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Abstract
A discussion of the LMS adaptive filter relating to its convergence characteristics

and the problems associated with disparate eigenvalues is presented. This is used to
introduce the concept of proportional convergence. A novel approach is used to ana-
lyze the convergence characteristics of block frequency-domain adaptive filters. This
leads to a development showing how the frequency-domain FIR adaptive filter is easily
modified to provide proportional convergence. These ideas are extended to a block
frequency-domain IIR adaptive filter and the idea of proportional convergence is ap-
plied. Experimental results illustrating proportional convergence in both FIR and IIR
frequency-domain block adaptive filters is presented.

1 The LMS Adaptive Filter

We first present Widrow's LMS adaptive filter, analyzing it's mean convergence fol-
lowing his approach in [5]. The equations describing an FIR filter in both scalar and
vector notation are

N-l

£
i=o

yj = £ WiXj.i = WTXj = XjW

with Xj - zj, *,•_!, Zj_2, . . . , Zj_(Ar_i) and WT = [w0, w>i , . . . , ti>j\r_i].
The goal of an adaptive filter is to automatically adjust the weights W so that the

difference between the output {yn} and some desired signal {dn} is a minimum in a
mean square sense. That is, with e$ — dj — yj = dj — WTXj = dj — XjW

E {(e;)2) = E (dj) - 2E (diXj) W + WTE (XjXj] W

where E () represents the expectation operator. With Pxj, = E (djXj} (the cross-

correlation between {dn}) and {zn}
 and Rxx = E \XjXj) (*ne autocorrelation of

{zn}), the mean square error £ can be written

2P?dW + WTRxxW (1)

Since the MSE (mean square error) is a hyperquadratic function of the weights, in
essence a bowl shaped surface with a single global minimum, the minimum can be
sought using simple gradient search techniques. That is
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where \i is a scalar constant that controls the rate of adaptation, and Vj is the gradient
of the error surface with respect to the weights evaluated at time j.

= ~2Pxd + 2RxxW

Setting gradient to 0 yields the optimum choice of W for minimum mse

W* = R~lPxd (3)

Since Rxx is positive definite, it is non-singular and it's inverse exists. This equation
is the Weiner-Hopf equation written in matrix form, thus W* represents the optimum
Weiner filter.

Obviously, if Rxx and Px<j are known exactly (3) gives the optimum weights and
requires the inversion of the autocorrelation matrix, but this need only be done once.
In one approach to adaptive filtering, a large number of data samples are processed to
obtain an accurate estimate of Rxx and Pxcj, then R~x is found and W* is computed and
the data are filtered using W*. This approach requires a large amount of data storage,
imposes a significant processing delay and works well only for stationary signals. The
LMS approach uses the gradient method presented above but to minimize the storage
requirement, the gradient is estimated on the basis of no more data than are present
in the filter itself. That is, at iteration j, we estimate Rxx « XjXj and Pxd K, djXj.
With this, the estimated gradient at iteration j becomes Vj = — 2ejXj and the weight
update becomes

Wj+l = Wj + 2nejXj (4)

Admittedly, these estimates of the gradient are noisy, but if p is chosen to be small,
the error in each estimate will contribute little to the final solution.

To analyze the convergence characteristics of the LMS adaptive filter, consider an
ensemble of adaptive processes that all begin with the same initial weight vector WQ.
Also, the inputs to each adaptive filter are drawn from the same statistical populations.
If we take the expected value over the ensemble of the weight update (4), we have

E (Wj+1) = E (Wj) + 2/i (Pxd - RXXE (Wj)) (5)

provided that Xj and Wj for each adaptive process are uncorrelated. We first note,
that in the mean, the gradient estimate equals the true gradient, so, it the adaptive
filter converges, the weight vector converges to the Weiner solution. We can simplify
(5) if we translate the weight vector coordinates so that the optimum weight vector in
the new coordinate system is 0. That is, let the new weight coordinates be represented
by the vector V where Vj = Wj — W*. Letting Wj be Vj + W* and recognizing that
Pxd = RXXW*, the above expression becomes

= (I-2»Rxx)E(Vj) (6)

This is a geometric equation whose convergence depends on Rxx and /z. If we now
rotate the weight space so that the axes fall along the principle axes of Rxx, the above
equation will be transformed into a set of uncoupled scalar equations. Since Rxx
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is symmetric, it can. be orthogonally diagonalized as in A = Q~1RXXQ "where A is a
diagonal matrix composed of the eigenvalues of Rxx, that is A = diag[\o, Aj, . . . , Aj\r_i]
and Q is the orthonormal modal matrix of Rxx, that is the columns of Q are the
normalized eigenvectors of R, each of which is distinct and orthogonal to the other
eigenvectors. Thus QQT = I and Q~l = QT. Now, substituting Rxx = QAQr into

_ (6) and premultiplying both sides of the equation by QT gives

{ (7)

where V = QTV is a rotation of the translated weight coordinates into the principle
axes of Rxx- Now, because A is diagonal, the above equation decouples into a set of
scalar equations

p .
with v'p representing the pth element of V. We will refer to {vp} as modes of the

adaptive filter. It is evident that for E (Vn and hence E (Wj} to converge, we must
have

|1 - 2/iAp| < 1 Vp

which will be satisfied if 0 < p, < l/Amaa. since 0 < Ap Vp because Rxx is positive
definite. It is important to note that this only guarantees convergence in the mean
over an ensemble of adaptive processes. Note here that choosing fi = 1/2AP will give
the fastest convergence for mode p. In fact it should converge in the mean in one step.
but unless Ap = Amax, other modes will not converge. ^ must be typically be chosen
< l/2Amai because the gradient estimate is itself noisy. Often, the eigenvalues are
not directly available. Since Rxx is positive definite, Amaz < (Silo1 ̂ « = *r-^zx) and
since trRxx is just the average power in {zn}> H is conveniently chosen as l/trRxx.)
It should be clear that Amax limits rate at which the filter can converge. The mode
associated with Amax converges the fastest and that the mode associated with Amjn

will be the last to converge. That is, the overall convergence of the LMS algorithm
is controlled by the spread in the eigenvalues of Rxx. This aspect has attracted a lot
of attention among researchers attempting to speed up LMS convergence. If all the
eigenvalues were equal, the LMS algorithm could be made to converge at the fastest
possible rate, taking into account that the overall rate must still be relatively slow to
compensate for the fact that we have only estimated the gradient.

