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Abstract-
This paper discusses the application of neural network pattern analysis al-

gorithms to the 1C fault diagnosis problem. A fault diagnostic is a decision rule
combining what is known about an ideal circuit test response with information
about how it is distorted by fabrication variations and measurement noise.
The rule is used to detect fault existence in fabricated circuits using real test
equipment. Traditional statistical techniques may be used to achieve this goal,
but they can employ unrealistic a priori assumptions about measurement data.
Our approach to this problem employs an adaptive pattern analysis technique
based on feedforward neural networks. During training, a feedforward network
automatically captures unknown sample distributions. This is important be-
cause distributions arising from the nonlinear effects of process variation can
be more complex than is typically assumed. A feedforward network is also
able to extract measurement features which contribute significantly to making
a correct decision. Traditional feature extraction techniques employ matrix
manipulations which can be particularly costly for large measurement vectors.
In this paper we discuss a software system which we are developing that uses
this approach. We also provide a simple example illustrating the use of the
technique for fault detection in an operational amplifier.

1 Introduction

An integrated circuit test is a combination of input and output signals which characterize
some attribute of idealized circuit function. The presence of faults in a fabricated circuit
will cause observed output signals to deviate from the simulated ideal. Unfortunately,
variation of fabrication process and device parameters as well as measurement noise will
also cause a deviation from ideal circuit performance, so something is needed which helps
distinguish signal deviations due to fault existence from those due to these other sources.
A diagnostic is a decision rule combining what is known about an ideal circuit test with
information about how it is distorted by fabrication variations and measurement noise.
The rule is used to detect fault existence in fabricated circuits using real test equipment.
In this paper we discuss the application of neural network algorithms to the automatic
synthesis of diagnostics for integrated circuit test.
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Diagnostic synthesis is less concerned with specific aspects of test design than it is with
the generation of a decision rule for a given test and process specifications. The focus
of most test generation techniques is upon finding an appropriate combination of signals
which will properly excite a circuit to reveal the existence of a potential fault. In diagnostic
synthesis, a specific test has already been designed (typically under the assumption of a
deterministic measurement process), and the job is to find some decision function which
accurately reflects the outcome of that test in the real world (where measurements are
random). In the event that a good diagnostic cannot be found for a given test, that
information can provide feedback to the test designer so that a more robust variation can
be created.

2 Statistical 1C Diagnostic Synthesis

Diagnostic synthesis can be formulated as a statistical pattern recognition problem. This
involves the generation of sample data and the analysis of that data using statistical tools.
A priori assumptions about the measurement distribution can be made to simplify the
mechanics of the data analysis, or a large number of samples can be used to approximate
actual distributions. Feature extraction and pattern clustering techniques can also be used
to simplify the discrimination task.

One way to obtain sample data for 1C test measurements is simply to fabricate ICs.
This is clearly the most accurate way to characterize process dependent performance vari-
ations, but it is also an expensive alternative. Monte Carlo simulation of process and
device parameter variation is more economical provided circuit simulation requirements
do not exceed the capacity of available computational resources. This approach will be
less accurate since process and device model limitations may not fully reflect actual circuit
performance.

Given a sample of noisy test data, one approach is to assume some measurement distri-
bution, then use sample moments to estimate the joint probability density functions (jpdf)
of operational and faulted test results. A threshold discriminant can then be employed as
a diagnostic. This method suffers from the inaccuracy of the distribution assumption as
well as from the need for some separate feature extraction technique to decide which mea-
surements are useful. Even if fabrication process disturbances are normally distributed,
the nonlinear relationship between process variation and measurement means that the
measurement data cannot be expected to be distributed in some easily predictable man-
ner. The strongest a priori assumption that can be justifiably made about measurement
distribution due to process variation is that it is probably unimodal and asymmetric [11].
Monte Carlo generation of a large number of samples better approximates measurement
jpdfs [1], but still suffers from the need for separate measurement feature extraction.

Feature extraction involves the selection of measurement combinations which provide
for a more efficient representation of the raw data. A more efficient representation em-
phasizes combinations which exhibit better discrimination properties. Feature extraction
implies data preprocessing which reduces measurement dimensionality as well as clustering



2nd NASA SERC Symposium on VLSI Design 1990 6.1.3

similar measurements. Previously used algebraic methods [11] require the manipulation
of large matrices when there are many measurements and provide no solution guaran-
tee. Sometimes human inspection of scatter plots is used to discover correlations between
sample data measurements [1] and reduce the number of required measurements.

3 Statistical Properties of Feedforward Neural Net-
works

A multi-layer feedforward network of the kind currently popular in the neural network
literature can be viewed as a statistical pattern recognition algorithm. When trained on
random sample data, neural network connection weights effectively form a vector-valued
statistic of that data [12]. Feedforward neural networks also serve as universal vector
function approximators provided sufficiently many hidden units are available [2] [4]. These
properties suggest that a feedforward network can be used to approximate a discriminant
function based upon random sample data without the need for a priori knowledge of the
sample distribution or an excessive number of samples.

