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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

TECHNICAL MEMORANDUM NO. 336.

PRESSURE DISTRIBUTION ON JCUKOWSKI WINGS.*

By Otto Blumenthal.

In the winter semester of 1911-12, I described, in a lec-
ture on the hydrodyrnamic bases of the problem of flight, the
potential flow about a Joukowskl wing.** In connection with .
this 1eotdre, Karl Toepfer and Erich Trefftz computed the
pressure distribution on several typical wings and plotted
their results. I now publish these diagrams accompanied by a
qualitative discussion of the pressure distribution, which
sufficiently indicates the various possible phenomena. For a
quicker survey, I have divided the a;tiole into two parts,
the first part dealing with the more mathemptical and hydrodyv-
namic aspects and the sccond part, which is comprchensible 1n
itself, taking up the real discussion from the practical stand-

point.

x From "Zeitschrift fur Flugtechnik und Motorluftschiffahrt,”
Mev 31, 1913. .
** Jce above magazine, Vol. I (1910), p. 281.
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¥e obtain the entire number of all Joukowski wings of the
length 21 with the trailing cdge at thc voint x= -1, by
laying, ine ¢ =£¢ + imn plane through the point ¢ = 1/2,
the cluster of 211 the circles which contain the voint ¢ = 1/2
either inside or on their circumference, and plotting these

circles by means of the formula

S
U~
t

on the =z = x + iy plane. The circles, which contain the
point ¢ = 1/2 on their circuﬁfefence, thus become doubly in-
tersected arcs and, in particular, the circle, which has the
distance (—1/2, + 1/2) for its diameter, becomes the recti-
linear distance of the length 21 . The circles which contain
the point ¢ = 1/2 inside, furnish the real Joukowski fig-
ures. The point ¢ = ~Z/2' passes every time into the sharp
trailing edge.. The individual Joukowski wings are character—
izcd by the following quantities (Fig. 1). The center M of
the circle K is comnected with the point H, ¢ = - 1/2, and
the point of interscction ©of this connecting line with the n
axis is Gesignatcd by Mte. The @istanoeA OM' on the M axis
is equal to half the hoight of the arc produoéd oy describing
the circle about M!' as its center and is therefore designated
oy £/2, as half the camber of the Joukowski wing, f Dbeing

its first characteristic dimension. %We have chosen as the
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sccond characteristic dimension, the radii difference MM!

|
(o
0

This gives a measurcment for the thickness of the Joukowski
wing.

We will now consider the determinagtion of the velocity
and pressure distribution which produce an air flow along the
wing, in infinity, with the velocity V at an angle of T-B
with the positive x axis, B being the angle of attack of the
wing. |

The absolute velocity q of this flow is calculated thus:
If ® (£,m) 1is the absolute velocity of the air flow, of ve-
locity V and anglec of attack B, around the circle K in

the ¢ vplane, then

4z
dg
It is, however,
2
dz | _ 1 /02 12N\ 2 2 g2 _ ¢2 E
Erd - sV L
and a2long the circle X
1 .
kK (§,n) = 2V (£ sinB + M cosB) + c’,
93 TS
'\/—12.2__*-_;___}_6 v

wherec 2 T ¢ -is the circulation. This constant is detcrmined
according to Kutta, by the condition that the velocity at the
trailing edge is finite and therefore, since dz/d¢ there dig-
appears, K must also disappear at the point H. Thus we ob-

tain
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Tnis rather involved cxpression is simplified by the in-
troduction of a new vsriable, the angle w =zt the center of
the circle X, mecasured from the radius HMH. In this angle,

the coordinates £,n and the quantitics connected with them

-

are expresscd as follows: For abbreviation, we designate the

,\/1’2 + fe

radius of the circle K with r = "———— + & and introduce
~

the angle 4 Dby

cog A = -—-—-':':_—:_IL—'_.—":, sin A = "“;‘:—'_if‘:'_.—_.—._
1+ £7 J o+ £

The geometric significance of A and w 1is obvious from Fig. 1.

