

NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution.

AT IOW AIRSPEED

By David Biermann and Robert N. Conway

SUMMARY

An analysis, based on recent propeller data, was made of several methods for improving the thrust of propellers operating at low airspeeds. The analysis consistod of dotermining the improvements in thrust or efficiency which could be obtained by the following expedients:
(a) Increased number of blades
(b) Increased blade width
(c) Increased diameter
(d) Dual rotation
(e) Two-speed gearing

The analysis indicated that all of the above methods were very effective in increasing the efficiency of hichly loaded propellers operating at low airspeeds, particularly the last one listed.

INTRODUCTION

The problem of improving the thrust of propellers at low airspeeds is primarily one of reducing the ancle of attack of operation of the sections in order to improve the I/D. Reducing the blade helix angle. also improves the thrust for a given power cratput owing to the effect of rotating the lift vector into a closer alinement with the thrust vector, thereby reducing the rotational loss and at the same time absorbing the engine power. That the low-speed operating conditions of conventional threeblade controllable propellers on present-day high-performance airplanes is not conducive to high efficiency may readily bo seen by referring to figure l, which shows the blade ancles, β, for various conditions of power loading and $V / n D$. Obviously, take-off blade angles of from 30° to 60° correspond to angle-of-attack values ranging well beyond the stall, as may bo noted from an inspection of the angle-of-attack curves given in the lower part of figure 1 .

Figure 2 presents an L / D curve for the Clark Y section which shows the macnitude of improvement that accompenios any reduction in the angle of attack.

There are several methods for reducing the angle of attack and blade angle for conventional three-blade propellers, which may be enumerated as follows:
(a) Increasing the blade area by
2. Increased blede width
2. Increased number of blades
3. Increased diameter
(b) Increasing the rotational speed for the take-off condition through the use of two-speed gears.

Another method for improving the efficioncy is by reducing the rotational loss by dual rotation or through the use of fixed surfaces mounted in the stream ahead of or behind the propeller.

These verious methode for improving the thrust of propellers for low-speed operation are herein analyzed on the basis of test data.

PRESEMTATION

The data used in making these analyses were obtained during the past 2 years from tests of single- and dual-rotating propellers. The four- and six-blade single- and dual-rotating propelior data discussed herein were obtained from reference 1 ; the other data discussed horein will be published at a later date. A detailed description of the set-up and testing technique is given in reforence 1. Figures 3 and 4 are a photograph and a dimensioned plan view, respectively, of the set-up. Ten-foot propellers, Familton Standard drawing Nos. 3155-6 (right-hand) and 3156-6 (left-hand) were used. Plan-form and blade-form curves for these propellers are provided in figure 5 .

Symbols. - In the analyses presented herein, standard propeller coefficients and symbols are used, as listod below:

```
C
CTT}=\frac{\mp@subsup{T}{0}{}}{\rho\mp@subsup{n}{}{2}\mp@subsup{D}{}{4}},\mathrm{ thrust coofficient
\eta=\frac{CT}{\mp@subsup{C}{P}{}}\nabla/nD, propulsive efficiency
C
V/nD advance-diameter ratio
P power of engine, foot-pounds per second
T
T total propeller thrust
AD increased drag of body due to propeller slipstream
In propeller rotational speed, revolutions per second
D propeller diameter, feet
V air speed, feet per second
\rho mass density of air, slugs per cubic foot
Po mass density of air at sea level (0.002378)
A.F. = 100000
b blade width
r station radjus
R propeller radius
\beta blade angle at 0.75R, degree
V
V}\mp@subsup{|}{\mathrm{ alt }}{}\mathrm{ speed of sound at altitude
```

∇_{R} helical tip speed of propeller
$S_{o} \quad$ circular tip speed of propeller
$\alpha_{\infty} \quad$ section angle of attack at 0.75 R for infinfte aspect ratio, measured from chord line

Method of prosentation. - This analysis consists of computations showing the efficiency or relative thrust that can be obtained from certain propeller and gear arrangements for a constant power input. The thrust ratios and efficioncies are plotted against $V / n D$ or constant values of C_{P}. Constant C_{P} represents also constant engine power input, assuming that constant speed propellers are employed and assuming that comparisons are made on the basis of constant altitude.