The popular backpropagation training method [9] arrives at feedforward connection
weights in a fashion which encourages the automatic extraction of important data features.
The gradient descent algorithm associated with backpropagation strengthens connections
which contribute to the reduction of error in the approximation of the sample mapping. A
feedforward network trained this way will emphasize input combinations which contribute
the most to a good approximation, automatically performing feature extraction without the
need for data preprocessing. Clustering of similar inputs and dimensionality reduction can
both be observed to occur automatically. These characteristics help eliminate the need for
cumbersome scatter plot inspection and numerically unwieldy algebraic data preprocessing.

4 Neural Network Based 1C Diagnostic Synthesis

The 1C diagnostics which we are investigating take advantage of the properties associated
with feedforward neural networks. Monte Carlo simulation is used to generate a sam-
ple data set modeling ideal test conditions in the presence of process and measurement
noise. Part of this sample data set is used to train a feedforward neural network using
the backpropagation algorithm. The resulting connection weights define a discriminant
function which is then tested for fault coverage performance using the remaining portion
of the sample data set. Once an acceptable level of coverage is determined, the connection
weights are available for transfer to the automatic test equipment.

The main advantages of this approach are that no measurement distribution assumption
is needed to form a discriminant and that features are automatically extracted without
complex numerical manipulations. The principle disadvantage is that iterative gradient
descent training techniques like backpropagation are subject to solution convergence diffi-
culties which can lead to excessive training times and nonoptimal solutions. It is notable
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that contemporary research toward finding ways to overcome such difficulties is in progress.
Recent work in both electronic circuit test and automobile diagnostics lends additional

support to this approach. Neural networks have been demonstrated which approximate the
relationship between a node voltage measurement space and a six resistor circuit element
space, with the goal of detecting out-of-tolerance device parameters [10]. They have also
been used to discriminate between automobile engine faults given control CPU signals
[6]. Our work includes an additional dimension to these previous results by specifically
incorporating the effects of production variations and measurement noise.

Figure 1 shows a diagnostic generation system in its intended context within an over-
all 1C test design strategy. The diagnostic generator combines circuit layout and test
specifications with process specifications to generate a diagnostic decision rule. The test
specification is expressed as a fault dictionary which relates ideal stimuli and responses
to various fault conditions for a given circuit specification. The diagnostic is expressed in
terms of a specific feedforward neural network configuration and its associated connection
weights. The diagnostic processor corresponds to the hardware which executes the neural
network algorithm in conjunction with automatic test equipment. The diagnostic genera-
tor also provides some confidence measure which indicates fault coverage. This can help
guide potential revisions of the test specification or even the tested circuit.

The internals of the diagnostic generator are shown in Figure 2. Process specifications
are translated into a device characteristic sample via Monte Carlo process simulation.
The layout specification is translated to a netlist by a circuit extractor, and both are
used as input to a circuit simulator. The test stimulus completes the specification of a
circuit simulation .which when executed, provides a random sample of test results. This
sample simulates the measurements which would be made on a batch of fabricated ICs.
A measurement simulation then distorts the fabricated response sample, modeling the
imperfections of the targeted test equipment. The resulting simulated response sample
is then combined with additional information from the original test specification during
the training of the pattern recognition algorithms. The results of this training process are
then made available to the designer in the way of a diagnostic decision rule and feedback
regarding its effectiveness.

A fabrication process simulator has been implemented using the SUPREM-III process
simulator [3] and the PISCES-II device characteristic extractor [8] configured with a Monte
Carlo process parameters generator. The FABRICS fabrication process simulator [7] is
another tool available for implementing the statistical simulation of the fabrication process.
In our experimental setup, we are using various Berkeley tools for circuit specification
with PSPICE and MCNC CAZM as our circuit simulators. The specific choice of process
and circuit simulators is relatively independent of our diagnostic synthesis goal, and is
considered a matter of designer preference.

The measured response sample obtained from these simulation steps is then used as
input to a feedforward neural network training algorithm. The sample is partitioned into
two smaller pieces: one for training and one for evaluation. The network is trained on
equal numbers of faulty and fault-free exemplars from one of these sets. The quality of
the acquired discriminant is then tested using the previously unseen sample. If a sufficient
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Figure 1: Diagnostic synthesis in a test design process
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Figure 2: Neural network based diagnostic synthesis method

percentage of these test exemplars is properly classified, then the connection weights cor-
responding to the generated diagnostic are made available for transfer to the automatic
test equipment. A poor discriminant can arise for many reasons however, ranging from
an inappropriate test specification to an overly constrained network architecture. We are
currently investigating variations of the backpropagation training algorithm which auto-
matically add hidden units as a function of convergence rate. It is expected that a poor
discriminant is less likely to result from an insufficient network architecture using such an
algorithm.