Another related problem we encountered [13] has to do with the non-proportional
convergence of the modes of the adaptive filter, particularly in non-stationary envi-
ronments. The most highly correlated modes of Rxx will have the largest eigenvalues
and these modes will be resolved first. Since the eigenvalues of Rxx are related to the
power spectral density of X, this essentially means that the spectral components of
X that have the most power will be resolved first. If the problem is non-stationary,
the lower power components may never be resolved. This effectively alters the power
spectral density of the output process in a way that may be undesirable. For example,
consider processing speech for noise cancellation using the line enhancer configuration
of the adaptive filter. The spectral components of speech having the highest power are
those in the low frequencies, so these will be resolved first. The high frequencies may
never be resolved. In this case the non-proportional convergence has effectively added
a low-pass filter. This is very undesirable as a large percentage of the intelligibility of
speech is carried in the higher frequencies.
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One way to achieve both goals of faster and more proportional convergence is to
normalize (7) by replacing p with //A"1. This amounts to replacing a scalar-/i by a
vector or a matrix /i. If we do this, and follow our development back through the
rotation and translation steps, we arrive at the update equation

Wj+1 = Wj + 2ltR£ejXi (8)

A number of algorithms have been developed using this approach which is essentially
Newton's method for the minimization of a quadratic surface. Most of these are
referred to as "self-orthogonalizing" adaptive filters and they attempt to estimate R~£
at each iteration. [26,6][5,20] This results in a much larger computational load than
might be desired. Not only is there the additional load of estimating -R^x? Dut a^so an

extra matrix multiply is required between it and the gradient estimate.
Another way to do the same thing, and the approach we pursue in this paper, is

to transform the input data into the rotated space, perform the update and output
computations in the rotated space and then inverse transform the output data. To
see how this might work, let us premultiply both sides of (8) with QT'. With R~£ =
QA~1QT^ this becomes

W'j+1 = W'j + 2^^ejX'j (9)

where W- = QTWj and X'j = QTXj represent vectors in the rotated space. Because A
is diagonal, we shall often refer to /zA"1 as a vector-fj,. Note that each of the modes of
the adaptive process decouple and we end up with N one-weight adaptive filters with
the adaptive gain equal to /z/Ap for the pth mode. This can also be seen in the fact
that A = E (X'jX'?}, so Ap is just the power in the pth component of Xj averaged
over the iterations j. This approach is very attractive in that it requires no more
computation than the usual LMS time-domain approach, yet it promises improved
convergence rates as well as more proportional convergence. The only obstacle to be
overcome is the problem of transforming X into the rotated space. We could attempt to
estimate Q, but this is essentially the same as the Newton's methods discussed above.
What is needed is an orthogonal transform that decouples the spectral components
of X. Several candidates have been studied, the most prominent among them being
the Discrete Fourier Transform (DFT). Efforts to improve convergence in this way
developed synergisticly with efforts to reduce the number of computations required in
the adaptive filter by using the Fast Fourier Transform (FFT) to implement high speed
convolution and correlation.

Yet another recent approach [30] uses a DCT to estimate {Ap}, orders the set by
magnitude and then assigns to /i a sequence of values related to the reciprocals of the
ordered set {Ap}. Effectively, once the mode associated with Amaa. is converged, \i can
be increased to speed the convergence of the mode associated with the next largest
eigenvalue until it too is converged and so on.

2 The Block Adaptive Filter
A block adaptive filter using FFTs to perform fast convolution and correlation was
proposed nearly simultaneously in 1980 by Clark et. al. [9,14,18] and Ferrara [10].
Clark also presented the effect of block processing on the convergence and misadjust-
ment of the adaptive filter as opposed to point by point processing. Waltzman and
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Schwartz [1,3] had earlier applied the use of the FFT to the automatic channel equal-
izer. Not only did they show that the filter could be run with fewer computations,
but by adapting the weights in the frequency domain they were able to obtain tighter
bounds on Amax and Amin and hence a more accurate setting for /t. The following
discussion is based largely on the approach used by Clark et. al.

We note that the convolution yj = WTXj = XjW can be written in matrix form
as

2/j+i
J/j+2

yj+3

WQ

(10)

or as
(ii)

where YI is an L element vector [yjL»yii+i, • • • >l/(j+i)L-i]r and Xj is an i by iV matrix
whose rows are the transposes of the vectors Xj = [zj, z^-i, • •., Zj_(^r_i)]r for j =
(IL, IL + 1,..., (/ + 1)L — 1). We also similarly define desired and error vectors DI and
EI so that EI = DI — YI = DI — X{W, Thus, instead of computing the error for every
input point, we only do so once every L points. For this approach, we are interested
in minimizing the block mean square error £3-

Under the assumption that the inputs are stationary, it is easy to show that the block
mean square error will be the same as the mean square error in the unblocked filter.
Further, the Weiner optimum weights will be the same in both cases.

We also only update the weights once per block. Following the same approach
as for the unblocked case, we approximate the the gradient of the £3 using only the
information available at that iteration. That is £g sa 1/LEfEi. (We note that this
is L times the information that was available to the unblocked filter so we suspect
that this gradient estimate is not as noisy as the estimates generated by an unblocked
filter.) This leads to a block weight update equation

(12)

where /i# is the block adaptive gain constant.
By a similar analysis as applied to the unblocked filter, it can be shown that conver-

gence is guaranteed in the mean if 0 < HB < l/Amax which is the same condition as for
the unblocked case. However, we must set ps = Lp for the blocked and unblocked fil-
ters to converge at the same rate. Depending on L and how much smaller than l/2Amax

/i is chosen to compensate for the larger gradient estimate noise in the unblocked filter,
this may or may not be possible. So the blocked filter may be constrained to converge
more slowly. This is particularly true in the case of highly disparate eigenvalues. We
need to remember here that this discussion applies to a scalar /ZB and that when we
eventually introduce a vector-/*, the convergence of the blocked algorithm can be made
faster than that of the unblocked filter. There is, however, another factor that may
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limit how large L can be. In applications where {zn} is slowly non-stationary, L must
be small enough so that over several successive L-point blocks (the number depending
on the convergence rate) {xn} is approximately stationary. Otherwise, the filter would,
at best, not properly track the non-stationarity or, at worst, become unstable.

Let us next consider how to apply the FFT to reduce the number of computations
required in the block adaptive filter.

The JV-point DFT of a sequence x(n) is computed

X(k) = £ x(n)W»*
n=0

where WN = e~i~t? and Wfi for n = 0, 1,2, ..., N — 1 are the N roots of unity.
Similarly, the inverse transform is given

fc=o

These transformations can be written in matrix form

X = ^NTX and X = - = F * X

where X = [*(0), X(l), . . . , X(N- 1)]T, X = [z(0), z(l), . . . , x(N- 1)]T, T is a matrix
whose (k, n)th element is W^/^/Nt and * represents the complex conjugate and T
represents the transpose operation. We note first of all that f is symmetric and that
f* = F~* so that f is a unitary transform. Also, it can be shown [25,2,21] that if C
is a circulant matrix, JF will diagonalize it. Further, if the diagonalization is expressed

Ac = TCT* (13)

then the eigenvalues of C and the elements of AC will be given by the DFT of the first
column of C.

With this background, let us now illustrate how the DFT can be used to implement
the convolution in (11). First we rewrite (11) as follows

[ • I f - • 1 f w , 1

where the -'s represent arbitrary elements which do not affect the equation. More
simply,

Yt
a = X?Wa

If Xf can be made circulant, then the DFT can be used to diagonalize it. This can be
done by defining Xf to be an M x M circulant matrix whose first column is the M-
point vector [ZJZ,_(AT-I)»• • • •>ZIL-IJZJL?Z /L+I.••••> z( j+i) t - i ]« Each successive column
is formed by circularly down shifting the previous column by one sample. The M point
augmented weight vector Wa formed by padding the JV-point W with N — M zeros.
The result will be another augmented vector Yt

a whose last L points is the vector YI.
With I = f*F, we can write

Y =
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which, with the circulancy of X*t can be written

Y? = DFT~l {DFT((xlL.(N.l}t..., x ILt..., DFT(W)} (15)

where ® is a point-by-point multiply of two vectors. Consider the following example
with / = 0.

yo

VL-2

VL-l

XQ

zz,-2

XL-N+I

ZL-1

X3-N

XI-N

Z2

W0

0

•

0
0

(16)
From the above, we can see that the last L = M — (N — 1) points yo to yL-i represent
points from the linear convolution of z(n) with W. The previous N — 1 points are
incorrect and are discarded. The next segment of z(n) to be processed will overlap
the previous by N — 1 points, ie., [z^-jv+i,.. .,Z£_i,ZL,Zi+1,.. .,z2i-i] This will
produce another valid L points which are abutted with the previous set. This is the
standard "overlap and save" approach to discrete convolution using the DFT.