The $V / n D$ paremeter represents velocity for the general case since both n and D are constants. For instance, when n or D was changed, as in the case of two-speed geaxing, the plots were based on the $V / n D$ corresponding to the single speed arrangement. The $V / n D$ range is from 0.3 to 3.0 and C_{p} range is from 0.2 to 0.6 .

In figure 6 is a chart giving values of C_{p} encountered for different airplane designs, presented in terms of high speed and number of blades from three to eight. For noarly all present-dey airplanes the propeller is designed to operate at noarly peak efficiency for the high-speed condition at the critical altitude. The power coefficient is defined, therefore, for critical altitude operation, assuming constant power and rotational speed. The power coefficient for the take-off and climb at lor altitude will, of course, be lower then that for the critical oltitude because of the higher air density, assuming that the engine power remains unchanged. For constant values of power, rom, and diamotor,

$$
C_{P_{0}}=C_{P_{\text {alt }}} \frac{\rho_{\text {alt }}}{\rho_{0}}
$$

Scales of ordinates for sea-level power coefficients, $C_{P_{0}}$, are given for airplanes having critical altitudes of 22,000 and 40,000 feet. This chart shows, for example, that for a high speed of 420 miles per hour at a critical altitude of 22,000 feet, and for an eight-blade propeller the $C_{P_{a I t}}=0.77$ and $C_{P_{0}}=0.38$.

The sea-level power coefficient ($C_{P_{0}}=0.38$) applies to the take-off analysis. The chart indicates that take-off power coefficients raneing from 0.05 to 0.6 may be expected for military applications.

Solidity analyeis. - The three methods for improving the thrust by means of increasing the blade area, (a) increased number of blades, (b) increased blade width, and (c) increased diameter, will result in essentially the seme effect, except possibly for differences in weights and mechanical complications, provided the tip speed is the same.

The method for computing the thrust and efficiency of propellers having various numbers of blades or having blades of different widths is given in the following outline:

Constants: $P, C_{P}, P, n D$.
(Subscript 3 denotes number of standerd-width blades.)
(Subscript x denotes increased number of blades or incroased blade width.)

1. For several values of $V / n D, \beta$ is read at a constant value of CP from the CP chart.
2. C_{T} is read from the C_{T} chart for values of β and $V / n D$ under (1).
3. The following plots may be constructed:
(a) C_{T} vs. V / nD
(b) $C_{T_{x} /} C_{T_{3}}$ vs. V/nD, T_{X} / T_{3} vs. V/nD
(c) $C_{T} / C_{p} \frac{V}{n D}$ vs. $V / n D$

The outline of the method for improving the thrust by means of increasing the diomoter is givon as follows:

Constants: $P, P, n D$ or tip speod.
(Subscript 3 denotes three-blade propeller of normal diameter.)
(Subscript x denotes propeller of increased diameter.)

1. For several values of $\mathrm{V} / \mathrm{nD}, \beta_{3}$ is read at a constant C_{p} from the C_{P} chart.
2. $C_{T_{3}}$ is read from the C_{T} chart for the values of β_{3} and $V / n D$ under (1).
3. $C_{P_{x}}=\left(D_{3} / D_{x}\right)^{2} \quad C_{P_{3}}$
4. $\beta_{X X}$ is read from C_{P} curves for several values of $V / n D$ and ${ }^{C} P_{x}$.
5. $C_{T_{X}}$ is read for corresponding values of $V / n D$ and β_{X}.
6. The following plots may be constructed:
(a) CT T vs. V/nD
(b) $C_{T x} / C_{T_{3}}$ vs. $V / n D$
(c) $C_{T} / C_{P} \frac{V}{n D}$ vs. $\frac{V}{n D},\left(\begin{array}{ll}\eta & \left.\text { vs. } \frac{V}{n D}\right)\end{array}\right.$

$$
C_{T_{x}} / C_{P_{z}}\left(\frac{V}{n D}\right) \text { vs. } \frac{V}{n D}
$$

