the entering point, where it becomes zero. 

For small f and 5, the decrease takes place very slowly 

throughout most of the lower side and first becomes rapid in 

the immediate vicinity of the entering point. 

From the entering point, / F increases rapidly and attains 

near the leading edge, a maximum of the order of magnitude 

PI/25. This is approximately also the maxinim value of the 

velocity ratio q : V. For this maximum value, the ratio of 

the angle of attack to the thickness of the wing is therefore 

decisive, the camber having, in the first order, no effect on 

it. In constructive wing shapes, where 5 and 13 are of the 

same order of magnitude, the velocity at the leading edge is 

accordingly not very great. This result is important because 

it explains the effect of rounding the leading edge. The re 

sult is still more striking when we consider the radius of 

curvature p of the leading edge. It is, namely, with unes-

sential omissions	 = 16 4- ( - 4 	 . The radius of curvature 
7.	 7. k,	 LI 

therefore diminishes rapidly with decreasing 5, the rounding
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off of the leading edge being very slight, and the maximum ve-

locity remains within moderate bounds. The negative pressure 

on the leading edge, which, according to ernouilli's equation, 

is proportional to q 2 /V 2 , is computed by the introduction of 

the radius of curvature in the first approximation, to 

4 P2 •• I consider this simple formula worthy of attention. 

The course of F along.tho top of the wing can-finally 

be characterized as follows: At some distance from the loading 

edge, F changed but slowly. If, therefore, the maximum value 

of F is much greater than unity, it falls abruptly at first 

and then gradually approaches the value at the trailing edge. 

Only in the vicinity of the leading edge does the factor 

F give us sufficiently accurate information concerning the 

course of the velocity q. Everywhere else we need to know 

the course of (3.  This can be easily found geometrically from 

Fig. 1. On the leading odge co has the value of .1/2. From 

the triangle HMO, it follows that u assumes its minimum value 

for the angle Wrjdn which is given by 
.................... 

Gifl w  2 
/  

sin A	 '.1 5 
2	 2 

COS A + T Sin A 

Hence
1 

sin W min =  
452	 4r2 
f2 + 12 

For the angle 2 W min, we again have G = 1 and then a
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increases further, up to the angle Wrnax	 Wmirl ± ri. The value 

Of W 11	 increases with A. For	 = 01 Chmin = 0, hence


the value of a is smallest on the trailing edge and greatest 

on the loading edge. Conversely, for 4	 0, Wj = (TT/2) - A 

and is therefore situated in the middle of the lower surface. 

In Acneral, with increasing f/ô, the minimum value of co 

moves from the trailing edge to the middle of the lower sur-

face; the point where a	 again from the trailing edge to 


the leading edge, while the maximum value of a moves Sinlul-

taneously from the leading edge to the middle. of the upper 

surface. 

In order to get an idea of the course of the velocity, we 

must now estimate the mutual effect of the fctors F and a2. 

I will proceed with this discussion in close connection with 

the diagTams, which I must first explain. Their arrangement 

is the same as for the diagrams in Eiffel' s Resistance do 

Pair." Each figure has, at the bottom, an accurate outline 

of the wing section. Vertically above each point of the wing, 

there is plotted from a zero line . on the vertical the ratio 

q 2/V 2, the upper curve corresponding to the upper side and 

the lower curve to the lower side of the wing section. The 

dashed line shows the unit distance from the zero line. The 

area enclosed by the q1 /V2 curve gives, when multiplied by 

V2 , the lift of a unit width of the wing. The chosen an-

gle of attack is 6 0 (B	 0.1), the air flow being horizontal.
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I am dividing the discussion into several paragraphs. 

1. The strong suction on the greater portiqn of the upper 

surface is common to all the figures. This is indeed the chief 

source of the lift, while the pressure on the lower surface 

contributes only a small increment. This can be easily von-

fled from the general laws. In fact, as already stated, F 

diminishes very slowly along the under surface from the trail-

ing edge almost to the entering point. Hence, F differs but 

little ) on most of the lower surface, from the value 

cos (A + ), which it has on the trailing edge, and therefore 

only a little from unity. Since also the factor - i-- falls 

only slightly below 1, up to the vicinity of the entering 

point, q/V is certainly not much smaller than one and hence 

there is only a slight pressure. 

