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J.lTAT I Ol-TAL ADVISORY OOl'-1IHTTEE F OR AERONAUTI CS 

JillVAN CE CONF IDENT I AL REPORT 

FLIGHT TESTS OF AN ALL-HOVABLE VERTICAL TA I L 

ON THE FA I R CHILD XR2K-I AIRPLlu.1'E 

By Haro l d F . Kl e c kner 

SUHH,ARY 

Fli gh t tests have been completed of an all- n ovable 
vertical t a il of reduced a r ea on t~e Fairc ild XR2K-I 
airplane. Results a re in general agreement with the r e
sults p r eviou s ly obtained with a larger al l-movRble tail. 
The r a n ge of p r a ctical hinge positions and flap- linkag e 
r at ios waS e xpl ored in p3rticular . It was found that 
re st r i cti on s to the rearwar d p lacement of t h e hinge were 
necessar' to av oid small- amp l itude snak i ng o s cill at ion s . 
Several a~vantage s of the all- movable tail continue to 
be evi d e nt : gr eater effect i veness , p redictable and easi ly 
a dju stabl e h i nge- Dom ent char acteristics , and rudd er stall
in g ce l ayed to l a rger a n g les of sideslip f or an airplane 
with rudder-fized weathercoc p stability. 

n T3.0DUC ... 10 

The theory of operation of an all- movable tail sur
face and the ~esults of p relimin a ry ~light tests of an 
a l l - mov able t a il on the Fairchild XR2K~1 airplane are 
g iven in reference 1 . The fli gh t tests of the a11-
movaole type vertical tai l have been continued in order 
to study t~e eff e ct s of a marked reducti on in the verti
cal- t a il a r ea wi th the sane airp lane. 

T~1.e second ta i l 'ras expected to decrease the direc
t i onal stab ility of the airp l ane to the po int where com
p lete stalling of t h e all- movable tail would occur i n 
side sl i ps a~d permit t h e study of its behavior under the 
st all eQ cond itions . In add i t i on to the study of the 
tail- stalling chara c terist i cs , a study v as planned to d e
termine , insofar a s possible , the practical limits o f 
hin go p or.ition and. f l ap- linlcage rat i o . The p resent re
port describes the results of these tests. Subseq~en t 
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addit i ona l wo r k was dorie oi n studyi n g t h e s mall- amp li tude 
rudder os cillat ions ob ta ined unde r cert ain cond ition s , 
bu t detail r e~ult s of these t es t s a r e not yet avai l ab l e . 

SYMBOLS 

It will be noted th a t the symbo ls used in reference 
I for flap def le ction (i) and r udde r deflection ( 5 ) have 
been chang e d in this pape r to the RACA standard notation 
Sf and 6 r respectively . 

c 

cd 

Cz 

cL1 c /4 

Ch 

CL 

ha, 

h Sf 

H 

IZ 

'1 

'10 

r 

R 

mean aerodynamic chord of tail , inches 

se cti on drag coefficient 

secti on li ft coef f icient 

s cti on p itching- moment coC)fficient 

r udder h i nge- moment c oefficien t 

rudder lift coef:icient 

distance "bet,ol een hinb8 point and a erodynam ic 
cent er of a ll-movable tail, fraction c 

d i s t ance between hinge p oint and cent er of p r es
sure of lift due to f l ap defle c t i o~ , fr a c
ti on c 

r udd er hinge- moment , inch-p ounds 

monent of inertia about z ax is, slu g fee t 2 

do-nam ic p re ssure 8.t tail , pounds l)e r square fo ot 

o free- s tream dy:p.ami c p ress u re, p ounds per sCluare 
fo o t 

angu l a r accele r at i on about 
se c ond per s econd 

Reyno l cLs °number 

Z ax is , r ad i a ns pe r 
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conventional fin and rud c1..er area , sq.uare feet; 
all-fllovable tail area , sCluare feet 

section angle of attack, degrees 

effective anglo of Qtta c~ of tail, degrees 

engle of attack of ve r tical tail, degrees 

aae/~&f rel~tive effectiveness of flap on all-movable tai l 

oao/Oor ~elative rudder effectiveness 

deflect i on of llap of all-mo vaD le tail , desrees 

deflection of conventional rudder, degrees; de
flection of "ll-movable tail , decrees 