By simple calculations we now obtain

_ l o W (O \

= - = + 5 L il (== 4
g 5t 231 sinz sin(z+4),

i> (3)
M= - 2 in & (® \ '
i r sin Z cos 3 + A/,
o = }ir_ 21 17 sin L.3in 72 + o) + 4 12 gin2 @
% 2 TTE T 2
1 w I W f ‘W \7 ?(4)
= — + sin = in = - = cos [ = +

2 4r 5 {6 sin = - 5 c0s {3 A/-
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Formula 2 for q 1is simplified by the introduction of the

angle o, 1o

L e NE oo
lcos (% + A FB%& ' ' L
i /
— = > (5)
cog® <9-+ PR {6 sin £ - L cos <9-+ A ]2
2 J 1% 2 2 3 |
.9 5
r L
=]

From this we next derive a few general results which hold

cood for all thé quentities f, 6, B.
O
- :L-COS (A + Bj-

2) On the trailing edge 5
2T

i=ite

b) On top of the wing, there is always a portion along
which the velocity g > V, hence where there is a negative

_pressure. As proof of this, we will consider the center of

\ . . 21 < 1 . ‘
the upper side, the point ® = = - A. At this point ¢ > r,

2
as can casily be secn geometrically (Fig. 1) or from formula 4.

However, if we put ® = %%—— A in formula 5, it then becomes

g’i_ g ’ 1
T = cos | T - 5 | v & N
E £73, JirgE(e+g)
m AL fm A
- COb‘\Z; = B\ T - COS\I Z E/
/T AN i I T A
cos {7 5 ) «/4 + <6+8\5 cos<4 5 )
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c) The velooit? is zecro at the point W =1 - 24 - 26,
which is always located on thc lower side. At this point the.
stfcamline cnters the wing. Further general conclusions (i.e.,
applying to 511 f, 6, B) can hardly be drawn. Ws obtain
considerably more accurate expressions in the especially int-
ercsting practical case where, in the vicinity of the leading
edge, a pronounced veloclty maximum and consequently a strong
suction is produced. We will confine oursclves to this case
in all +that follows. Hereby we can, in formula 5, first of
all disregard the slight fluctuation of the factor o° for
small values of f and. 0 and consider only the factor F,
which must be alone decisive for the great changes in velocity.
This factor, however, enables a simple explanation.

For this purpose, we introduce the angle V = % + A+ 8 .
The entering point of the streamline then lies at V¥ = m/3,

where F disappears. In gencral, we have

%z = (a® + sin®B) tan® ¥V - 2 (ab - ginP cosB) tanV +
+ (Y° + cos2 B ),
2/ A £ oina ) | . (8)
a=2 ({8cos (A+8B) - % sinB },
1\ , 3 7 L
— § ' o~ I, N i |

Consequently, F  attains its maximum value at the angie Vg,

which is given by the formula

tan Vo, = &R = sinB cosB , (7)
as + sin?f
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and this value is

/7/5 (& + 73 £ Be -f_ 2
r _ /) \bdeos (a+ 1 -3 gin )tz sin® B (71)
Hax .8 cos A

We now makxe the assumption, corresponding to the already
announced purpose of our investigation, that F has a high
maximum in relation to the value of cos (A4 + B) on the trail-
ing eCge. We require, e.g., that Fmax shall equal or exceed

Jrz. This is mathematically the most favorable. Formula 7',

with the ©id of a rough estimate, then gives

2 2 .
-l4~i~§-sinﬁ 2 5 cos (4 + 8) (1 + et )
2 . JEE e
= & cos (A+8) (1L + sin 4) .... (8)

With this insertion, the numerator of tan ¥y 1is swaller than

cosf - & sin (4 +B) (1—Sinﬁ)}

_:

For small f, & and B, this value is always negative and there-
fore the maximum value of F 1g ascumed to be at a point lo-

catcd between the entering point and the trailing edge on the

portion of the surfaoce belonging to the upper side.* On the

* Generally the point is located on the upper side. It lies

betwzen the entering voint and tne leading =dge, only when 0

is very smell in comparison with f. For & = 0, it lies on
the lecding edge.
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other hand, it can be shown that the maximum is located not