2. Fig. 2 (1 = 0 and	 =indeed shows a suction 7	 10 

effect along a portion of the, under side. Since the values 

Of ±' arc here less than unity, such a suction effect cart 

only be very small. Its appearance is due 'to relatively lrge 

values of a2 and depends essentially on the ratio f 

Between the trailing edge and W 2Wmin no suction can occur, 

because a is here smaller than 1/2. Any suction effect can 

therefore be expected for only small values of f : 5, where 

Wmin is small. For 5	 0 any suction effect is entirely im-

possible, since 2Wmjn then corresponds to the leading edge.
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The suction effect has also been experimentally determined, by 

Eiffel on the wing "en aile d'oiseau" which probably alone of 

all the surfaces tested by him can be coered with a Joukoweki 

wing section.* 

3. Even on the upper side, the course of the velocity is 

characteristically affected by the ratio f 	 6. This is clear-

ly shown by Figs. 2-4. 	 ±io is expressed on the upper surface 

in the position of the angle w max =	 + Tt, for which a 

has its maxiri1m value. The fact that a continues to increase 

from the leading edge as far as w rax causes the maximum value 

of q to move farther from the leading edge than the n'iaxiiim 

of F and the fall in velocity to be less rapids We differ-

entiate "slightly cambered" wings (±76<2),. in which Wmax in 

near the leading edge, and "highly cambered" viiin ps (f/6>3), 

in which wmaxlies nearer the middle of the upper surface. 

Fig. 2, with f = 0, is a typical example of a slightly cam-

bered wing. Here the maximum value of a is situated in the 

leading edge and the values of F and a therefore decrease 

* Eiffel, "Resistance de l'air," 1911, Table XII; also p. 105 
and 'Conlemont," P. 192 ("aile Nicuport"). The Eiffcl fig-
ures show that the suction effect increases on the under side 
with decreasing angle of attack. This is in agroenent with 
our theory, for the factor F increases, as shown by formula 
6, at every point on the under side with decreasing P . An-
other suction effect, which Eiffel finds on the trailing edge 
of nearly all wings, is doubtless due to the formation of 
vortices.
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simultancously, thus producing a very pronounced maximum veloc-

ity, although the maximum velocity is not important in itself. 

On the other hand, Fig. 4 (f/i	 1/5, 6/i = 1/20) shows, in 

spite of a twice as large maximum velocity, a remarkably slow 

velocity decrease toward the upper side. In fact, in those 

experiments, the maximum of a is situated at about 1/3 of the 

upper side and a more rapid velocity decrease accordingly 

first begins behind this point. We note also the small inter-

mediate maximum on the upper side, which is caused by the in-

crease of 02 in spite of the simultaneous decrease in F. The 

mean between Fig. 2 and Fig. 4 is held by Fig. 3, with 

f/i = 1/10 and 81.	 1/20. Here Wrax does not lie very far 

from the leading edge, about 1/6 of the upper side, the in-

crease in 2 vanishes under the decrease in F and along the 

greater portion of the upper side we note a uniform failing 

off in velocity, due to the simultaneous decrease in the fac-

tors F and a. 

These relations were also found in Eiffel's experiments 

with the wing "en aile d t oiscau. 0 Even the intermediate maxi-

mum of q on highly cambered wings is found on his figures.* 

Lastly, I wis. h to call attention to the fact that the 

measurements of Fig. 4 appear to me to be worthy of commenda-

tion, on account of the very uniform stressing of the upper 

side. 

* On Eiffel 1 s figures, it appears that, with decreasing 
1 

the maximum velocity moves backward from the loading edge on 
the upper side. This also agrees with the theoretical conclu-
sions.
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4. Fig. 5 has a very slight rounding (811 = 1/50) at 

f 	 = 1/5. Therefore .. - = 2.5 and hence the very high y e-

1octy maximum on the leading edge. We have already seen that 

the high maxima must decrease very rapidly toward the upper 

side. The region of this steep decline corresponds to an angle 

of about the size	 . During the drop, however, there is in 

the figure a.long space of almost constant velocity. This is 

explained, as inparagraph 3, by the fact that the maximum 

value of a is located at about 1/2.5 of the upper side. Only 

behind this point is there again a rapid decline to the trail-

ing edge. This behavior is generally characteristic for high-

ly cambered wings of slight rounding and occurs also on Eif-

fel's diagrams. 