In the present analysis a three-blade propeller is compared with a six-blade propeller which absorbs the some power for the peak efficiency condition. The actual blade area is slightly different, owing to the difference in blade interference for the two cases.
$D_{6}=0.75 D_{3}$, instead of $D_{6}=0.707 D_{3}$, which corresponds to constant area.

Dual rotation. - The method for comparing single- and dualrotating propellers is the some as that for propellers of different solidifies and so will not be repeated here.

Two-speed rearing. - The object of two-speed propeller reduction gears is to provide a means for increasing the propeller rotational speed for the takeoff and climb. If the engine could be overspeeded the necessary amount, the results would be the same as those obtained with two-speod gears. The amount that the propeller speed should be increased for takeoff depends entirely upon the tip speeds oncountorod.

Considering the case of single-speed gears, the tip speed for low forward speeds at low altitudes will be a less percentage of the speed of sound than for high-altitude, high-speed operation, owing to differences in the forward speed component of the tip speed, and also to the differences in the speed of sound at different altitudes. In figure 7 is given the relative speed of sound for different altitudes; in figures 8 and 9 aro charts giving the ratio of helical tip speed to the circular tip speed, for various values of forward spoed, helical tip speed, and circular tip speed. From these charts (figs. 7, 8, and 9) the amount that the propeller can be speeded up for the take-off condition may be road - assuming, of course, that it is desirable to obtain the same tip speed relative to sonic velocity for takeroff as that for high speed at altitude.

The following example is given to illustrate the method for using the charts merrtioned:

Given:

Air speed, 400 miles per hour
Altitude, 25,000 feet
Helical tip speed $=910$ feet per second
To find: gear ratio to produce the samo ratio of the tip speed to the speed of sound for take-off.

Solution: from figure $7, V_{c_{0}} / V_{c_{a l t}}=1.097$
from figure 8, $\nabla_{R} / S_{0}=1.305$
goar ratio, $n_{2} / n_{2}=V_{R} / S_{0} \times V_{C_{0}} / V_{C_{2 l t}}$
$=1.305 \times 1.097=1.43$
The method for computing the relative thrust or efficiency obtained at low speeds with two-speed gears may be outlined as follows:

Constants: P, ρ, and D.
(Subscript 1 refers to single-speed propeller.)
(Subscript 2 refers to two-speed propeller.)

1. For a given value of $C_{P_{1}}, \beta_{1}$ is read at several values of $(\mathrm{V} / \mathrm{nD})_{2}$ from the family of $C_{P_{1}}$ curves.
2. $\mathrm{C}_{\mathrm{T}_{1}}$ corresponding to β_{1} and $(\mathrm{V} / \mathrm{nD})_{1}$ is read from the family of $C_{T_{1}}$ curves.
3. For a given value of $n_{2} / n_{2}, \quad C_{P_{2}}$ is computed;

$$
C_{P_{2}}=\left(n_{2} / n_{2}\right)^{3} \quad C_{P_{1}} .
$$

4. $(\mathrm{V} / \mathrm{nD})_{2}$ is computed; $(\mathrm{V} / \mathrm{nD})_{2}=n_{2} \beta_{2}(\mathrm{~V} / \mathrm{nD})_{1}$.
5. B_{2} corresponding to $\mathrm{C}_{\mathrm{P}_{2}}$ and $(\mathrm{V} / \mathrm{nD})_{2}$ is read from the family of $\mathrm{C}_{\mathrm{I}_{2}}$ curves.
6. $\mathrm{C}_{\mathrm{T}_{2}}$ corresponding to β_{2} and $(\mathrm{V} / \mathrm{nD})_{2}$ is read from the family of $\mathrm{C}_{\mathrm{T}_{2}}$ curves.
7. The following plots may be constructed:
(a) T_{2} / T_{1} vs. $V / n D$

$$
T_{2} / T_{1}=C_{T_{2}} / C_{T_{1}}\left(n_{2} / n_{2}\right)^{2}
$$

(b) $C_{T_{2}} / C_{P_{2}}\left(V / n_{2} D\right)$ vs. $\quad\left(V / n_{1} D\right)$