3

far from thec eatering noint. In fact the greatly preponderat-
ing member in the numerator of tan Vg, on account of formula
8, is cosB sinfB . The case is not quite so simple with the
denomin&tqr, which is

a2 + siref =
. ) - . . 2 2 .
= 4 [ 8% cos® (A + B) - & f cos (A +B)sinB + —in—:— sin2g ].
L

If we introcuce into thc first member, cn the right side of

formula 8, the above 1limit for &, +the denominator is then

E + f£

<<

swaller than 23 sin?f . Hence tan VY, 1is either szaller.

or at most only unessontially* greater than — L cotB which

5
shows that V¥ is ecither smaller or at most only slightly great-
er than %-+ 2B. The point w, 2ot which F assumes its max-
imum value, is located between the entering ooint of the stream-
line and the upper side and, at nost, only slightly farthoer
than 4f from the entering point.

Lastly, it may be remarked that in formula 6 for ,;% poth

. F-’
the powers, tan®V and tan V¥, avpear to be multiplied by
small coefficients. Both thesc members thercfore assume gquite
large values for large values of tan ¥, i.e., in the immedi-
ate vicinity of the entering point and the leading edge. Hence

F differs but 1little over the wholc surface, with the excep-

tion cof the specified region, from the value cos (A + R)] on

the trailing edge and therefore only slightly from unity.
* Unessentiaglly" means that the deviations are of the order of

magnitude £/, 8/ .
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II

The rcsults of the cemputations in I arc as follows: A
Joukowskl wing is characterized by the thiee dincnsions, name-—
ly, the length 21, the camber f and the radii difference
8§, which is expressed in the thickness of tine wing. To these
is added the angle of attack B. The points on the surface
are rnost conveniently cormuted with the aid of a variable w of
the angle at the center of thac circle in Fig. 1. The formulas
for the ccordinates will not be given here. In practice, a
graphic Hrocess is employed which is explained in the accompa-

nying note by E. Trefftz (pages 130-131 of this same volune

i

of "Zeitschrift fir Flugtechnik und Motorluftschiffahrt.")

We requirelonly the following data: w = 0 gives the trailing
edge; o =T - 2A (tan A = %) gives the leading edge and the
intermediate values of w correspond to the lower surface of
the winge ® =T - 24 - 28 gives the entering point, i.e.,
the voint where the air flow strikes the surface ané hence
where the velocity is zero. |

The ratioc of the absolute velocity g of the air flow

on the wing to the velocity V in infinity is given by

q 02 .
¥ T F (5)
T3

T ig the radius of the circle in Fig. 1 and

(3

= ﬁCﬁ:i_ii + 6
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0 the distance OB 1in the same figure. BRoth factors, o and

F, depend on w: For small f and 6, +the value of the factor
0-2

differs but little from unity:. The vroperties of the fac-
T :

| =~

-

tor F, as obtained by the calculations of I, can be summarized
as follows.

On the trailing edge, F has the value cos (A +B) and
decreases at the customary angles of attack (about 60), from
the leading edge to the entering point, where it becomes zefo.-
For small f and 8, +the decrease takes pléce Very'slowly
throughout most of the lower side and first becomes fapid in
the immediate vicinity of the entering point.

From the entering point, | F 1increases rapidly and attains
near the leading edge, a maximum of the order of magnitude
Bl /28, This is approximately also the maximum value of ihe
velocity ratio q : V. For this maximum value, the ratio of
the angle of attack to the thickness of the wing is thercfore
declsive, the camber having, in the first ordér, no cffect on
it. In constructive wing shapes, where § and B are of %he
same order of magnitude, the velocity at the leading edge is
accordingly not very great. This result is important because
it explains the effect of rounding the ieading edge. The re-
sﬁlt is still'more striking when,we consider the radius of
curvature p of the leading edge. It is, namely, with unes-
sential omissions % = 16 é; (1 - 4 %). The radius of curvature

U
therefore diminishes rapidly with decreasing 6, the rounding
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off of the leading edge belng very élight, and the maximum ve-
locity rcmains within wmoderate bounds. The negative pressure
on»the lcading edge, which, according to Bernouilli's cquation,
is proportional to q®/V?, is computed by the introduction of
the radius of curvature in the first approximation, to

. I consider this simple formula worthy of attention.

he course of F along the top of the wing can finally
be characterized as follows: A+t some distance from the lcading
edge, F changes but slowly. If, therefore, the maximum value
of F is much greater than unity, it falls abruptly at first
and then graduallj approaéhes the value at the trailing -edgc.