Oho ::: ?JGh/OOr 
r 

TAIL CHARACTERISTICS 

The second all-movable vertical tail (figs. 1 to 4) 
waS simil a r to but was one-half the area of the tail sur
face descriDed in reference _ . The ch a racteristics of 
the second t~il are as follows : 

Fixed a~ea ( fuse l age extension, 
f £"ir 111[;;) , squar e feet . . . .. ..• 

Movnbla area (including flap area) , sCluare 
Flap area (19 per cent of 

11 0 v~ ... b 1 0 ~),l' e a) , s q u ar e fee t 
AS 1)ect :cat io 
Taper r o.tio 
i.1ean nerotlynamic chord , c , inches 
Airfoil section 

feet 
1.3 
5 . 8 

1.1 
2 . 9 

1. 5 : 1 
• 17. 8 

1TACA 65,3-018 
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The section characteriRtics of the lACA 65,3- 018 
airfoil a re given in figures 5 and 6. Figure 5 is ta~en 
from re:eren ce 2. Figure 6 is fro~ unpublished data 
ta-_en ill the NAG A lo\v- turbulence tunnel . 

T ~e ta i l was cf wood construction , plywood covered , 
·lith ball be a rings at the main hinge . Provision I'TaS made 
fo r h in e in g the tail at nny po int bet leen 0 . 2G~ and 0 . 36~ . 

Tho fla) was h1ng~d at 80 percent of the airfoil chord 
and se~led ~ith 0 . 008 - inch sheet rubber . The method of 
actuatinc t h e f l ap wa S the saDe as that described in ref
erence 1 with a wide ran go of deflection ratios Bf/Br 

available . Incorporated in the second tail for trimming 
was a unit to chan~e tho initial settin of the flap . 

During t~o course of the tests several minor codifi
cations were made i n the tail arran~ement , as follows : 

1 . In ol'dor to reduce tho control friction for 
rudder- free tests , the rudde' cables were slacked and a 
bun~ee WD.S used at each cabl o to keep the slack at the 
tail end of the syste~ . The arrangement permi tte~ the 
pilot to use the rudder) yet rem oved the f riction of the 

'pedal and cable system for approxinately 8 0 of ri ght an d 
left rudder Dovement ; the friction ~aS thus reduced frofl 
about 20 inch-pounds to 5 inch-pounds (static moment about 
the rudde r ~inge l ine) . 

2 . ]'or two flights, ,'reight 'faS added for vc. rd of the 
hing e . This add ed weight chan ged the mass balance to 
about 50 inch-pounds of overbalance and put the center 
of Gr av ity of the tail at 0.30~. 

n 
U . I n order to obtain a small value of °116 ~ 

I 
out using an excessively low fla~-linkage r atio , a 

·r i th-

partial- span flap was used on the tail for one flight . 
The ori ~ in a l flap ( f ig . 4(a)) waS cut in two , and the ' 
upper h8-1f H1S fixed . (See figs. 3 and 4(b) . ) The char 
acteristics of the tail in this revised form are as fo110\vs : 

Flap Span (46 percent of tail span) , inches . 
Flap area (10 percent of 

movable :J.reD.) , sq.u ar e feet 

23 

0 . 6 
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TESTS 

The tail configur a tions covered in the flight te sts 
are summarized in table I. 

Iieo.surements were macle .,.lith :i'TACA recorcting i nstru
ments of indicat ed a ir speed, yawing velocity, angle o f 
sideslip , co nt rol pos i tion , and rudder force . The test 
d a t a presented were obt a ined in the gliding condition, 
but in a ll case s tests ~ere a lso made with powe r on . 
Runs were made ' at app ro x imately 60 and 85 mile s per hour 
i nd ic ate~ airspeed ; corresponding Reynolds numbers for 
t he tail 1ere about 800,000 and 1,000,000, respectively. 