Waltzman [1,3] and, later, Ferrara [10], observed that the update (12) involved a
cross-correlation between X\ and E\ and that this also could be sped up by applying
FFTs. To see how this is done we first observe that by taking the complex conjugate
transpose of (13), we have

A* — TrTT*A.c - J- O J-

Now, as before, we augment the vectors in (12). We use the same circulant matrix X°
and augmented vector Wa. This requires the use of an augmented vector Ef, whose
first N — 1 points are 0 and whose last L points form EI- That is

(17)

or, simply,

'l+l =

This is fortunate because it gives us a consistent set of augmented vectors. Wf and Xf
are the same for both the update and convolution equations. Also, Ef = Df — Y", if
we define an appropriate augmented vector for D\. Next, with the fact that f* F = J,
the augmented update equation becomes

Since fX^f* is given by the complex conjugate of the DFT of the first column of
Xf, the update equation ultimately becomes

{ (DFT([xlL_(ff_l)t . . . , xlL, . . . ,

®DFT(E?}}

(18)
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Figure 1: The Block Frequency Domain LMS Algorithm

Remembering that we must set the last M — N points of Wf+l to zero before per-
forming the next convolution, (15) and (18) describe the block frequency domain LMS
algorithm. This process is summarized hi Figure 1. Since the FFT is a linear opera-
tor, there is considerable flexibility in the structure of the algorithm. If we move the
window to a position just before the adaptive gain multiply, we get a structure that
reduces the number of multiplies and adds in the weight update calculation. Another
possible rearrangement is shown in Figure 2. Here, the adaptive gain takes place in the
frequency domain and opens up the possibility for selective gains for each frequency
bin. In this structure, the FFT after the window could be moved above the weight
recursion to reduce the number of additions.

Choosing the FFT length to be twice the number of weights (M = 2N) allows the
filter to generate L = N +1 valid output points at each iteration. Taking advantage of
symmetries, we can argue [29] that a 2JV radix 2 point FFT requires 2Nlog2(N) — 4N
real multiplies and 3JVlog2(^) + 2JV — 12 real additions. Working from Figure 1, we
see that there are 5 FFTs. Using the symmetry in the FFT of a real sequence, each ®
operation requires N — 1 complex multiplies and 2 real multiplies. The ^ operations
each require N real additions. The adaptive gain requires N real multiplies. Overall,
to generate N + 1 output points requires 10JVlog2(./V) — UN — 4 real multiplies and
l5Nlog2(N)+16N—64 real additions. To produce N+1 points from an JV-weight time-
domain adaptive filter requires 2JV2 + 3N + 1 real multiplies and 2N2 real additions.
Of course, the time domain filter performs a weight update for each output point
produced and, although we could alter it to do an update only once every N +1 points
as the block filter does, would not result in any computational savings. The ratio of
complexity of the frequency-domain block adaptive filter to the time-domain adaptive
filter for several values of N is given in the following table.

We need to remember that while we have achieved some computational savings,
that is not our only objective. Next we consider the issue of proportional conver-
gence. Much of what follows is motivated by Picchi and Prati's presentation of a
self-orthogonalizing adaptive equalizer hi [20], however our approach is novel and re-
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Figure 2: Another Version of The Block Frequency Domain Filter

N |
8

16
32
64

128
256
512

1024

Multiplies
0.967
0.820
0.580
0.374
0.228
0.134
0.077
0.043

Additions |

3.313
2.250
1.391
0.820
0.471
0.265
0.147
0.081

Table 1: Ratio of Frequency Domain to Time Domain Calculations
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quires fewer approximations.
In order to formalize the sectioning and zero-padding operations we define two

projection operators UN and TL. TL is constructed from an M x M identity matrix

where /whose first N — 1 diagonal elements have been set to 0. Thus TL n T

is L x L. Ilff is similarly constructed but in this case the first N diagonal elements are
left at 1 with the remaining L — 1 elements set to 0. When TL premultiplies a vector,
it projects its first N — 1 points to 0. When premultiplying a matrix, it sets the first
N — 1 rows of the matrix to 0. Postmultiplying a matrix by TL is equivalent to setting
the first N — 1 columns to zero. UN has similar properties but applies to the last L — 1
points of a vector or rows or columns of a matrix. With this (17) can be restated

(19)

which formalizes the fact that the weight vector must be updated in such a way so
that last M — N elements of W" are always 0.

Now, to consider the convergence of the augmented blocked filter, we take the
expected value of (19) over an ensemble of adaptive processes just as we did in for the
unblocked filter. This gives

E (Wf+1) = E (Wt) + 2

With Ef = Df - TLXfWf and with the assumption of independence between Xf and
W\ the above expands to

E (W?+1) = E (Wt) + 2^IlAr (E (x?TDf) - E (x?TTLX?) E (Wt))

Observing that

E(XE(X*T
t

and that

or, in augmented matrix notation,

E (XfTTLXf} = LRa
'xx

where we have chosen Xc to represent a part of the circulant matrix Xf. We can now
write

E <W7*+1) = E (W?) - 2tiBUN (RIXE (Wn - P?d) (20)

This is just the blocked and augmented analog of (5) and the projection operator and
the quantity in parentheses is the augmented form of the gradient (2). To find the
optimum weight vector, we set the gradient to 0, but we note that this imposes no
constraint on the augmented components of the gradient since IIN already forces them
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to zero. All that is required is Pxj = RXXW*. That is, the projection operator
guarantees that W*a is W* (the Weiner optimum weight vector) padded with L - 1
zeros, which is precisely what we desire. If !!# were not present, as is done in Mansour
and Gray's unconstrained filter [15,16], setting the gradient to zero would also require
that

(21)
which is only true if D\ — X{W* + \£ where \P represents samples of a white gaussian
noise sequence. This will be true if {zj} and {dj} are related by a simple FIR transfer
function whose order G is less than or equal to N. Provided this is the case, we can
delete UN which also allows us to drop two FFTs. The only drawback is that while
the last L — 1 points of Wa start out as 0, gradient noise will allow small non-zero
quantities to enter in which will lead to a slightly higher mean square error (MSE).
When M > G > N, N — G of the weights will tend toward non-zero values and the filter
will be able to achieve a lower mean-square error than a constrained TV weight filter.
The lower MSE comes at the expense of introducing circular correlation products;
however, if N — G is small with respect to L this may be tolerable. The amount of
error introduced has yet to be studied extensively. The same is true when the transfer
function between {dn} and {zn} is IIR where the unconstrained filter will attempt
to use all M weights. The unconstrained filter also fails when it is configured as a
line enhancer where Xj = z~6dj. Because the filter is unconstrained it can find the
non-causal solution for which the mean square error is zero - unfortunately, this is a
useless solution.