Only in the vicinity of the leading cdge does the factor

2

F oive us sufficiently accurate information concerning the
les) =

v

course of the velocity q. Everywhere else we need to know
tHe course of 0. This can be easily found geometrically from
Fig. 1. On the leading cdge ¢ has the value of 1/2.  From

the triangle HMO, it follows that o5 assumes its minimum value

for the angle w4, which 1s given by
e o
810 Wiy 3
. o2 = 2 .2
sin A Vo &Fcod A+ T sin” A
Hence o
. _ 1
gin (Dmin r P 3
/ 43 + 4T
'\/ f&ﬁ ) I?,

For the angle 2 Wpin, %We again have O = %- and then ¢



-
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increases further, up to the angle wp 4 = Wpin * ™. The value

increases with £/5. For £ =0, u = 0, Thcnce

8
the valuc of o is smallest on the trailing edge and greatest

of Yiain min

(og

on the leading edge. Conversely, for = 0, Wpin = (W/2) - A

-
and is thereforc situated in the middle of the lower surface.
In zeneral, with increasing £/6, the minimum value of o
moves from the trailing edge to the middle of the lower sur-
face; the point where ¢ = é» again from the trailing edge to
the lecading edge; while the maxirmum value of 0 moves simul-
tanecusly from the leading edge to the middle of the upper
sur face. |

In order to get an icdea of thec course of the velocity, we
must now estimate the mutual effect of the factors F and 2.
I will proceed with this discussion in close connection with
the diagrams, which I must first explain. Their arrangement
is the same as for the diagrams in Eiffel's "Resistance de
ltair.* Each figure has, at the bottom, an accurate outline
of the wing section. Vertically above each point of the wing,
there is plotted from a zero 1ine,on.the vertical the ratio
q%/V?, <the upper curve corresponding to the upper side and
the lower curve to the lower side of the wing section. The
dashed line shows the unit distance from the zero line. The
area enclosed by the ¢®/V® curve gives, when multiplicd oy
Y

2z V¥, the 1ift of a unit width of the wing. The chosen an—

gle of attack is 89%B = 0.1), the air flow being horizontal.
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I am ¢ividing thc discussion into sceveral paragraphs.

1. The strong suction on the grcater portion of the upvpecr
surface is common to al1ll the figures. This is indced the chief
source of the l1ift, whilc thc prcssure on the lower surface
contritutes only a small increment. This can be easily veri-
fied from the general laws. In fact, as already statcd, F
diminisces very slowly along the under surface from the trail-
ing edge almost to the entering point. Hence, F differs but
little, on most of the lower surface, from the valuc |

cos (A + £), which it hes on the trailing odge, and thercfore
0-2
l

3
only slightly below 1, up to the vicinity of the entering

falls

~only a 1little from unity. Since also the factor

point, a/V is certainly not much smaller than one and hence

there is only a slight oressurc.

2. Fig. 2 (f =0 and

)

Ll ‘O)

= f%) indeed shows a suction
effect along a portion of the under sidc. Since the valucs

of f arc here less than unity, such a suction effect can
only be very small. Its appcarance is duc to relatively large
values of ¢ and depends cssontially on the ratio f : §.
Between the trailing edzec and ® = 2w,;., no suction can occur,
because o is here smaller than 1/3. Any suction effect can
therefore be expeccted for only small values of f &, where
-wmin is small. For &6 = O any suction effect is entirely im-

possible, since mein thcnlcorrGSponds to the leading edge.
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The suction eifect has also becn cxperimentally determined by
Eiffel on the wing "en &ile c'oiseau" which probably alone of
all the surfaces tested by him can be corvared with a Joukoweki