The tests were of five types : steady sideslips , 
r uclcler Hkic::s ~ 11 l ate r al oscillat ions , aileron rolls, 
and straight flight r~ns. For the sidesli9s and r udder 
kicks , a flap-lin! . a g e ratio Of/O r of 2 . 2 1,'I'aS used. 

Th~ value of the linkage ratio taken is the slope throuGh 
zero o~ the c~rve of the variatio~ of flap deflection 

'with ma in surfa c e def lection, and the value 2 . 2 is the 
linkage ratio used wi t h the first al l-moveble tail . (Seo 
fi g . 1 6 , ref ere n ee I.) The sid e s 1 i pre cor :i s 'r ere 0 b t a i n ed 
as tho sideslip faS s l o : ly incre ase d from zero to the 
max!mu~ . The rudd e r kicks i nvo l ved abrupt rudder deflec
tion uith t~e stick held fix ed in the trim pos ition. 

The l a tero. l oscillations werD of ti0 ty~ es . One 
typo was started by ap~ly i ng an d releasing the rudder 
with t~e sti ck held fixed . The second type was made wi th 
the rucdcr free by abrup tly o.PFlying the ailer on control . 

Aileron rolls were nade to investigate the direc
tiona l stebility and tail stalling characterist ics. The 
maneuver consisted of applying abrupt aileron deflection 
to the l:'mit of a " st opl! and holding that ct eflection un
til the Dax i mum an 6 le of sideslip was obtained. The 
amount of aileron deflect i on "'TaS l imited to g ive reaSon
able allounts of sideslip. ~he aileron rolls and later al 
oscill at i ons ~ere made with various fl ap-l inkage ratios 
and tail hinge positions . 

Recor&3 of strnight flight were made in ~lights 8 
and 13 to o~tain hinge- monent and flap-eff e ctiveness 
d ata . 
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RESULTS AND DISCUSSIONS 

~nllS\.£!' __ Q_~UeE.tive~es~.- The naximum yawing veloci
t i es and ecceler ations obtained with rudder deflectio~ 
i n the rudder k i ck tests are rresented in figure 7 . 
The values of ya\V'ing acceleration \!ere ottained "by dif
ferentiating the records of yawin~ veloc i ty . To the 
table of r eference 1 , w~ich is re~ ated herein , is added 
the rudder erfectivenesg as deter~ined for t~e second 
t ail : 

--------------E ---------q ~r J' - - q ~-- 0L OT 
q-o -0 00 ". Or .wa 

- --- --- - - -- ----

Tail I Z 

Ori e in a l 1660 1'""',7 O. SO 9 . 3 0 . 025 0 . 027 0 . 034 
Large all- movable 

tail of reference 1 
Second all- movab l e 

20S0 11 . 6 _ , S5 10 . 0 . 050 . 075 

tail ,1890 5 . S , SO 10 . 01 . 029 
__________ ___________ -L ________________ ------L ______ . __ _ . 079 

. 045 

. 042 

Inc1uQed in t e effectiveness of the all- hlovable ta i l 
i s the ef activeness of its flap . For the irst all
movable tell, a vnlue of 0 . 3 ~aS assumed for O~e/OOf ; fo r 

the sec02d tail (sealed flap) ,- tests indicated a value 
of 0 . 4 . 

~iLe.H i oAal ~j; a1?il.t._:LY: .- ~he var iat ion of rudcLer ang l o 
wi th angle of sideslip obtained in the steady sideslips 
is p rese:1tocl in figure (3 together 'ri.th simil a r results 
f r o! rO£'ej:ollco 1 . The directional staoility measured in 
t his way was not mater i ally reduced by the chango to the 
small tail . EviQontly the airplane is about neutrally 
stable directionall§ ~ith the tail off . 