5 Experimental Approach and the Results

The quality of the pattern classification performance strongly depends on the number
of training samples the network is exposed to during the learning stage and how closely
the training patterns resemble the actual data with which the network will be confronted
during normal operation. Therefore, it is essential to find efficient techniques for fault
simulation. In general, fault simulation can be carried out either in a real 1C fabrication
process, or using computer simulation. The first method has two severe drawbacks:

1. Such experiments are expensive and time-consuming.
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2. The disturbances introduced in the fabrication process cannot be controlled with
sufficient accuracy.

We propose using a statistical process simulator SUPREM-III, a semiconductor device
modeling program PISCES-II, and a circuit simulator, e.g., SPICE or CAZM for fault
simulation. The relationship among SUPREM-III, PISCES- II, and SPICE or CAZM
are as shown in Figure 3, SUPREM-III takes care of the process parameters, the layout
parameters, and the process disturbances. The FAB process simulation outputs come from
SUPREM-III are fed to PISCES-II for electrical characteristics analysis. The output of
PISCES-II is then fed to SPICE or CAZM through an interface software called PICA. PICA
is currently being designed at Washington State University. The circuit performances
output from SPICE or CAZM will be used for pattern classifications using neural networks.

SIMULATION EXPERIMENT
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Figure 3: The simulation experiment flow chart for 1C tests

The Monte Carlo Method [5] will be used to generate data which resemble the process
disturbances. Monte Carlo method is one that involves deliberate use of random numbers in
a calculation that has the structure of a stochastic process. By stochastic process we mean
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a sequence of states whose evolution is determined by random events. In a computer, these
are generated by random numbers. This particular experiment consists of the following
steps: creating the fault dictionary using PSPICE, preprocessing the data of the fault
dictionary, selecting the neural network architecture and training algorithm, and finally
training the neural network for classifying 1C failures.

An operational amplifier, shown in Figure 4 and 5, was used in our experiment. Two
fault dictionaries of transient analysis were created by using PSPICE with Monte Carlo
method. A normal data set was collected by varying device parameters within operational
limits. While a faulty data set was collected by making the variation of the junction depth
of one of the MOSFETs (Ml in Figure 5) exceeding the functional specification. Input
stimulus is a 0.1 volt pulse of 5 micro seconds duration. Each data set has sixty patterns.
Each pattern has 101 sampling points in 10 micro seconds. One of our experiments chose
32 samples from each pattern with equal spaces. The other one sparsely chose 11 samples
and also evenly spaced. Data in the fault dictionary were normalized to be in the range
between 0.1 and 0.9. Figure 6 shows these densely sampled signal waveforms in four sets
a, b, c and d.

Using the backpropagation learning algorithm, a two-layer feedforward neural net-
work(one hidden layer) was then trained as pattern classifiers for those data. For the data
with 32 samples, we used a 32:5:1 network. For the one with 11 samples, we used 11:5:1
network. Data set used for training has 30 patterns each from both the normal data set
and the faulty data set. After the network has been trained, all four data sets were used
for testing. The 32:5:1 neural network can classify all 120 patterns after 15000 epochs of
training. The 11:5:1 neural network, trained with sparsely sampled data, cannot finish the
training phase after 73000 epochs.
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Figure 4: Configuration for SPICE simulation. The OP AMP is shown in Figure 5.
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6 Summary and Future Work

The possibility of using neural network in 1C fault diagnosis problem is demonstrated.
Results of the experiment positively showed the capability of the feedforward network
in separating the faulty circuit from the normal circuit based on the patterns presented.
However, its diagnosis ability depends on the information implicitly in the patterns used in
training the network. In the case of sparse sampling, where output signal sampled eleven
times, it is unable to train the network to diagnosis the fault from the pattern presented. It
is because the essential features of the signals are not presented to the network. Important
information is not included in the sparsely sampled pattern. When the output signals were
sampled more densely, the network can identify the patterns accurately. Such phenomena
is not hard to explain.

Examining the output signals carefully, the distinctive features are in the slew rate
and the overshoot of the output signal. Faulty circuit has a slower slew rate and larger
overshoot. These distinctive features are not included in the sparsely sampled pattern.
Since the output signals of both faulty circuit and normal circuit are very similar in the
shape of the waveform. It is hardly to distinguish the signals simply based on their shape.
However, when densely sampled, these features present in the pattern used for training
and verification. The trained network can positively identify the faulty signals.

Further work will be conducted to investigate the sampling dependent phenomena and
to establish techniques to guarantee success in diagnosis using neural network; and also
assist how diagnosis measurement should be conducted.
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a: Fault Free Circuit Training Patterns b: Fault Free Circuit Testing Patterns
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Figure 6: The neural network was trained with patterns in data sets a and c. The properly
trained neural network can positively classify any patterns in all four sets. Note that the
output voltage and time are normalized.
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