Calculation of thrust of an ideal propeller. - The thrust of an ideal propeller can be calculated from the momentum theory. This ideal propeller is an actuator disk having no losses other than an axial momentum loss. An expression for ideal efficiency is giver by

$$
\begin{equation*}
\frac{\eta^{2}}{I-\eta}=\frac{2 \rho A V^{2}}{T} \tag{1}
\end{equation*}
$$

This expression may be resolved into one more convenient to use by making certain substitutions as follows:

$$
\begin{gathered}
\eta P / V \text { for } T \\
C_{P} \rho n^{3} D^{5} \text { for } P
\end{gathered}
$$

and

$$
\begin{gather*}
\frac{\pi D P}{4} \text { for } A \\
\frac{n^{2}}{I-\eta}=\frac{\pi}{2 \eta C_{P}}(V / n D)^{3} \tag{2}
\end{gather*}
$$

To obtain this in terms of thrust, the substitution of $\frac{C_{T}}{C_{P}} \mathrm{~V} / n \mathrm{D}$ for η is made

$$
\begin{equation*}
\frac{C_{T}{ }^{2} / C_{P}{ }^{2}}{1-\frac{C_{T}}{C_{P}} \frac{V}{n D}}=\frac{\pi}{2 C_{T}} \tag{3}
\end{equation*}
$$

Rewriting:

$$
C_{T}^{3}+\frac{\pi}{2} C_{P} \frac{V}{n D} C_{T}-\frac{\pi}{2} C_{P}^{2}=0
$$

This may be solved to give $C_{T_{i d e a l}}$ for given velues of C_{P} and V / nD, which may then be compared with the C_{T} of any desired. propeller at the same values of C_{p} and $V / n D$.

RESULIS AND DISCUSSION

The results of the analysis are presented in several groups as foll ovs:

I Solidity
Figures
(a) Erfect of increasing the number of blades 10 to 12
(b) Fefect of increasing blade widith 13
(c) Effect of increasing diemeter 14
Figures
II Dual rotation 15
III Two-speed gearing 16 to 19
IV Comparison of methods for increasing thmust and efficiency 20 to 26
V Method for computing changes in static thrust for changes in solidity 27

In this analysis the emphasis is placed on methods for improving propeller thrust or efficiency for the take-off and climbing conditions, realizing, of course, that certain other sacrifices may be necessary. The question is always, "What is the best compromise ? The answer depends upon the particulax design conditions in question; therefore it cannot be answered here. Information for arriving at good engineering compromises is presented, however, in easily interpreted charts which have a general application.

Solidity. - In figures 10, 11, and 12 the effect of increasing the number of blades up to a total of eight is indicated; the diameter, of course, is kept constant. Although the poak efficiency for each propeller is approximately the some in magnitude, it occurs at different V / nD values for the different solidities. The effect of increasing the number of blades is to unload each individual blade, which allows it to operate at lower values of α and C_{I}. This incruases the I / D and efficiency for tho take-off and climb, perticularly for the extremely high loadings, but with some sacrifice at the uppor end of the $V / n D$ range, the amount depending upon the perticular design conditions under consideration.

Of particular interest is the fact that thero appears to be little efficiency to bo gained at take-off by increasing the number of blades beyond siz.