~ho oxtent to wh i c~ the positive floatin G ability of 
t ho ta i l incre~sod '0_ e control-free directional stability 
waa invostiga ted in abrupt aileron rol l s . T~e results 
g ive~ in figure 9 s~ow tho sideslip obtained with 12° 
tot el aileron deflocti on for various rudder flo a ting 
r atios . The floating ratio n = Ch /Ch ~ is negative 

CG ~ r 

'because is nogativo . ~he Ch is:9 0 G it i v e n.nd --u 

t er~ positive floating tendency arisos from the fa c t that 
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eh is positive. A posit i ve floating tendency gives a 
ex. 

negative flo at ing ratio . The method of obtaining the 
floating ratio is dis cussed subsequently. Curves are 
also shovll1 in figure 9 of the sideslip that could be ex
pected theoretically . It is apparent that the floating 
ability of the rudder reduced the a ngle of sideslip, but 
t his l' e d u c t ion was not as gr eat as was e xp e c ted. The 
principal reason ap p ears in the ti c e histories (fi g. 10) 
of a typ ic a l a ileron roll and a small ampli tude oscilla
tion uade in fliGht 11 with the tail hinged a t O.30~ and 
a fl ap-linkag e ratio of 2 . 35 . The floatin g ratio obtained 
for small angles of sideslip was not maint a ined for l a r ge 
angl es. 

Ji1bg,Q,~r-.:f.:r.J2iL1l;!,1er.§,1 motiou. . - The lateral oscillation 
p roduced by deflectin the rudder and releasi~g i t at an 
angle of sideslip is the typ e from thich the buffetin~ 
oscillation nentioned in reference 1 can be obtained. 
With the second tail, buffeting faS obtained with low BS 
well as ·wi th h i gh floating r atios if the rudder waS re
lease d at a sufficiently l arge angle of sideslip. The 
tests confirm the opinion that the oscillation is not 
particul ar l y ob jectionable because it cannot be produced 
excep t by t~is maneuver . 

In flight 6 with the hinge at 32 percent c and a 
1.9 linkege ratio, a continuous yawin g oscillation 
(snak in e ) of a bout 1 0 was obtained with the rudder free. 
This snaking is the oscillation mentioned in referonce 1 
that sometimes occurs "l ith a rudder havinE; positive Oh (X, 

and fr i ction . Inasmu ch as the all- movable tail inst al la-
tion afforded a re ady me ans of independently adjustin g 
Oha a nd Ch6r; an add iti onal series o~ tests (flights 

7 to 19) were made to study the snakin g problem. The com
pIe t e :;: e s uI t s 0 f the ad (1 1 t io n al t est s ar e n ot yet a va i 1 a
ble; however , the iD~ediate results a re c iven in the 
follo\·ri ng table \"[h 1c __ lists the c onf i gurations from !h ieh 
sn ak ing resulted. 
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Fli ght Hin g e positioi1 
(l1ercent c) 

32 
30 
30 
30 
26 

Flap- linkage 
rat i o, 8f /8 r 

1.9 
1. 05 
1.'7 
1.7 
1.5 

Approximate friction 
( i:l,-l b ) 

5 
20 

5 
5 
5 

aRu~der nasa overbalanced about 50 inch- p ounds . 
bHalf~span flap . 