While we could continue to pursue the mean convergence of augmented blocked
algorithm, it is exactly the same as that of the blocked algorithm. What is important
to note here is that, although the above expectations have explicitly determined the
augmented portions of Pxd and R%x, these portions contribute nothing to E (w^+l\
as a result of the projection UN and the zero padding of W* (also due to UN). This
will later allow us to augment Rxx in such a way that R°x is easily invertible.

As we saw in Section 1, we can both speed up and orthogonalize the convergence
of the LMS adaptive filter by replacing n with f*Rxx- Writing (8) using augmented
vectors consistent with those we have already defined gives

where (Rxx )° is an M X M augmented matrix whose upper left corner is composed of
the JV X N matrix Rxx. The remaining elements of the matrix are arbitrary. Pre-and
post-multiplying (Rxx )° by Hjv guarantees that they do not enter into the computation.
Now, if we again take expectations over an ensemble, we will have

E (W7+1> = E (Wt) - 2^BUN(Rxx)
aHN (Ra

xxE (Wi) - Pxd) (22)

But,
•n.N(Rxx)

anNRa
xx =

=
and, while we have HprP£<i = ^NRxxW*a, since the augmented portion of Pxd is not
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constrained, we can let Pxd = R%xW*a. With this we have

Thus, in the mean, Hff(R~x)aTltf can be replaced by Hff(Rxx)~ l and the update
equation becomes

W?+l = W? + 2 (23)

and insert f f — I at appropriate points. Thus,Now, we pre-multiply with

where W and £ represent DFTs of Wa and Ea respectively. Next, if Rxx can be made
circulant, T wiU diagonalize it. That is Aa = fK^F* and A0'1 =
With this the update equation becomes

(24)

This results in the structure shown in Figure 3. This filter [28] is exactly the same as
the fast implementation of the block LMS adaptive filter shown in Figure 2, except //

Figure 3: The Block Frequency Domain LMS Algorithm with a Vector /z

has been replaced by /^(A0)"1. Since this simply represents a point-by-point multiply
of two vectors, we see that this algorithm requires no more multiplies nor adds to
implement than does Figure 21. The only additional computational load arises in
estimating (A0)"1.

1 We need to note that Figure 2 requires N more real multiplies than did Figure 1.
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As we indicated above, we must augment Rxx in such a way as to make
circulant. If we let rn = r_n = E
x(n), then

n) represent samples of the autocorrelation of

r0

r2

T°

as a

N-I ^Tv-a fJV-3 ••• ro

Next, following the approach used by Picchi and Prati in [20], we define
circulant matrix whose first column is given as

[r0, TI, r2, . . . , r^_i, r^-i, »*jv-2> • • • » 7>2» »*i]

and whose successive columns are given by circularly down-shifting each preceding
column by one sample. It is easy to see that the resulting 2N — 1 X 2N — 1 matrix
contains the N x N matrix Rxx in its upper left corner. Defining Rxx this way imposes
restrictions on £, namely we require L = N. L can be chosen greater than N by
defining the first column of Rxx and inserting L — N zeros as follows:

[r0, 7*1, rz, . . . , rjv_!, 0, . . . , 0, rjy_i, r^_2, . . . , r2, rj

However, the only way L can be smaller than N is if rn = 0 V n > G, for some G < N.
In this case the first column is given as

In the above there are G - N zeros, so the overall length is M = N + G — 1, and thus
L = G.

Provided we can satisfy these restrictions on ^V and L we can easily diagonalize
Rlx using the DFT. That is,

rne M (25)

where Af are just the diagonal elements of A". From this expression we see that \f are
just samples of the power spectral density of {zj}, PIX(u;) convolved with the Fourier
transform of a rectangular window of length M. Thus, the problem of estimating A°
is simply one of spectrum estimation.

A well known method for spectrum estimation is Bartlett's procedure [23]. Using
this approach gives

r , K 1
X? ® X,a* (26)i * I \ *

where X? is the DFT of the first column of Xf. That is, at block K, Af is just the
average over K +1 blocks of the power in the ith bin of the DFT of the reference input.
E ( \f j is a sample of Pxx(w) convolved with the Fourier transform of a triangular

window of length M evaluated at w = ^. Although this is not exactly equivalent to
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(25), it provides a simple estimator. The estimator given in (26) was first proposed by
Ogue et. al. in [19] and later by Picchi and Prati in [20] for use in an adaptive channel
equalizer.

For a general adaptive filter, especially in the case of slowly non-stationary inputs,
an exponential average might be more appropriate. That is,

Af+i = rbA? + liftdiag [*r ® xr] (27)

where 0 is chosen to reflect the rate of non-stationarity. We need to be careful that
any of the A? do not become too small or they will cause the digital filter to overflow
when inverted. One way to prevent this is to constrain them to be larger than some
lower limit. This is equivalent to adding a noise floor to x before the FFT is taken
leading to the A estimate but it doesn't require as much computation.

In summary, we have found a way to use the FFT to easily estimate the eigenvalues
of Rxx and used this to orthogonalize the adaptive process. If we had taken a purely
heuristic approach, viewing the frequency-domain filter as a set of M independent
one-weight adaptive filters operating on the bins of M-point DFTs of z(n) and d(n)
we would have arrived at the same estimates as (26) and (27). That is, the adaptive
gain of each filter is determined only by the power in the associated bin. Of course,
adjacent bins of the DFT are not necessarily independent of each other. Hodgkiss
and Nolte [4] argued that the covariance between two Fourier series coefficients of a
process is approximately zero if the power spectral density of the process is relatively
smooth. This argument can be extended to the variance between DFT coefficients,
since these are just aliased Fourier series coefficients [24]. In this context, adjacent
DFT coefficients are approximately independent of each other if the power spectral
density changes slowly over the bandwidth of the DFT bins which will be the case if
the process contains no isolated periodic components and we choose M large enough.

These arguments correspond to arguments made above. If N, and hence M, is
greater than G, that is, if rn = OVn > (?, then the rectangular window disappears and
the A? in (25) are exactly samples of Pxx(u). Further, the difference between using a
rectangular window and a triangular one diminishes as M increases and the estimate
in (26) approaches that in (25).

We also note at this point that the filter in Figure 3 degenerates to Narayan and
Peterson's Transform Domain filter (TDF) [11,17] if the overlap is set so that at each
iteration only one output point is produced. That is L = 1 and M = N. In this case,
the inverse DFT used to generate YJ° only produces one usable point. Since this one
point is the first point in the vector, its computation only involves the average of the
points in 3^> by definition of the DFT. Although the TDF requires more computa-
tion than the LMS adaptive filter, it has the advantage of proportional convergence.
Narayan [17] also proposed other transforms including the DCT to be used in place of
the DFT.

Another frequency-domain adaptive filter is the Dentino filter [8]. The Dentino filter
simply implements (8) using the DFT to orthogonalize the input data. It ignores the
fact that the DFT actually implements a circular convolution, so none of the vectors are
augmented and there are no projection operations. Though the filter output suffers
from circular convolution products, occasionally the meaningful information can be
extracted from the converged weight vector. Maiwald et. al. [7] observed that for the
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case where the input is truly cyclic with period equal to the length of the filter, as
in an adaptive equalizer operating on a repeated training pulse, the frequency-domain
weights of an M-point Dentino filter converge to the DFT of the optimal M-point
transversal filter. After the weights have converged, they may be used to process data
using standard overlap and-save-techniques. This works well in an equalizer where no
output is generated during the training sequence. Another example of the Dentino
filter used simply for the information in the weights is given by Reed et. al. [22], who
use the filter to perform bearing estimation.