In fi-gure 13 the effect of increasing the blade wid.th 50 percent is shom for a two-blade propeller, the tests of which were made severaj years ago. (See reference 2.) Although these tests were not very ccnclucjive, owing to their limited soope, the indications are that fnorossing the biane width has the same effect on the toke.oIf and cifmbing efficiency as increasing the zumber of olades. Fwther oxtonsive tests of wide Diajes are boing conducted at the presert tine.

In figure 14 a comparison is made of two propellers having substantially the same blade area but different diameters. The relative dianeters were determined from considerations of equal power absorption for peak efficiency; the six-blade propeller had slightly greater area than the three-blade propelier. Inasmuch as the efficiencies were about equal over the entire $V / n D$ range, it appears that increased solidity is about an equal substitute for increased diameter up to some limiting value; that value probably corresponds to a six-blade propeller, since an eight-blade propeller was found to be only slightly better than a six-blade one. (See figs. 10 to 13.)

Dual rotation. - In figure 15 the effect of dual rotation is shown for the six-blade propeller; the results were taken directly from reforence 1. The principal effect of dual rotation is, of course, to eliminate the rotational component of the slipstreom, which results in improved efficiency, particularly for highly loaded propellers operating at low values of V / nD. The test results indicate that dual rotation increases the efficiency over the entire operating range, "especially for highly loaded propellers.

Two-speed gearing, - Although the advantages of two-speed gearing have been appreciated for a long time, there has not been any serious attempt to incorporate two-speed goars into propeller drives until recently. The reasons for this are that two-speod gears have not been vitally necossary, up to the present time, in order to obtain satisfactory propeller performance at low forword speeds; and also because the high speeds and cruising altitudes have not been high enough to moke possible any large gains.

In figures 16 to 19 are plots indicating the improvements in thrust possible through the use of two-speed gears for a variety of conditions. It may bo noted that the advantazes are greatest for low solidity propellers which are operated under highly loaded conditions. Also the advantages are the greatest for high ratios of gear change, which can only be used for high-speed, high-altitude airplanes.

Comparisons of methods. - In figures 20 to 25 are both thrust and eificiency comparisons of the various methods for increasing the thrust of propellers operating at low forward spoeds. It appears that the method of two-spoed gearing offers the greatest return of any single method, particularly in view of the fact that it is not accompanied by any aerodynamic loss for the high-speed condition. Increased solidity, perticularly if accompanied by duel rotation, offers further means for improving the low-speed conditions.

With all of the methods combined the ideel efficiency can be closely approached, even for extremely highly loaded propellers.

As these methods are directed towerd reducing the angle of attack of the blades, with the exception of dual rotation, it may be of interest to examine the operating conditions. In figure 26 is a plot of β and α for the various methods indicated in figures 21 and 24. It may bo noted that as the blade angle and angle of attack at 0.75 R are reduced by any method, the efficiency at low speed is increased.

Take-off computationg, - In computing take-ofe distances the problem often arises of determining the characteristics of some particular propeller which has a different solidity or activity factor from one for which test results are availablo. As most methods for computing teke-off distances involvo the static thrust, the problem is one of correcting the static coefricients for differences in activity factor.

A chert is presented in figure 27 wherein the static thrust coofficient is plotted egcinst number of blados, which elso represents a range of activity factors for the entire propeller on the assumption that the activity factor veries directly as the number of blades for a typical. present type propeller design. Although this chart was not derived from test data wherein the activity factor was changed by increasing the blado width, the available information indicates that the effects are substantielly the same, imrespective of the method of changing the activity factor.

There are two methods of using the chart, one in which the values of static thrust are used directily; and the other, in which the curves are used as corroction factors for other tost data. The latter method is recormended because tho relative thrust is probably independent of most of the propeller-design characteristics, such as airfoil section, thickness, and pitch distribution. This method of correction consists simply of ruultiplying the know static thrust coefficient by the ratio of static thrust coefficients taken from the chart corresponding to the different activity factors.

Similar charts may be constructed for differont V / nD values by moking cross plots from figures 10, 11 , and 12.

In tables I and II are listed, for convenience, the activity factors for a number of comonly used Curtiss and Hamilton Standerd propellers.