The magnitude of the oscillati ons las less than 1 . 5 0 

except in flight 10 , when i t was about 6 0
• 

T~le test resu. ts indi cated that hinGe posit ions ancl 

~~~ X ChO', _ < fl ap-lin~age ratios that gave a value of = 0 . 7 
oOr Ch ··or 

couJ.d be use d with the second all-movable t a il without 
experiencing snaking. However, some norm a l l RterRl osci l 
l a ti ons of t he airplane that were ]roduced with ab out 

this value 0: X ~ i d not satisfy the require-

ment of reference 3, th a t tho oscillation should dam p to 
one~half aLlplitude in t\'TO c y cles . A second r0C1.u..irement 
of refe rence 3, that any oscillation of the rudder shall 
have c~isap~J ear ecl after one c ycle, vas not satisfiecl "hen 
the rud{er vaR given a hi~h floating ratio. In the 
present tests no particul a rl y undesirable effects were 
not ed when oscillations of t he rudder dontinued aft er one 
cycle if the os cill at ion of the airplane was sat isf Rct o- · 
r ily dc'1.L1 :;)ed . ~osts \·, ere macle , ho 'rey el" , onJ.~T in smooth ai r 
conditio ns . 

J..£::.:!:L.,~.~.Q1:1i~!3; .- Partial stalling of the tail 'das ob
tained in steady SideSlips . Complete stalling of the 
tail was obtained in rudder kicks from a sideslip and 
with rudder f ree in aileron r .olls , No adverse effects 
were encountered . A time history of a t ypical .aileron 
r oll made with rudder free i n which the tail stall oc
curred is p resented in figu r e 11 . The record shows that 
the rudder started to f l Oat against the sideslip , stal led 
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at abo~t at seconds , and rema ined stalled near neutral 
as the siCteslil' passed a 1I1~ximUll). The pilot resumed COn
trol at ~bout 5i seconds . Th er e i s no evident tendency 
for t~e rudd er to start oscillating between the stalled and 

~ the 'unstal l ed conditions as it does wh e n releaGed in a 
.1' 
.C\ sidesli l) . 
~ 

R:t:l.9:.9:.f.r .. _hing~ mO!.!!.~I!..ts . - It i s apparent that a \lide 

r anGe of rudder force characteristics can be obtained by 
variations in the tail hlnge pos iti on and flap-linkage 
r atio . An attempt has been mad e to cor relate value s of 
hin ge moments calcul a ted by neans of simplified formulas 
with the hinge Doments measured in fl i ghts 8 and 1 3 , 
which were strnight fl i gh t r uns with various trim settings 
(v al'iouG -a luGs of at and O;i.') ' 

It is convenient to consider the h in ge monents in 
terns of the lift or nor~al force acting on the tail. 
If the lift d"le to angle of attac_~ of the tai~ a cts at 
the aero~ynami c center and the lift &ue to flap deflec
t i on acts =t some fi~ed point~ the following relations 
are [-.:praren t: 

In these relations the contribution of the flap hinge 
momont abo~t its own hinge is neglected . 

( a ) 

( 3) 

Tte float i ng r atios obtained wi th equat ion ( 4 ) we re 
i n agreement wi th those i ndicated in the ruader-free os
cillat i ons when the aer odynam ic center was assumed to be 
a t O . 23~ and the center of p re ssure of the lift due to 
flap deflect i on was ass u med-to be O . 50~ . It follows then 
that 



10 

ha, = ( h i nge position - 0 . 23c) 

h Of = (0 . 50c - hinge posit ion) ( 6 ) 

where t_B h in g e p osition is in chord lengths back of the 
l ee,ding edge . 

For the first hinge-n o~ent calculations , values of 
~j~o = 0.8 ~nd 0L = 0 . 042 ootained from the rudder-a 
effectiveness calculat i ons lere used i n equation (1) . A 
comparison with the me asured a lues is given in figure 
1 2(a ) in wh i ch the c a lculated values a re seen to De lower 
th an the measured v~lues . Better ngrecmen t was oot a ined 
when it waS assuned that aj = 0.9 and , from fi gure 3 

~ -0 

of l' e fer en c e 4 , 0T = 0 . 53 for a tail aspe ct ratio of .ua, 

2.9 if t~e gap at the ootton of the tail was ass umed to 