wing section.*

b

3. Even on the upper side, the course of the velocity is
characteristically affected by the ratio f : &§. This is clear-
1y shown by Figs. &-4. f/8 is expressed on the upper surfece

in the position of the angle W, ., = @

MAX dyin T T, for which ©

has its maxinmum value. The fact that O continues to increase
from the leading edge as far as w, ;. causes the maximum value
of 'q to move farther from the leading edge than the maxirum
of F and the fall in velocity to be less rapid. We differ-
entiate "slightly cambered" wings (f£/6«<3), in which wy,y in
near the leading edge, and "highlj cambered" wings (£/6>3),

in which wp. lies nearer the middle of the upper surface.
Fig. 3, with f = O, 1is a typical example of a slightly caw-
bered wing. EHere the maximum value of ¢ 1is situated in the

leading ecdge and the values of F and ¢ therefore deccreasc

* Biffel, "Resistance de 1l'air," 1911, Table XII; also p. 105
and "Complement," p. 192 (Yaile Nieuvort"). The Eiffcl fig-
ures show that the suction effect increases on the under sice
with decreasing angle of attack. This is in agrcement with
our theory, for the factor F increases, as shown by formula
6, at every point on the under side with decreasing . An-
other suction effect, which Eiffel finds on the trailing cdge
of nearly all wings, is doubtless due to the formation of
vorticcs.
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simultancously, thus producing 2 very pronounced maximum_voloc—
ity, although the maxirmum veleocity is not important in itsclf.
On the other hand, Fig. 4 (f/l = 1/5, &/i = 1/20) shows, in
spite of a twice ag large maximum velocity, a rcimarkably slow
velocity decrcase toward the upper side. In fact, in these
experiments, the maximum of o is situ&tedwat about 1/3 of thb
uppér side and a morc ropid velocity decrease accordingly
Tirst begins bLehind thig point. We note also the smallbinter—
meciate maxirum on the upper side, which is caused by the in-
crecase of o° in spite of the simultaneous decrease in F. The
mean between Fig. 2 and Fig. 4 is held by Fig. 3, with
f/i = 1/10 and 64 = 1/30. Here wpayx does not lie very far
from the 1éading'edge, about 1/8 of the upper side, the in-
crease in 0° vanishes under the decrease in F and along the
greater portion of the upper'side we note a uniform falling
off in veiocity, due to the simultancous decrease in the fac-
tors F and 0°

These relations were also found in Eiffel's experiments
with the wing "en aile d'oiseau." Even the intermediate maxi-
mum of g on highly cambered wings 1s found on his figures.*

Lastly, I wish to call attention to the fact that the
measurements of Fig. 4 appcar to me to be Worthy of commenda-
tion, on accounf of the very uniform stressing of the upper

side.

* On Eiffel's figures, it appears that, with decreasing P,
the maximum velocity moves backward from the lecading edge on
the upper side. This also agreecs with the theorctical conclu-
sions.
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4. Fig. 5 has a very slight rounding (&/t = 1/850) at
f/l = 1/5. Therefore % % = 2.5 and hence the verj high ve-
locity maximum on the leading edge. We have already seen that
the high maxima must decrease very“rapidly toward the upper
side. The region of this steep decline corresponds to an angle
of about the size B . During the drop, hoﬁever, there is in
the figure a"long space of almost constant velocity. This is
explained, as in-paragraph 3, by the fact that the maximum
value of 0 ig located =zt about 1/2.5 of the upper side. Only
behind this voint is there again a rapid decline to the trail-
ing edge. This behavior is generally characteristic for higﬁ—
1y cambersd wings of slight rounding énd'oocurs also on Eif-
felts diagrams.

As regards}the production of the diagrams, it may be noted,
in conclusion, thaﬁ they were drawn according to the very con-
venient method of E. Trefftz, as set forth in the accompanying
note. ‘Wherever it appeared necéssary, the plotting was veri-

fied by calculation.
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GRAPHEIC CONSTRUCTION OF JOUKOWSKI WINGS.*
By E. Trefftz.

In plotfing the cross-sectional outline (or profilec) of
a Joukowski wing, we proceed as follows (Fig. 6).

