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Abstract - We developed an identification method to find the strength of the
connections between neurons from their behavior in small biologically-inspired
artificial neural networks. That is, given the network external inputs and
the temporal firing pattern of the neurons, we can calculate a solution for the
strengths of the connections between neurons and the initial neuron activations
if a solution exists. The method determines directly if there is a solution to a
particular neural network problem. No training of the network is required.

It should be noted that this is a first pass at the solution of a difficult
problem. The neuron and network models chosen are related to biology but
do not contain all of its complexities, some of which we hope to add to the
model in future work.

A variety of new results have been obtained. First, the method has been
tailored to produce connection weight matrix solutions for networks with im-
portant features of biological neural (bioneural) networks. Second, a compu-
tationally efficient method of finding a robust central solution has been devel-
oped. This later method also enables us to find the most consistent solution
in the presence of noisy data.

Prospects of applying our method to identify bioneural network connections
are exciting because such connections are almost impossible to measure in the
laboratory. Knowledge of such connections would facilitate an understanding
of bioneural networks and would allow the construction of the electronic coun-
terparts of bioneural networks on very large scale integrated (VLSI) circuits.
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1 Introduction

Brains of living organisms are difficult to understand in part because they can contain
billions of extremely complex neurons [6], [1]. However, there is an additional signifi-
cant difficulty in that the effects of connections between the neurons cannot be measured
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effectively or directly in the laboratory. Willows, for instance, reports some 20,000 mea-
surements to determine which regions of a Tritonia would evoke responses of the mollusk's
tens of neural cells, and goes on to point out that these experiments.had to be conducted
in reverse to find where the cells sent their messages [12]. His work, absolutely first class in
every respect, illustrates the problem of determining the existence of neural connections,
let alone evaluating their strengths.

Previous attempts to understand bioneural networks have involved direct measurement
of physical properties or partial destruction of networks to observe the effects of such
changes. Both approaches are long and tedious procedures. Our research suggests an
alternative method of solving the problem of determining the strengths of connections
between neurons. An understanding of the structure of bioneural networks would enhance
the feasibility of neural repair, neural prosthesis design, and the construction of electronic
equivalent circuits such as artificial visual or recognitions systems.

At present there is great interest in artificial neural networks that can recognize objects
or patterns in complex data. The current approach of many investigators who wish to build
a practical neural network to perform a specific task is to approximate a neuron, constrain
the neural network connections to be feedforward, and train the networks by a method
such as backpropagation [9]. Such networks bear little resemblance to bioneural systems,
and it is not clear in each case whether a network of a specific size can be trained to do
the desired job. However, networks of this kind have been trained to do interesting tasks,
including some tasks that are not commonly done well by conventional computers or by
any neurobiological system [8]. In contrast to the approach of many investigators, we have
chosen neuron and network models that capture some of the most important aspects of
the behavior of bioneural networks. Note that if one could understand bioneural networks,
one could build them directly to solve some difficult problems.

The purpose of this paper is to present the neuron and network models that we have
assumed, to show how our identification method proceeds and to tell of new results, in-
cluding a way to find a robust central solution. The contributions of the paper He in the
novelty, power and simplicity of the method, which allows one to solve the "identification
problem" for biologically inspired neural networks which are nonlinear systems with mem-
ory; and in various new results presented, including the development of an efficient method
for finding a robust solution. .

2 Neuron and Network Models

A recent DARPA Neural Network Study [3] defines a neural network as "a computational
structure modeled on biological processes." We have chosen our neuron model and network
model in that spirit. A schematic of the neuron model that we will adopt is shown in Figure
1.

In biological terms, the soma on the left of Figure 1 is the body of the neuron , and
its axon projects to the right. External inputs impinge on the soma. Input signals from
presynaptic neurons impinge on the soma and dendrites. Output signals are transmitted
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Figure 1: A Single Neuron, Neuron 2 (N2)

through the axon to the postsynaptic neurons on the right.
External inputs to the neuron and signals from other neuron's firings are integrated to

form an "activation level." When a neuron's activation exceeds a "threshold" T, the neuron
"fires", sending output signals to postsynaptic neurons and setting its own activation to
the resting potential, taken here to be zero. The strengths of connections between neurons
are given by the element Wij. Thus, when neuron j(Nj) fires, it sends a signal of strength
w^ to Ni, and sets its own activation level to the resting potential. The set of all W{j will be
referred to as the weight matrix, W, and the set of initial activations Oj(l) will be referred
to as the initial activation vector A (1). Our objective is to develop a method for finding a
weight matrix W and an initial activation vector A for a particular neural network whose
external inputs and temporal firing pattern are specified.