CONCIUDING REMARKS

The problem of increasing the take-off and climbing thrust of highly loaded propellers resolves itselef into providing means for reducing the angle of attack of operation and also for eliminating the rotational losses in the slipstrearn. Of the methods studied to accomplish this purpose, the following remarks apply:

Increasing the number of blades from three to gix was found to result in substential improvements in the low-speed thrust, particularly for the higher power loadings. Eight-blade propellers were found to produce only a slightly higher thrust than six-blade ones. Increased solidities resulted in small reductions in the high-speed efficiency.

Increasing the solidity by means of increasing the blade width was found to result in about the same effocts as increasing the number of blades, within the scope of the analysis.

Increasing the blade aroc by means of increasing the diameter had about the same effect on the low-speod thrust as increasing the solidity, for equal tip speeds.

Dual rotation resulted in a small improvement in the efficiency over the entire operating range, particularly for the more highly loaded propellers.

Two-spoed gearing was found to be very effective in increasing the low-speed thrust, particularly for low solidity propellers operating under highly loaded conditions. The advantages of twospeed geaxing were greatest for high ratios of gear change, which can only be used for high-spood, high-altitude airplanes. As no efficiency penalty is imposed at high speed, this method appears to be very attractive for a certain class of airplanes.

A combination of six-blade, dual-rotation, two-speed gearing was found to provide means for closely approximating the ideal. efficiency for highly loaded propellors.

Langley Memorial Aoronautical Laboratory,
National Advisory Committee for Aeronautics, Langley Field, Va.

RITFERENCES

1. Biermann, David, and Hartman, Edwin P.: Wind-Tumnel Tests of Four- and Six-Blade, Single- and Dual-Rotating Tractor Propellors. NACA Rop. No. 747 , 1942.
2. Hartman, Edwin P., and Biermann, David: The Aorodynamic Characteristics of Full-Scale Propellers Having 2, 3, and 4 Blades of Clark Y and R.A.F. 6 Airfoil Sections. INACA Rep. No. 640, 1938.

TABIE I
Activity Factors of Curtiss Propeller Blades

Blade drawing number	$\begin{gathered} \text { Basic } \\ \text { diameter } \\ (\mathrm{ft}) \end{gathered}$	A.F.	Blade drewing	Besic diameter $\left(\mathrm{ft}_{t}\right)$	A.T.
$512 \text { and } 551 \begin{array}{r} -0 \\ -6 \\ -12 \\ -18 \end{array}$	11.0	$\begin{aligned} & 66 \cdot 9 \\ & 74 \cdot 9 \\ & 82.7 \\ & 90.9 \end{aligned}$	$89301 \quad \begin{array}{ll} & -0 \\ & -3 \\ & -9 \\ & -15 \\ & -21 \end{array}$	11.25	$\begin{array}{r} 78.8 \\ 82.7 \\ 90.5 \\ 98.0 \\ 105.7 \end{array}$
614 and 615 $\begin{array}{r}-0 \\ -6 \\ -12 \\ -18\end{array}$	12.0	$\begin{aligned} & 66.5 \\ & 74.1 \\ & 81.5 \\ & 88.5 \end{aligned}$	$\begin{array}{ll} 89304 & -0 \\ & -6 \\ & -12 \\ & -18 \end{array}$	15.0	$\begin{aligned} & 58.5 \\ & 66.3 \\ & 74.3 \\ & 81.5 \end{aligned}$
652 and $653-0$	12.0	$\begin{aligned} & 68.0 \\ & 75.0 \end{aligned}$	$\begin{aligned} & -30 \\ & -36 \end{aligned}$		$\begin{aligned} & 90.5 \\ & 98.6 \end{aligned}$
-18		88.6	$89306-0$	17.83	58.9
714, 715, and. 722 -0 -6 -12 -24	13.0	$\begin{aligned} & 65.8 \\ & 73.6 \\ & 81.2 \\ & 89.1 \\ & 96.4 \end{aligned}$	$\begin{aligned} & -10 \\ & -16 \\ & -19 \\ & -22 \\ & -28 \end{aligned}$		$\begin{aligned} & 75.5 \\ & 85.6 \\ & 90.4 \\ & 89.9 \\ & 96.1 \end{aligned}$
$814 \quad$-0 -6 -12 -18 -24	15.0	$\begin{aligned} & 67.0 \\ & 73.0 \\ & 79.0 \\ & 84.7 \\ & 90.5 \end{aligned}$	$\begin{array}{ll} 89316 & -0 \\ & -6 \\ & -12 \\ & -18 \\ & -24 \end{array}$	15.0	$\begin{aligned} & 71.6 \\ & 78.0 \\ & 85.0 \\ & 91.5 \\ & 98.5 \\ & \hline \end{aligned}$
88996 -0 89303 -6 89318 -12 -18 -24 -30	23.0	$\begin{array}{\|r\|} 66.6 \\ 75.3 \\ 83.5 \\ 89.6 \\ 93.7 \\ 103.6 \end{array}$			