As regards the production of the diagrams, it may be noted, 

in conclusion, that they were drawn according to the very con-

venient method of E. Trefftz, as set forth in the accompanying 

note. Wherever it appeared. necessary, the plotting was yen-- 

fied. by calculation.
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GRAPHIC CONSTRUCTION OF JOUKOWSKI WINGS.* 


By E. Trefftz. 

In plotting the cross-sectional outline (or profile) of 

a Joukowski wing, we proceed as follows (Fig. 6). 

We first plot an xy system of coordinates with the ori-

gin 0 such that the x axis forms the angle 	 with the hor-

izontal direction of the wing and mark on the x axis the 

point L, for which x = - 1, and on the y axis bhe point 

F, for which y = f. 

We now describe two circles and label them K 1 and K2. 

The center K1 of the first circle is situated on the straight 

line LF at a distance 26 from the point F (beyond the 

section LF). The circle, moreover, passes through the point 

L. The second circle likewise passes through the point L 

and its center K 2 is likewise on LF, the position of K 

on LF being determined by the following condition. If 0V1 

is the portion of the positive x axis cut off by the circle 

K 1 and 912 the portion cut off by the circle K 2 , then 

ovl x O 

We now draw, from..the point 0, the two lines 0A 1 and 

OA2 , so as to form equ1 angles with the x axis, A l being 

the point of intersection ofthe-first line with the circle 

X. and A -the intersection of the second line with the circle 

* From 'Zeitschrift fir Flugtechnikund Motorluftschiffahrt,'t 
May 31, 1913, pp. 130 and 131.
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K2 . Then the center P of the line AiA3 is the point sought 

on the Joukowski wing profile. 

In plotting the preceding figures, 24 points were found 

in this manner for each one, by shifting the first line from 

the point L 150 each time and drawing the second line sym-

metrically with referenCe to the x axis. 

In order to determine the pressure on each point of the 

profile, when the wing is exposed to a horizontal wind having 

the velocity V, we must know the velocity q at which the 

air flows by each point of the profile. The pressure on each 

unit area of the wing surface is then proportional to q2 

We can now find the values of q in a very simple man-

nor. For this purpose, we draw a horizontal line through the 

point L. If we designate by h the distance of the point 

A. (of the circle K 1 ) from this horizontal line, we obtain, 

for any desired point P of the figure, the corresponding 

value of q in the following manner. We take from the dia-

gram the distance between the points A 1 and A2 , at the mid-

dle of which we had found the point P. and also the distances 

of the point A. from the origin 0, from the center M 1 of 

the circle K1 and from the horizontal line passing through 

L. We then have

OA,	 2h 
q = V A

1 A2 Li1 A1 

The mathematical proof for the given constructions is sim-

ple. As already mentioned, the p rofile of a•Joukowski wing
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can be constructed by describing on the z plane, with the aid 
2 

of the formula z	 ± --p- , the cic1e K, determined, by 

the camber and radii difference. This circle passes through 

the point	 = - 

The systems of coordinates are plotted both in the 

plane and in the z plane in such manner that the	 axis and 

the x axis form the angle	 with the horizontal wind direc-

tion.	 - 

If we now describe, in the Z plane, both circles, which 

we obtain from the given circle K in the plane by employ-

ing the two conversion formulas

12 
z 1 = 2	 and z2 

then these are the same two circles we designated above by 

K1 and 1(2. 

The point A 1 has the coordinate z1 and the point A. 

has the coordinate z, hence the center of A A 2 has the 

1' 
coordinate z	 . ( z 1 + z 2 ) =	 +	 as desired. P is 

therefore an actual point on the Joukowski curve. 

The following formula holds good for the velocity q at 

which the air flows by every point on the Joukowski figure. 

a = _(Lii) 
clz 

From z =	 +	 it follows that
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dz =	
-	

1 (2.- l'\	 Z1 - Z2 

2 \.	 2/ 

whence we obtain

11,1 A2 

dt	 CA1 

since the absolute value of z - 0 equals the distance 

A1 A 2 and the absolute value of z 1	 the distance 0A1 

For K Q,Q, we obttin, from formula 2 of the preceding 

article, K 2Vh , in which h is the distance of the point 
MIA, 

A1 from the horizontal line passing through L. In the ex-

pression there given for the numerator, it is equal to h and 

the denominator is equal to	 (M 1 A 1 ), as may he easily yen-

tied. We thus obtain

0A1 
q	

MI A, A, A2

which is just the formula given above fOr q. 

Translation by Dwight M. Miner, 
National Advisory Committee 
for Aeronautics.
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