3 Proportional Convergence

In this section we present the results of two experiments that illustrate the proportional
convergence of the general frequency-domain adaptive filter. In the first experiment we
present a signal consisting of two sinusoids to to a general 32-weight general frequency
domain adaptive filter configured as an adaptive line enhancer. In this configuration,
Xj = z~sdj. This configuration is commonly used to improve signal to noise ratios
in noisy "single microphone" data. The filter will enhance input signals that have a
strong autocorrelation, while rejecting those whose autocorrelation is narrower than
6. The first sinusoid has a frequency 0.25 times the sample frequency and the second
has a frequency of 0.3125 times the sample frequency. This puts the first sinusoid in
the 17th bin of a 64 point FFT, and the second in the 21st bin. The first sinusoid
has an amplitude of 2.5 and the second 1.25 which gives a two to one relationship in
amplitude. We also set the first 128 samples of the signal to zero. Thus we will have
some zero output points before the sinusoids reach the filter. Finally, we analyze the
output data by looking at the average magnitude in the two processed sinusoids as a
function of output points. This is done for two cases. The first is the scalar-// case,
which is implemented with a vector-// containing all ones. The second uses a vector-//
tailored to the power in the two sinusoids. It has the 17th and 21st points (as well as
the symmetric points) in the vector-// set to 0.000156 and 0.000626 respectively which
is based on the inverse of the average power in these bins. All the other points in
the vector-// are set to 0.002. The power in these bins is actually very close to zero,
which would ordinarily result in a much larger // at these points, but this is undesirable
since it may cause the filter to overflow. Instead we simply limit the minimum bin
power. The result of these two experiments are shown in Figure 4. The two thin
lines represent the scalar-// case, while the two thicker ones represent the output of
the vector-/i case. The // was chosen for the vector-// case so that the higher-power
sinusoid was resolved at the same rate as in the scalar-// case. We can easily see that
in the scalar-// case the lower-powered frequency was not resolved at the same rate as
the higher-powered one. However, the vector-// allows the filter to follow a much more
proportional convergence.

For the second demonstration we use a frequency domain filter configured as a
canceler. We apply speech spectrum noise to the reference (zj) input and the same
noise filtered through a 32 point FIR filter applied to the desired (dj) input. This
is a standard system identification problem. To minimize the mean square error, the
adaptive filter weights will converge to the same values as the system filter. Using
speech spectrum noise will give a disparate set of eigenvalues in Rxx. In this case we
analyze both the average spectral energy in the error output as well as the mean square
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Output Points

Figure 4: Output of a Two Sinusoid Enhancer

error. As before, we do this for the case of a scalar-/*, as well as a vector-/x tailored to the
spectral energy in the reference input. This latter was chosen by inverting the average
power in the bins of a 64-point FFT over several overlapping 32 point sections of the
reference input. Analyzing the mean squared error in this case of a scalar-/i gives the
result shown in Figure 5. This is probably more accurately described as a 'smoothed'

10-
10 000 20 000 30 000

Output Points
40 000

Figure 5: Mean Squared Error for a Scalar //,

square error curve since it is generated by squaring the error and then smoothing it
by averaging each point with a few neighboring points. By plotting this against a
logarithmic scale, we see at least two different rate of convergence. This illustrates
the fact that the filter resolves the weights associated with the larger eigenvalues of
Rxx first. Having only a scalar-/* limits the convergence rates of the weights associated
with the smaller eigenvalues.

Figure 6 shows a series of 4096 point spectral averages of the error output of the
filter. Each average is based on 5 4096 point FFTs. The thin line represents the
spectral energy in the reference input and each successively thicker line represents
averages starting at 12800, 44800, and 172800 points into the output file respectively.
We should point out that the mean square error plot stops about where the third
trace begins. If we were to continue the mean square error curve we should be able to
identify several more progressively decreasing rates of convergence.
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Figure 6: Scalar fj. Processing

By comparison, the mean square error and spectral average plots for a vector-/* are
given in Figures 7 and 8 respectively. In Figure 8 the averages are taken beginning

0 10 000 20 000 30 000
Output Points

40 000

Figure 7: Mean Squared Error for a Vector /i

at 12800, 38400, and 128000 points into the output file respectively. We see from both
these figures that the vector-/* gives us a much more proportional convergence.

Both these demonstrations dealt with stationary problems, and used pre-determined
vector-/*s. For non-stationary problems the vector-/* could be estimated using an ex-
ponential average as in (27). Again, as we pointed out in the first demonstration,
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Figure 8: Vector \i Processing
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occasionally we have to limit the largest values in the vector-/*, because even though
the average power in those bins will be very small, a very large corresponding vector-/*
element may cause the filter to overflow.

We also need to guard against choosing the block length too large since, as ex-
plained in Section 2, this may slow the overall convergence of the filter. Also, the
filter will be less able to track any non-stationarities in the input. On the other hand,
choosing longer FFTs allows us to better estimate A° and provide more proportional
convergence. One way to balance these two requirements is to increase the number
of points overlapped in each section. This decreases the number of points output at
each iteration and increases the computational overhead but provides the advantage
of more proportional convergence.

4 A Frequency-Domain IIR Adaptive Filter

Next, we consider extending the frequency- domain techniques developed for the transver-
sal adaptive filter to the recursive (or IIR) filter. This will include both the application
of the DFT to perform fast block IIR convolution and the use of a vector-/* to make
the adaptive process converge proportionally. First we present the LMS IIR adaptive
filter as it was first developed in 1975 by White [31]. We will not concern ourselves
here with questions of stability beyond those addressed by White.

In the recursive filter, the output is a weighted sum not only of the current and
past inputs but also of past outputs.

JVa-l AT6-1

Vj = E aiZJ-« - E *•%-*-! (28)
i=0 »=0

The z-transform of the transfer function of the IIR filter is simply

X(z) ~ "*-i
i + £ fc*-'-1

t=0

As with the transversal LMS adaptive filter, we form an error sequence {ej} using
the difference between the output {yj} and a desired signal {dj}. Then we use the
expected value of the square of the error as a performance criteria upon which to base
decisions about how to adjust the forward and backward weights, Cj and 6j respectively.
Unfortunately, the recursive nature of the equations make analyzing E (ejj the way
we did with the FIR filter nearly impossible. Instead we simply proceed with the
implementation. As before, we approximate E (e*\ with e?, then we find the gradient
of the squared error with respect to the weights and use this to adjust the weights.
First, we observe V(e?) = 2ejVej and

V « . . - .Ve, - , - , - ,^, «0 f l
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Now we need to find -$: and -$:. But

^6-1 \

(30)

fc=0

and similarly,

bk—^T

Thus the gradient estimate may itself be computed recursively. With suitable adaptive
gains [if and //6, the weight update equations are written

,-.41 = a;, + 2/z/e (32)

(33)