An equation for the activation level a, of Ni in a neural network and definitions of the
equation's terms follow.

N

+ 1) = /,(<) + (i - +
3=1

F[aj(t)} = 1 if aj(t) > T F[aj(t)] = 0 if o,-(0 < T

(1)

(2)

di(t) is the activation of neuron i at time <,
w^ is the strength of the connection from neuron j to neuron t,
Ii(t) is the external input to neuron i at time t, and
T is the threshold at which the neurons will fire.

An example of a two-neuron network with known connections and initial activations is
shown in Figure 2.

As this figure shows in the diagram on the top and in the weight matrix W, the strength
of the connection from NI to itself is 11, the strength of the connection from N2 to NI is



6.2.4

11
2

-5
10

11 -5
2 10

1
0

Figure 2: A Simple Two-Neuron Neural Network

-5, etc.. The expression for A shows that the initial activation of Nl is 1, which will cause
Nl to fire at t = 1.

The networks need not 'be fully connected, and can be constrained in various ways
if desired. For instance, a network can be made feed-forward by setting the upper right
coefficients of W to be zero.

In our model, the weight matrix W is not a function of time. However, the method de-
scribed here can be applied at various times to track changes in weight matrix-connections
with time.

3 Identification Method

The identification and design method pioneered by Hicklin [5] and used here will be illus-
trated through a simple example. Let us consider the following firing pattern of length
L = 6 or a hypothetical two-neuron system with zero inputs:

Timet
Firing of Nl
Firing of N2

1
1
1

2
1
0

3
1
1

4
1
0

5
1
1

6
1
0

Table 1: Two-neuron Firing Pattern

What can we deduce about the network producing this behavior? The fact that both
neurons fired at t = 1 tells us that the initial activation of each neuron was above threshold
and thus:

> T (3)

>T (4)

The fact that Nl fired on the second step tells us that its activation at t = 2 was also
above threshold. What was its activation? From Equation 1 :

oj(2) = (5)
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There were no inputs, so the first term is zero. Both neurons fired on the previous time
step (t=l) so we know that f[ai(l)] = 1 and F[a2(l)] = 1. When we insert these values in
the equation shown above, remembering that Nl fired on the second time step, we have:

oi(2) = wn + v > u > T (6)

We have reached an important point in our development, so let us pause to consider
what has been done. As shown in Equation 6 we have established the first weight matrix
inequality. It constrains the sum of the two weight matrix elements, wn and WH. Any
weight matrix that is to reproduce the specified firing pattern must satisfy this inequality.
We can continue extracting inequalities from the firing pattern in this manner. When we
have written N*L = 12 constraint inequalities we will seek a W and an A that will satisfy
all of them. If a solution exists, the network using the W and A solution will produce the
desired firing pattern. Now let us proceed with finding additional constraint equations.
N2 did not fire on the second time step, so the mathematical process used to obtain the
inequality of eq. 6 can be applied here to yield:

a2(2) = w3l + w n < T (7)

As seen in eqs. 6 and 7, at t = 2 each neuron's behavior yielded an inequality relating the
threshold and the strengths of the connections to that neuron from firing neurons. Note
that the two weight matrix elements wu and tuu of eq. 6 are in the first row of the weight
matrix, while the two elements n?21 and wn of cq. 7 are in the second row of the weight
matrix. Thus, when we seek a solution, we only need to solve two independent sets of
inequalities (eqs. 6 and 7) each involving two elements of the weight matrix, rather than
solving one set of inequalities involving all four weight matrix elements.

Proceeding in this way, six inequalities for Nl and six inequalities for N2 can be devel-
oped. The most common and well-known method of solving such a system of inequalities
is the simplex method, which is described in most introductory linear programming texts
[2]. When we apply the simplex method to the linear inequalities for this network we
find that the following solution does exist. We have simulated a neural network with the

2.00 -1.00
W = 1.00 -1.00

1.00
1.00

initial conditions and weight matrix shown. The network does produce the firing pattern
specified in Table 1.