Activity Factors of Hamilton Standard Propeller Blades

Blade drawing number				Basic diameter (It)	A.F.
Controllable blade		Hydromatic blade			
3155-6				10.5	90
6091	-0			10.5	83
$\begin{aligned} & 6095 \\ & 6167 \\ & 6237 \end{aligned}$	$\begin{array}{r} -0 \\ -6 \\ -12 \\ -18 \\ -24 \end{array}$	6181	$\begin{array}{r} -0 \\ -6 \\ -12 \\ -18 \\ -24 \end{array}$	9.5	$\begin{array}{r} 71 \\ 83 \\ 95 \\ 107 \\ 120 \end{array}$
6101	$\begin{array}{r} -0 \\ -6 \\ -12 \\ -18 \\ -24 \end{array}$	6183	$\begin{array}{r} -0 \\ -6 \\ -12 \\ -18 \\ -24 \end{array}$	10.0	$\begin{array}{r} 77 \\ 87 \\ 97 \\ 108 \\ 119 \end{array}$
$\begin{aligned} & 6103 \\ & 6111 \end{aligned}$	$\begin{array}{r} -0 \\ -6 \\ -12 \\ -18 \\ -24 \end{array}$	6139	$\begin{array}{r} -0 \\ -6 \\ -12 \\ -18 \\ -24 \end{array}$	11.5	$\begin{array}{r} 63 \\ 72 \\ 82 \\ 91 \\ 100 \end{array}$
$\begin{aligned} & 6105 \\ & 6249 \end{aligned}$	$\begin{array}{r} -0 \\ -6 \\ -12 \\ -18 \\ -24 \end{array}$	$\begin{aligned} & 6153 \\ & 6229 \end{aligned}$	$\begin{array}{r} -0 \\ -6 \\ -12 \\ -18 \\ -24 \end{array}$	13.0	$\begin{array}{r} 66 \\ 75 \\ 83 \\ 92 \\ 100 \end{array}$
$\begin{aligned} & 6109 \\ & 6135 \end{aligned}$	$\begin{array}{r} -0 \\ -6 \\ -12 \\ -18 \end{array}$			9.0	$\begin{array}{r} 66 \\ 78 \\ 90 \\ 101 \end{array}$
6127	-0	6185	-0	20.75	65
6165	$\begin{array}{r} -0 \\ -6 \\ -12 \\ -18 \end{array}$	6239	-0 -6 -12 -18	8.0	$\begin{array}{r} 66 \\ 81 \\ 96 \\ 110 \end{array}$

TABLE II (Cont.)