We observe that we can reduce the number of computations required to implement
a recursive filter simply by performing FFT implemented block convolution on the
forward part of the filter and then computing the feedback contribution a sample at
a time for each sample in the block. However, our object here is to find a way to
bring to bear the power of the FFT in order to reduce the number of computations in
the feedback portion of the filter as well as the feedforward. Several ways to perform
recursive convolution in a block fashion have been developed [36,38,39,40,41]. We will
use an approach first proposed by Voelcker and Hartquist [37], but we will follow a
simpler development and make an additional observation. If we consider (28) it first
appears that there is no obvious way to perform block recursive convolution when the
block length L is greater than 1, since the feedback portion of the filter will require
inputs before they have been computed. This is true unless the backward weights
60, 61 . • ., i>L-i (with L < Nb) are identically zero. It would seem that this requirement
would limit the types of problems to which such a filter structure could be applied.
However, we will show that it is possible to add extra poles to the transfer function
in such a way as to set bo through &L_I to zero. The effect of the extra poles can be
compensated by adding equivalent zeros to the transfer function. To formalize these
ideas, let us adopt a slightly different notation. First, we rewrite the filter equation as

bw-i-z> (34)
i=0 t=0

where we now represent the first non-zero backward weight as 60- Then, the transfer
function becomes

(35)
*(*)
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To implement the feedback portion of this filter using block methods, the largest block
that can be computed at a time will be L points long. Suppose we want to replace a
recursive filter with Np forward weights (po»Pi> • • • iPNr-i) and Nq backward weights
(9o» 9i> • • • > <ZJV,-i) with a block filter that has a feedback block length L. Both systems
will have to be equivalent, that is

(36)i=0 t=0

i=Q i=0

The order of the blocked denominator is JVj, + L - 1, while that of the unblocked
denominator is Nq, so we will have to add Ne poles and zeros to the unblocked system
where

Ne = Nb + L -N q - l (37)

That is, we need to find (eo, e\, . . . , ejve-i) and (60, &i» • • • , &j\rt-i) such that

iz-* (38)
t=0 / \ t=0 / »=0

Let us rewrite this equation as

= l + z-LB(z) (39)

where Q(z) = 0 **-*> B(z) = Eo"1^*'1' ^d £(z) = 1 + z~l E^o* **-')•
Then we write

E(z) = 1 + z~LB(z) - 2-^(2)^(2) (40)

If we recognize that (40) describes E(z) as the output sequence of an all-pole recursive
filter with input sequence l+z~LE(z), we can see that the first L points of the sequence
(1, eo, • • • ,eNe-i) correspond to the first L points of the impulse response of an all-pole
filter with transfer function H(z) = l/(l + z~1Q(z)), which is just the feedback portion
of the filter we are trying to model. Since Q(z) is general, we see that Ne + 1 > L.
To keep E(z) finite, we must choose B(z) to clear the filter. Conceptually we can do
this by setting bj to the negative of the output of the filter eL+\+j hi Q < j < Nq — 1.
This will introduce Nq zeros into the filter after which, provided there is no further
input (ie: bj = 0 Vj > Nq — 1), the filter produces no further output. This would lead
to NI, = Nq and Ne = L - 1. We could let Ne > L - 1 by not chosing the B(z) to
immediately clear the filter. This gives us some flexibility in choosing the initial terms
ofB(z).

We can also make these same observations by expanding the left side of (38) and
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equate the coefficients of the two polynomials. In matrix notation this is

1
go

0
1

0
0

0
0
0

r«-2 9N.-3

1
0
0

0

60
61

(41)

0 0 0 ••• qN,-i

We note that the matrix is Nq + Ne + 1 by Ne + 1 and that the rightmost vector has
Nb + L elements which equals Nq + Ne + 1 using (37). Next, we observe that only the
first Ne + 1 rows of the equation are needed to solve for (CQ, ei,..., e^-i). Also, since
the determinant of the submatrix formed from the first Ne + 1 rows of the matrix is
1, a unique solution exists. If L > Ne + 1 however, rows Ne + 2 through row L of the
matrix equation will not, in general, satisfy the equality. By using (37), this constraint
can be written as Nq > Nb, that is, the equation is guaranteed to have a solution if
Nb > Ng. If Nb = Nq, (bo, bi,..., bNt-i) are explicitly determined, but in the case that
Nb > Nq, (bo,..., bffh-Nq-i) can be chosen arbitrarily2. Also notice from (41) that L
can be chosen larger than Nq.

Thus we can determine the ej either by using matrix methods on the first Ne + 1
rows of (41) or, as we observed above, the first Ne points of the impulse response of a
recursive system whose feedforward weights are given by the first Ne + 1 elements of
the solution vector and whose feedback weights are given by the first Ne + 1 elements
of the first column of the matrix excluding the leading I.3 The undetermined b terms
are then found by performing the matrix operations indicated in the last Nq rows of
(41).

Once the terms (e0, e\,..., ej\re_i) have been determined, the block forward weights
(OQ, fli, • •., ajy0_i) can be found by adding an identical set of zeros to the system. That
is,

i=0

(42)
t=0

Hereafter, we will refer to 1 + z"1 X = T o e»z~* as the auxiliary equation and it's roots as
auxiliaries. From this we see that the order of the feedforward portion of the block filter
will have or derAT0-l where Na = Np+Ne. With (37) we have Na = Np+Nb-Ng+L-l.
Although we can choose L to be smaller than Nb we will achieve greatest efficiency
when L w JV&. In such a case, -ZVa w 2JVj, + Np — Nq — 1 and, with the constraint
Nb > Nq, we require Na «> Nb + Nq — 1. In most cases of interest, therefore, Na will
be larger than Nb- In the case that Np « ^V, and, with the fact that implementing the
convolution with FFTs requires that Na and Nb must be powers of 2, then most likely

2 Other considerations may determine how we select values for these terms.
3We note that these two approaches are mathematically equivalent.
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we will need Na = 2N{,- Often, it is undesirable to implement a filter that requires
two different length FFTs. One approach is to use the larger length FFT for both
convolutions but to use twice the amount of overlap in the feedback convolution as in
the feedforward. A more efficient approach is based on the observation that a 2JV-point
convolution can be performed using two .Af-point convolutions. That is,

Vj =
t=0 t=0 i=N*/2

Notice that each convolution involves half of the weights and the input to the second
convolution is just the input to the first convolution delayed by Na/2. If Na/2 is chosen
to be equivalent to the block length L, then the input to the second convolution is the
same as the input to the first except that it is delayed by one block. Thus, one FFT
can be used for the input and, excluding the initial FFTs required for the weights,
only three FFTs per block are required to implement a fixed weight recursive filter.
The choice of L — Na/2 forces us to use 50% overlap but, by saving an extra FFT, it
is likely the most efficient approach. We also have assumed in the preceding argument
that we want to use the same block length for both of the forward and the backward
block convolutions. Although it is possible to have a different block length for each
convolution, the use of two different block lengths increases the storage requirements
of the filter as well as its complexity.