elininate any ol1ci- plate offect from the hor izontal tnil. 
The cor r e]. at i 01':' for t his cas e iss h 0 "ill ill f i gu r 0 1 2 ( 0 ) . 
The results i ndjcate that hinge moments for the 0.11-
movaole tail can DC predi cted 1ith sufficient accur acy 
for the p r esen t oy the simple relations established ao ove. 

i£he values of CLa, ind icated oy the ya1.'ling accelera

tions arB lo we r than those indicated by the hinge- moT;lent 
analysis a~ld b- reference 4 . The most lo g ic a l exp l anation 
for the disag eeEi ent appears to be the e xper imental error 
in the determination of yawing ac celerations . 

~Y.:,i~re~ea!.ch. .- Tb.e a l l-movable t ail continue s to 
s how p romise as a means of improving the directional con
trol of aircr aft . The greater effectiveness of the tail 
may per n it some reduct ion in the size of tail surfaces . 
If stfficient tail area is used to give rudder-fixed, 
weathercock stability , t he all-movaole tail will increase 
the an~le of sides lip a t which tail stalling occurs . ~he 
aVD,i l a"b ility of h i nge- moment adjustment by means of the 
hinge location and the flap-linkage r at io offers the op~ 
portun i ty to obtain reduced rudd e r forces . 

It i s planned to continue the resenrch with tests 
of a n all- moYaOle vertical tail on a pursuit - type a i rplane . 
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CO:tTCJUSIONS 

Fron the results of fli.ht tests 0; B.n all- movable" 
vertical tail of 5.8 square feet area on the Fa i rchild 
XR2I:- l all' p l ane , t:1e following observaJ,jions Can be Dade : 

1. The tai l character i stics W9re c~npider ed satis
factory over a nO£ll&l range of hin~e positions and flap-
1 i:L1.1:ag e T G. t i 0 8 • 

2 . ~he f'oating r atio of the tail was lower at large 
angles o~ Sideslip than ~t smal l angles; as a result , the 
incrcas9 ~ n li.'ectional ~tability with ~udde~ f r ee las 
no~ as g~eat nO was exp9cted. 

3. Close co~trol 07er t~e floating ratio of t~e ta i l 
was necessary in order to avoid continuous yawing oscil
lations of s~all 3mplitude (snakin~) and to i1 sur e Patis
factcry dam~in~ an~ rudder moveEent in rudde~-~ree lateral 
oscj.lla'liions . 

4 . r· tc.lll.E& 0: the ta:'l \Tas obt[linec:. in rudde ... ,:ic::8 
and ~ileron rolls anu was apparent to the pilot only 
thro~gh obser' u tion of tuft action on the tail. Complete 
stallins:us !lot obtained in steady sideslips as tho Sideslip 
angles obtein~~le ~ith full rud~er were iaBufficie!lt to 
stall tho tail. 

5. i i casuT€.d hine;e moment~ 'rere in agreenent ,·lith 
hinge ~oDents calculated by simp l ified relations bacod on 
the lift acting on the surface. 

Langley :.loEloriu.1 Aerol1D:u.tical IJaboratory, 
r ..... t i 0 !1. ;:.1 Ad" i ::{ 0 _ " Com Il itt e 0 f O:r' }. e'.' 0 :c au tic s , 

Langley Field? Vao 
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TABL.E I 

RESU'HE OF TDSTS 

Fl ight 

Ein~-o---'~l~j,J ---;-' APpro::~::~~-1 
'.' 11n£aC G f ' ~ ' rOSl.v::'or.. J. ' i rlClJl.On 

(uercent C )I ~;/~~ ' ! (in .-lb) 

------- ---'------ -----+--.... ---------_ .. . 

I 1. 5 i J. 

4 
5 

" 
:J 

7 
3 
9 

J.O 
11 
18 

27 
27 
27 
30 

32 
Z? 
30 
30 
30 
30 

0'18 30 
0..14 30 

15 30 
16 30 

I 1. 5 I 
I 2 . 2 

I 
I 
I 
I 
I 

2 . 2 
2.:3 
l.9 
3,9 
2 ,. 0 
2.35 
1. 05 
2.35 
1,7 
1.7 
1.7 
r..3 

3:.3 

L __ ~~~l~)~ __ , 1.5 
l.0 
1.5 

aB~dder naSS over- balanced , 
b-- 1 f' J:' 1 l-ia __ -sp !l .'. _ ap . 

20 
20 
80 

5 
5 

20 
20 
20 

"i 

5 
20 

[j 

:5 
10 

[5 

[5 j 5 

13 



Figure 1.- Second all-movable vertical tail on Fairchild XR2K-l airplane. 
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NACA Fig. 2 

Figure 2.- Second all-movable vertical tail with full-span flap 



NACA Fig. 3 

Figure 3.- Second all-movable vertical tail with 
half-span flap. 
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