4 Graphical Viewpoint

A weight matrix solution to each of two sets of equations such as those of eqs. 6 and 7
can be obtained graphically in two dimensions for the two-neuron case. This graphical
technique can give some insight into methods for solving systems with more variables. In
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two dimensions an inequality is a line that partitions a plane into a solution region and a
non-solution region. A set of linear inequalities will create a more complicated situation.
Two or more linear inequalities may result in either an infinite solution region, a finite
solution region, or no solution region at all. Figure 3 shows the partitioning of the solution
space for two inequalities associated with the first row elements of a weight matrix of a
neural network that has a firing threshold of one. As shown above, the solution area is

Figure 3: Example of Constraints on wn and

constrained to be to the right of the vertical line Wu = 1 and to the upper right of the
sloped line Wu + w13 = 1. If a solution space remains after all of the inequalities have been
extracted from a firing pattern, then any point in the solution space can be used as the
weights in the matrix and the resulting network will exhibit the desired behavior. If there
is no solution space, then no two-neuron network can perform as desired. As mentioned
previously, if a network is to be realized then solutions must exist for all rows of W.

5 Identification and Design Applications

The methods that we have developed can be used to identify the connections of neural
networks that have an arbitrary desired firing pattern and input pattern. Let us take an
example that requires the design of a four neuron system that produces a specific nine
bit temporal firing pattern. The network is to have a threshold of 1. The desired firing
pattern and inputs are shown in Table 2. . . . i- . :-- i .
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Time Step

Input to neuronl
Input to neuron2
Input to neuronS
Input to neuron4

Firing of neuronl
Firing of neuron2
Firing of neuronS
Firing of neuron4

1

2
1
6
2

0
0
1
1

2

7
-4
0
1

1
1
1
1

3

1
1
2

-2

0
0
0
1

4

2
4

-2
7

0
1
0
0

5

-2
2
1
9

0
0
0
1

6

8
1
6
2

0
1
0
1

7

1
-3
9
0

1
0
0
1

8

-2
5
2

-3

0
0
1
0

9

3
6
3
1

0
1
1
0

Table 2: The Specified Behavior

Our computer program generated the inequalities and presented them to the simplex
method. The solution shown below was found in about 5 seconds on an Apple Macintosh
II computer.

-3.00 -3.00 -1.61 -0.34 0.97
0.00 -3.03 1.05 3.00 .,.,._ -3.00

-3.00 -3.00 -0.98 0.20 A(1;~ 1.02
1.48 -0.48 -0.48 -0.50 1.02

Table 3: The Designed Network

Next consider the probability of realization of firing patterns when there are no external
inputs and when W and A are free variables. Our method was applied to determine the
percentage of patterns realizable for up to ten neurons and ten time steps. The results in
Fig. 4 show that the probability of realization increases as the number of neurons increase
and as the number of time steps decrease.

6 Application To Biology

Obtaining data in the laboratory about bioneural network connections is extremely diffi-
cult. Many biologists, working for decades, have been able to establish some understanding
of the neural connections in only a dozen or so crustacean "minibrains", each of which has
ten to twenty neurons [10], [11]. Consequently, the prospect of applying our identification
method to bioneural systems is exciting and we have begun to make our model more bi-
ologically realistic. For instance our method can be tailored so that it can calculate the
weight matrix connections of networks having additional features of bioneural networks,
as described below.

An individual bioneuron does not have direct connections from its axon back to its soma
or dendrites. Thus, the diagonal terms tOjj of the weight matrix, W, must be constrained
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Steps
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Figure 4: Percent of Patterns Realizable

to the value zero. Also, bioneurons commonly are either excitatory or inhibitory to any
particular group of postsynaptic neurons so the columns of W will be either positive or
negative.

The N diagonal terms of the weight matrix can be constrained to have the value zero
by introducing N such constraints, one for each diagonal term. There are 2N possible
sets of such column constraints and we can find a solution by using a tree search. The
column constraints do not couple the N sets of inequalities associated with N neurons, so
we are still dealing with L inequalities for each row. We have applied our method to design
a variety of networks having zero diagonal and positive or negative column constraints.
As additional constraints are introduced, the probability of realization of a network for
a randomly generated temporal firing pattern decreases. We have run tens of thousands
of cases on a Cray X-MP to determine the effects of the diagonal zero constraint and
the column constraints and combinations of both. Each kind of constraint decreases the
probability of realization. The decrease is especially significant in those cases where there
are few neurons and/or many time steps. Details of these results will be reported in an
upcoming M.S. thesis [7].