Presuming that we have chosen a suitable block length L which is larger than or
equal to the larger of the required number of backward weights and half the required
number of augmented forward weights, that is L > Nj, and 2L > Na, then we pad Na

to 2L and JVj, to L by adding zeros to each. From these we form three i-point weight
vectors

_ , -rr\ _ rp

Adi = [GO,GI, . . . ,G£—i] ) Abi = [ f l i>°L+i»•• •>°2L—ij » and B\ = [&oj"i» • • •? "£-i]

Now defining the matrix X\ as we did for (11) (but with N = L) and the matrix YI
the same way, we can write the block recursion as

where YI is the fth L point output vector (defined as YI in (11). Following the procedure
developed in Section 2 we augment these vectors and matrices making Y^ and Xf
circulant. This gives

(43)

•v?o V"fl A «<* _i_ Ya AJ*a Va Da
II — Aj Adj -t- Aj_1AOj — Ij_!.Dj

Then, applying DFTs we have

DFT([x(i_l)L,..., *(,+!)£_!]) ® DFT(Aaf)
Yf = DFT~l { +DFT([x(l_2)L,..., ziL_a]) ® DFT(Abf) \ (44)

*)i*'~,yiL-i])®DFT(Bf)
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Figure 9: The Block Recursive Filter

which results in the structure diagramed hi Figure 9
Next, we need a method to adaptively update the coefficients of the block filter.
As we did for the block FIR filter, we first form an .L-point error vector E\ from

the difference of the /th output block YI and the /th set of L points from the desired
input, D\. Then we form the block mean square error and estimate it using only the
information available at the /th iteration, yielding

and the block gradient estimate becomes

V, =
-2

(45)
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where

(*£V
ao da0

dbo

(46)

From (34) we can find

Q L-l L-l
(47)

k=0

As in the scalar case, (47) can be solved recursively. By comparing these equations
to (34) and (35), we note that the recursions can be computed using block methods
directly as diagramed in Figure 10. Then we compute the gradient estimate and update

Figure 10: The Block Recursive Filter Weight Partials

the weights

(48)
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Figure 11: The Block Recursive Filter Weight Update

where p is the adaptive gain. Thus, the weight update can be performed as shown in
Figure 11.

At long last, we have a complete block IIR filter implemented using the FFT to
perform fast convolution. To summarize, we present the complete algorithm. To do
so, we define the vectors:

X =

Yf =
Ef =
AaT =
AbT =

(49)

Also, we define T to be a projection operator that sets the first L points of a vector to
zero. With the FFT and it's inverse represented by f and F~l, we first compute the
feedforward contribution and subtract from that the feedback contribution computed
at the previous iteration to generate L points of output.

Aaa Aba - v,a_j
(50)

Next we update the forward weights

= a.-

Vi; 0 < i < 2L - 1 (51)
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where Gail — f^ at each iteration and Z and Z are intermediate results. We then
update the backward weights

Vi; 0 < » < -t - 1 (52)

where GJ>J = f^ at each iteration. Finally, we transform the weights back into the
frequency domain and compute the feedback contribution for the next iteration:

Aa = F[AaT\\QT]T

Ab = F[AbT\\QT]T

B = F[BT\\QT]T (53)

Equations (50), (51), (52) and (53) constitute a frequency domain IIR adaptive filter.
Now we turn to the question of efficiency. As with the FIR adaptive filter, we

restrict our focus to filters whose inputs are real sequences. *
With Np forward and Nq backward weights, a time-domain IIR filter requires Np +

Nq real multiplies and real additions including the error calculation. There are Np + Nq

recursions required to compute the weight updates and each requires Nq -f 1 multiplies
and Nq + 1 additions including the sum for the actual weight update. Apart from the
recursions we also need two multiplies to form HfCj and me j. Altogether, the time-
domain IIR filter requires (Np + Nq)(Nq + 2) + 2 real multiplies and (Np + Nq)(Nq + 2)
real additions for each output point. If we use 2L point FFTs in the frequency domain
filter, the feedback filter actually implements L feedback weights and 2L feedforward
weights. An equivalent time-domain filter would use the same number of feedback
weights. From (37) using Nq. = L gives Np = L + 1. We also need to consider that
the frequency domain filter produces L output points at each iteration. To produce L
output points the equivalent time-domain filter requires 2L3 + 5L2 +4i real multiplies
and 2L3 + 5L2 + 2L real additions.

The filter section of the frequency-domain filter (excluding the weight FFTs) uses
3 FFTs, 3 ® operations and one three input £ operation. Using the same FFT
complexity estimates as we used for the frequency- domain FIR filter, the IIR filter
section uses 6ilog2(£) - 2 real multiplies and 9£log2(.t) + 18L - 42 real additions.
There are 3L recursions of the type in Figure 10. Each uses two FFTs, one ® operation
and one two input J^ operation. Here, the sum occurs in the time domain and only
requires L real additions. So weight partials require 12i2 Iog2 (.L) — 12X2 — 6L real
multiplies and 18L2log2(L) + 21Z2 - 78L real additions. There are also ZL weight
recursions of the type shown in Figure 11. The ® operations involve L point real
vectors in addition to the multiply by /zj, or /z/, which can be performed after the £.
Each recursion requires L + 1 multiplies and L additions for each of the 3L weights.
Adding in the cost of the three weight FFTs gives the cost of the weight updates as
3£2 + 6llog2(£) - 9£ real multiplies and 3X2 + 9Irlog2(i) + 61-36 real additions.
Thus, the overall cost of computing L output points using the block recursive LMS
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adaptive filter is 12(L + L2) log2(L) - 9L2 - 15L - 2 real multiplies and 24L2 + 18(1 +
£2)log2(Z,) + 901- - 78 real additions.

Table 2 gives the ratio of frequency-domain to time-domain operations for several
choices of L. By comparison, the ratios are a little worse than but still of the same

L

8
16
32
64

128
256
512

1024

Multiplies

1.376
1.102
0.758
0.480
0.289
0.169
0.096
0.054

Additions

4.460
2.850
1.731
1.015
0.581
0.327
0.181
0.099

Table 2: Ratio of Frequency Domain to Time Domain Calculations for the IIR Filters

order as those in Table 1. Here, we see that we need a filter length > 64 before we
realize a computational savings. While this filter length may be reasonable for a FIR
adaptive filter, one of the reasons for adopting an IIR approach is the hope of shorter
filters. However, the use of block methods may allow faster and more proportional
convergence even in smaller filters, justifying the added computational expense.

4.1 Proportional Convergence

The forward and backward filters are not strictly independent from each other and we
cannot find a simple non-recursive expression for the optimum weights as we did for
the FIR adaptive filter. If we take a somewhat heuristic approach and treat the filters
as independent from each other, we can apply some of the same ideas that lead to the
use of a vector-/*. Following the same development that lead to (24)

Aaf+l = Aaf

Abf+l = Abf

f+l

(54)

B = B

where we have used VAO.YI to be the first L columns of VYi and similarly for
and VB- The notation Vw indicates the vector gradient with respect to each of the
components of W. H represents a projection operator that selects the first L points of a
vector and the the final term in each of the above equations is augmented by padding
each with L zeroes. Noting that VAa = [G0o(/+1), G0l(/+1),..., Ga(L_l)(i+1)}

T, VAb =
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we adjust the weight updates in (51) and (52) as follows

hBi =

Vt ; 0 < i < L - 1

Abfa = Abf +
Bf+l = Bf

where Hjia — [h,Aa0 > ̂ Aau • • • i ̂ AaL^ ] and HAI and HB are defined similarly. The
A's can be estimated as they were in either (26) or (27). An exponential average is
preferred for A£ since it is difficult to predict beforehand the inputs to the backward
filter. If we use exponential averages, then

* (56)

Since the input to the backward filter is less predictable, one would usually choose
fa to be larger than /3y, and thus provide for a shorter window average. Notice that
despite the fact that we have broken the forward convolution into two parts, we still
use only one A£. Even if we used separate estimators for both forward filters, they
would be very similar since, except for a block delay, the inputs are the same to both
forward filters. In Section 5 we present the results of a frequency domain IIR filter
using both forward and backward vector-/zs. Using a vector-jz for the forward filter
provides dramatic improvement in the case where the input to the filter is characterized
by a large eigenvalue spread. The improvement resulting from using a vector-/i in the
backward filter is more difficult to assess but it appears to be useful.