We first plot an xy system of coordinates with the ori-
gin O such that the x axis forms the angle B with the hor-
izontal cdirection of the wing and mark on the x axis thc
point L, for whiéh x4= -1, anc. on the y axis the point
F, for which y = f. |

We now describe two circles and-iabel them X, and K;.
The center M of the first circle is situated on the straight
line LF at a distance 26 from the point F (beyond the
section LF). The circle, moreover, passes through the point
L. The second circle likewise passes through the point L
and its center M. 1is likewise on LF, the position of M
on LF Dbeing détérmined by the following condition. If OV
is the portion of the positive x axis cut off by the circle
K, and. OF; the portion cut off by the circle K, tuen
ov, x o, = 1° .

We now draw, from.the point O, +the two lines 04, and
OA-, 50 as to form equal angles with the x axis, All veing
the point of intersection of the first linec with the circle

X, and A -the intersection of the second line with the circle

* From "Zeitschrift fir Flugtephnik;und Motorluftséhiffahrt,”
Hay 31, 1913, pp. 130 and 131.-
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Kz. Then the center P of the line A/ A is the point sought
on the. Joukowskl wing profile.

In vlotting the preceding figures, 24 noints were found
in this manner for each one, by shifting the first line from
thé point L 15° each time and drawing the second line sym-
metrically with reference to the x axis.

In order to determine the pressure on each point of the
'profile, when the wing is exposed to a horizontal wind having
the velocity V, we must know the velocity g at which the
air flows by cach point of‘the profile. The pressure on sach
unit area of the wing surface is then proportional to (f..

We can now find the values of q in a very simple man-
ner. For this purpose, we draw a horizoptal line through the
point L. If we designatc by h the distance of the point
4, (of-the circle Kl)'from this horizontal’line, we obtain,
for any desired point P of the figure, the corresponding
value of g 1in the following manncr. We take from the dia-
gram the distance bpetween the points A, and A,, at the mid-
dle of which we had found the point P, and also the distances
of the pdint A, from the origin O, from the center I, of
the circle X, and from the horizontal line passing through

L. We then have
O A, 2 h
Ay A H A

q=71

The mathematical proof for the given constructions is sim-

ple. Ac already mentioned, the profile of a Joukowski wing
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can be constructed by describing on the 2z plane, with the aid

2

2

of the formula z = { + Vi the circle K, determined by

8 ) .
the camber and radil difference. This circle passes through
the point ¢ = - %.

The systems of coordinates are plotted both in the ¢
plane and in the 2z plane in such manner that the £ axis and
the x axis form the angle B with the'horizoﬁtai ﬁind direc~
tion. |

If we now desoribe,.in the 2z plane, both circles, which
we obtain from the given circle K in the ¢ plane by employ-

ing the two conversion formulas

Zl = BC a:nd. Za = ‘5"‘:
[SH&

then these are the same two circles we designated above by
Kl and Ks.
The point A, has thec coordinate 2z  and the point A,

has the coordinate 2z,, hence the center of A, A, has the

r
4¢
therefore an actual point on the Joukowgki curve.

1

coordinate 2z = % (21 + 2z2) = (+ as desired. P is

The following formila holds good for the velocity gq at

which the air flows by every point on the Joukowski figure.

q = flE.m)
: dz
Y

¢

2
From z = { + éf it follows that
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dz . -1 (s PNz - 2%
2L =] w L = = (B - LV 2L 7 2
ag 4 ¢ 3¢ \ ¢ 3t/ 24
whence we obtain
ldz | _ Ay A
a¢ C A
since the absolute value of 2, - 2, equals the distance

A, A, and the absolute value of z, = the distance 04, .

For % (£,n), we obtain, from formula 2 of the preceding
2Vh
M, A, ,
A, from the horizontal line passing through L. In the ex-

article, K = , in which h 1is the cdistance of the point
pression there given for the numerator, it is equal to h and
the denominator is equal to g(MlAl), as may be easily veri-
fied. We thus obtain

2 h 0
=3 V (2
TV s, &

A
A

(&)

which is just the formula given above for q.

Translation by Dwight M. Miner,
National Advisory Commlttee
for Aeronautics.
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