Blade drawing number		Basic diameter$(I t)$	A. ${ }^{\text {F }}$
Controllable blade	Hydromatic blade		
6227 -0 6257 -6 -1.2 -18	6247 -0 6179 -6 -12 -18	10.5	$\begin{array}{r} 87 \\ 98 \\ 108 \\ 119 \end{array}$
$6241 \quad$-0 -6 -12 -18	18	9.0	$\begin{array}{r} 73 \\ 85 \\ 96 \\ 107 \end{array}$
Blade drawing number Hydromatic blade	Basic dismeter (ft)		A.F.
6155 -0 6159 -6 -12 -18 -24	14.0		$\begin{array}{r} 75 \\ 83 \\ 92 \\ 1001 \\ 109 \end{array}$
6175 -0	27.0		61
6187, $6189 \quad-0$	15.0		65
61931-0 -6 -12 -18	11.5		$\begin{array}{r} 93 \\ 104 \\ 114 \\ 125 \\ \hline \end{array}$
6235 - -0	12.5		90
6243-0 -6 -12 -18 -24	25.0		$\begin{array}{r} 81 \\ 88 \\ 94 \\ 101 \\ 108 \end{array}$
62453-0 -6 -12 -18 -24	17.0		$\begin{aligned} & 75 \\ & 80 \\ & 86 \\ & 91 \\ & 96 \end{aligned}$

TABIE II (Cont.)

Blade drawing number Hydromatic blade	Basic diameter (ft)	A.E.
6257	-0	13.0
	-6	
	-12	
	-18	
	-24	
6259	-0	19
	-6	11.5
	-12	104
	-18	
6261	-24	

Figure 1.- Variation of β and α_{∞} with $V / n D$ for a three-blade controllable propeller at $C_{p}=0.2,0.4$, and 0.6 .

Figure 2.- The L/D curve for a Clark Y airfoil.
Figure 3.- Test set-up showing six-blade propeller.

Fiçure 6.- Variation of Cp for $\eta_{\max }$ with airspeed for different proveller colidities.

Figure 8.- Gear ratios made available for take-off by design speed conditions. Lines of constant helical tip speed. V_{R}, helical tip speed; S_{0}, circular tip speed.

Figure 7.- Variation of ratio $\frac{\text { speed of sound at sea lovel }}{\text { speed of sound at altitude }}$ with altitude.

Figure 14. - Comparison of efficiencise of nronallere havinc different diameters and numbers of bladeo but having subatantially the same
blade area. TTin meed of hoth ronellers is the same, as well as power aboorntion.) blade area. (Tin sneed of both pronellers is the same, as well as power absorption.)

Figure 9.- Gear ratis made available for take-off oy desisn sneed helical tip speed; S_{0}, circular tin smeed.

Fi ure 17. - Effect of blade width on efficiency. $C_{p}=0.14$. Data from reference 2.

Ficure 10.- Eifect of number of blades on efficiency. $C_{P}=0.2$.

Figure 11. - Effect of number of blades on efficiency. $C_{p}=0.4$.

Figure 16.- Effect of two-speed gearing on thrust at low speeds. Three-blade propeller.

Figure 17.- Effect of two-speed gearing on thrust at low speeds. Four-blade propeller.

Figure 18.- Effect of two-speed gearing on thrust at low speeds. Six-blade propeller.

Figure 19.- Effect of two-speed gearing on thrust at low speeds. Eight-blade propeller.

Figure 23. - Comparison of methods for increasing thrust. $C_{P_{1}}=0.2$.

Figure 20.- Comparison of efficiencies for different methods of increasing thrust. $C_{p}=0.2$.

Figure 21.- Comparison of efficiencies for different methods of increasin thrust. $C_{p}=0.4$.

Figure 22,- Comparison of efficiencies for different methods of increasing thrust. $C_{p}=0.6$.

Figure 24.- Comparison of methods for increasing thrust. $C_{P_{1}}=0.4$.

Figure 25.- Comparison of methods for increasing thrust. $C_{p}=0.6$.

Figure 26. - Variation of α_{∞} and β with $V / n D$ for several propellers at $C_{P}=0.4$.

Figure 27.- Variation of static thrust with solidity.