4.2 Feasibility
Although adding auxiliary poles and zeroes allowed us to do the block recursion, and
although we showed that we could always find the auxiliary roots, we cannot guarantee
that the auxiliary poles and zeros will always lie on top of each other since we separately
adjust the forward and backward weights4. The plots in Section 5 indicate in fact that
they do not begin to coincide until the filter is almost converged. If the auxiliary root
happens to lie outside the unit circle and if the auxiliary pole follows a path (in time
or space) different from the one the auxiliary zero takes when outside the unit circle,
then the filter will become unstable. Another possibility is that the adaptive filter
may prevent the pole from moving outside the unit circle if the error surface gradient
estimate is steep enough in the direction associated with this motion. Though this
avoids instability, it prevents the filter from converging to the optimal solution. We say
a solution is feasible if the all the poles, including the auxiliaries lie inside the unit circle.
Voelcker and Hartquist [37] showed that if L is chosen large enough, all the auxiliaries
will fall inside the unit circle. We have noted above that choosing Nb larger than

4Even in a fixed filter, roundoff errors will cause the auxiliary poles and zeros not to coincide.



3.4.30

Nq allows (60. • • •»&JV6-JV,-i) to be chosen arbitrarily. We give an example to illustrate
that this choice can also affect whether or not a solution is feasible. Suppose we choose
Nb = Nq = L = 3, in particular a system with poles at (-.7,0) and (-.5, ±.5). The
denominator of the system function is in this case 1 +1.7z"1 + 1.2z~2 + .35z~3. Setting
up (41) for this case

f ' °lhM-L7l1.7 1 ej -1.2
(57)

and solving for eQ and e\ gives that the auxiliary equation is 1 — 1.7z x + 1.69z 2 which
has roots outside the unit circle at (0.85, ±.983616). If we set up the same problem,
but with Nb = 4 we have

1 0
1.7 1
1.2 1.7

eo -1.7
-1.2

b0 - .35
(58)

where we are free to choose 60- We notice that the choice of 60 will only affect e.^.
e0 and e\ will always be —1.7 and 1.69 respectively. Choosing e2 = -.75 gives the
auxiliary equation 1 — 1.7z-1 -f 1.69z~2 — .75z~3 which has roots just inside the unit
circle at (0.464943, ±0.870465) and (0.770114,0). To get this value for e2 requires that
we set 60 = -433.

Choosing N\, still larger the Nq gives more degrees of freedom (and also introduces
more auxiliaries). Whether this can be done in such a way as to guarantee that all
solutions for problems of a particular order will be feasible, or whether an adaptive
filter left to choose these "free" feedback weights will always choose a feasible solution
if one is available, are questions that require further research.

5 Frequency-Domain IIR Experiments

Here we present the results of an experiment to demonstrate both the frequency-domain
IIR filter itself, and the application of proportional convergence to the filter.

In this set of experiments, we color a white noise source using a first order But-
terworth filter designed with a cutoff of 0.1/,omp/e and implemented with an impulse
invariant transform. This colored noise is then applied to a time-domain IIR filter. The
output of this filter is applied to the desired input of a frequency-domain block IIR
adaptive filter implemented with 8 forward and 4 backward weights using 16 point
FFTs. The colored noise is also applied to the reference input of the frequency-
domain filter making this a system identification problem and the time-domain IIR
filter the system model. A random number generator forms the white noise source.
The coloring filter has one forward and two backward weights which are [0.253195] and
[—1.158046,0.411241], respectively. The model filter has four forward and three back-
ward weights which are [1, —1,1, —1] and [—.5,0.25] respectively. In each experiment
we have used p = .002 for both the forward and backward sections of the filter, and
at each time we process 2000 eight point blocks, saving the weights every 40th block.

The filter will attempt to converge to the blocked version of the model weights.
Here we have Np = 4, Nq = 3, and Nb = L = 4. By (37), we have Ne = 4, so there will
be 4 auxiliaries. Also, Nf, — Nq = 1, so we are free to choose one of the auxiliaries. One
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possible set is [(0.271844,0), (-.385923, ±.557571), (0,0)]. The poles should converge
to [(.5, ±.5), (-.5,0)], while the zeros should converge to [(0, ±1), (1,0)].

There are three separate experiments, each using a different set of values for (3f and
/3fr, which are used to estimate the forward and backward vector-//s as. given in (56).
If the A°s are initialized to the identity matrix, setting ft — 0 is equivalent to using a
constant scalar-/*. In Case A, both /3/ and fa are set to 0. In Case B, we set /3/ to
0.03 which gives an exponential average of about 17 blocks. Finally in Case C, we set
both /3j and /3& to 0.03. Plots of the pole-zero tracks and final pole-zero positions after
2000 blocks for each case are shown in the following figures. We also plot the forward
and backward weights after each 40 output blocks.

We see that Case C, with both a forward and backward vector-//, converges in 2000
blocks. Case B, with only a forward vector-//, also has the poles and zeroes converged,
but the auxiliaries are still moving. Case A has one zero converged and some other
poles and zeroes near convergence. The difference in the forward weight plots between
Cases A and B illustrates how the vector-// improves the convergence, making it more
proportional. Comparing the backward weight plots for Cases B and C shows that
a backward vector-// may have caused some improvement, but it is difficult to judge.
Still, it appears that the backward vector-// improved the overall rate of convergence.
This is an area where more experimentation needs to be done. As we indicated in
Section 4, a larger /3j, might be expected to perform better.

6 Summary

We have presented a general frequency-domain FIR adaptive filter that not only re-
quires fewer computations than the time-domain LMS adaptive filter, but also pro-
vides faster and more proportional convergence which preserves the signal's spectral
structure. We have also shown that the frequency-domain adaptive filters previously
proposed by Dentino [8], Clark [9], Ferrara [10], Narayan and Peterson [11,17] and
Mansour and Gray [15,16] are special cases of this general frequency-domain adap-
tive filter. We have extended these ideas to the recursive LMS adaptive filter and
shown that it is possible to reduce the number of computations from order L3 to order
L2log2(.t). At the same time, we have presented a way to use the FFT to perform
fast IIR convolution through the addition of auxiliary poles and zeros. We have shown
that the convergence properties of the recursive LMS adaptive filter can be improved
by using an appropriately chosen vector-//. It is possible to show [29] that we can
use these fast convolution techniques to reduce the number of computations in the
CHARF [33], SHARF [34], and Feintuch's recursive LMS filter [32]. Both the general
frequency-domain adaptive filter and the frequency-domain LMS recursive filter were
implemented and tested. The results presented in this paper show the advantage of
using a vector-//.
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Figure 12: Pole Zero Tracks and Final Pole Zero Plot for Case A
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Figure 15: Pole Zero Tracks and Final Pole Zero Plot for Case B

5 10 15 20 25 30 35 40 45 50

Figure 16: Forward weights for Case B

0 5 10 15 20 25 30 35 40 45 50
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Figure 18: Pole Zero Tracks and Final Pole Zero Plot for Case C
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