Thus, our method can be tailored to include additional biological features. This gives
hope that bioneural connection strengths could be obtained from a manageable combina-
tion of experiments and calculations based on our method.

Now let us see how some of our viewpoints can be applied in a specific biological
example. Consider a lobster's stomatogastric ganglion. This minibrain of some twenty
neurons must produce a satisfactory firing pattern if the lobster is to survive. Suppose
we were to examine the inputs to this minibrain, measure its firing pattern, apply our
(extended and refined) method to identify a weight matrix solution, and map the associated
solution space. The lobster could be using any solution in this space satisfactorily. The
question is, "Where does he (or she?) live?". Presumably the lobster is not "living on the
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edge", because the slightest indigestion might put him/her out of the solution space and
thereby out of commission. The species has survived, so it must have solved the problems of
establishing a solution space of sufficient size and of finding a robust solution, presumably
in the central part of its solution space. We could apply our own inputs to the lobster's
minibrain in a laboratory test to produce additional inequalities that would allow us to
calculate the lobster's exact weight matrix solution. Knowledge of the lobster's solution
space and his/her exact weight matrix solution would help us to predict and understand
the effects on the lobster of neural damage, drugs, etc.

7 Robust Solution

Phase one of the simplex method as used above to identify networks produces a solution
on the vertex of the solution space. Such a solution is not robust, for a slight change in
connection strengths may result in the ''network solution" no longer being in the solution
space. In other words, the phase one simplex solution is not robust because it is at the
edge of the solution space. We would prefer a solution which is in some sense "central" in
the solution space.

A solution that is maximally distant from its nearest constraint can be obtained ef-
ficiently by using the second phase of the simplex method [4]. To do this, we define a
special slack variable 6 that is common to all constraints. This variable represents the
minimum distance of a trial solution from each constraint. We direct phase two of the
simplex method to maximize 8. It does so and produces the desired result directly and
efficiently. Robust solutions for many networks have been found. All of the probabilities
of realization for the cases involving diagonal and column constraints were obtained with
this method. We look forward to using our methods to determine the solution space of a
lobster, to finding if a particular lobster's actual solution is the same as our robust solution,
and to comparing solution spaces and specific solutions for various lobsters.

Phase two of the simplex method can also be used to deal with bioneural systems
having inconsistent firing patterns for which there are no realizable solutions. Such cases
may occur due to changing connection weights arising from biological noises. To find a
solution in these inconsistent cases, we again use the common slack variable j, but on
this occasion we find the solution associated with the least negative value for 6. Basically
we have pushed each constraint boundary back a minimum amount until a point solution
is obtained. A solution obtained in this way may be viewed as a central solution in a
noisy space, with the value of 8 being a measure of the noise inherent to the system under
study. The model with such a solution will act much like the original system with the
noise removed.

8 Summary of Results

We have found an identification method to determine the connections between artificial
neurons of a network from the behavior of the network. We applied the method to identify
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neural networks. We found that the probability of realization of firing patterns increases
as the number of neurons increases and as the number of time steps decreases.

We identified network connection constraints associated with biological structures and
found ways to incorporate them in our design methods. We applied our biologically tailored
identification method to identify neural networks having biological network constraints
such as zero diagonals.

We have developed a method for finding a central robust solution for neural networks
and an analogous procedure for dealing with networks having inconsistent temporal firing
patterns.

9 Conclusions

We have developed a new tool for identifying the connections of biologically-inspired neural
networks. This tool is important because it is extremely difficult, if not impossible, to
measure neural connections in bioneural networks. The availability of such a tool gives
hope that a combination of experiments and calculations can be applied to determine
the detailed structure of biological neural networks such as visual systems, and that the
knowledge obtained would enable us to build their electronic counterparts on VLSI circuit
chips. The method that has been developed also might be used to guide the repair of
damaged biological neural networks, to develop neural prostheses and to build electronic
recognition systems based directly on biological systems.

We recognize that our work is only a beginning and that we need to include more
biological features of neurons in our model before it can reasonably approximate living
systems. After improvements we hope to interpret firing patterns taken by neuroscience
researchers.
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