
N94-71122

2nd NASA SERC Symposium on VLSI Design 1990 ' 6.4.1

High Performance
VLSI Telemetry Data Systems

J. Chesney, N. Speciale, W. Homer, S. Sabia
Data Systems Technology Division

Mission Operations and Data Systems Directorate
NASA, Goddard Space Flight Center

Greenbelt, Maryland 20771

Abstract - NASA's deployment of major space complexes such as Space Sta-
tion Freedom (SSF) and the Earth Observing System (EOS) will demand in-
creased functionality and performance from ground based telemetry acquisition
systems well above current system capabilities. Adaptation of space telemetry
data transport and processing standards such as those specified by the Con-
sultative Committee for Space Data Systems (CCSDS) standards and those
required for commercial ground distribution of telemetry data, will drive these
functional and performance requirements. In addition, budget limitations will
force the requirement for higher modularity, flexibility, and interchangability
at lower cost in new ground telemetry data system elements. At NASA's
Goddard Space Flight Center (GSFC), the design and development of generic
ground telemetry data system elements, over the last five years, has resulted
in significant solutions to these problems. This solution, referred to as the
functional components approach [1], includes both hardware and software compo-
nents ready for end user application. The hardware functional components
consist of modern data now architectures utilizing Application Specific Inte-
grated Circuits (ASICs) developed specifically to support NASA's telemetry
data systems needs and designed to meet a range of data rate requirements
up to 300 Mbps. Real-time operating system software components support
both embedded local software intelligence, and overall system control, status,
processing, and interface requirements. These components, hardware and soft-
ware, form the superstructure upon which project specific elements are added
to complete a telemetry ground data system installation.

This paper describes the functional components approach, some specific com-
ponent examples, and a project example of the evolution from VLSI compo-
nent, to basic board level functional component, to integrated telemetry data
system.

1 Introduction

To insure the "routine" nature of space activities in the future, many essential science and
engineering developments must occur over the next ten years. One of the most crucial of
these developments is the evolution of current space telemetry systems. The widespread

6.4.2

nse
Sen

rt
/ice

D

Vi
Cl
D,
S<

nua
lan
ila
:rvi

o

1
nel
Unit
:e

Yin
ChJ
Ace
Ser

o

uai
mnel
ess
vice

B
S

tstr
erv

cr>

earn
C9

Packet Transfer

C
Multi-
plexing
Service

n

8473

Encapsulation
Service

R
CCSDS A
Encaosulatior

CCSDS CCSDS f
Bit- Multiplexing '
stream }

CCSDS Virtual Channel f

CCSDS Physical Channel v ^

PACKET PROCESS

VIRTUAL CHANNEL MULTIPLEX

VIRTUAL CHANNEL SORT

VLSI modules are
designed for and map
well onto CCSDS layered
functions

I FRAME SYNC

. REED-SOLOMON DECODE

Figure 1: VLSI Systems Mapping To CCSDS Layered Architecture

development and/or adoption of various international standards affecting space telemetry
data (CCSDS, CCITT, ISO etc.) promises a great potential to acquire, exchange, process,
and distribute space telemetry data with fewer unique system designs. This step, however,
is only one part of the required solution. In fact, the adoption of these standards without
significant advancements in ground and flight system elements has caused some measure of
concern on the part of developers attempting to provide the added functionality required
to meet new standards at todays higher data rates (up to hundreds of Mbps).

The goals of today's space telemetry system developers are very similar to those of early
television pioneers. Technology had provided a revolutionary system for the transmission
and reception of information. The great goal of those individuals was the very broad
distribution of this technology to many potential providers and consumers. Three essential
elements were required (from a purely developmental perspective) to meet this goal. First,
standards were required from which a broad range of commonality in performance and
functionality could be insured. Second, development of essential engineering capability to
meet the performance and functional standards. Third, the development of low cost, easy
to use, and reliable consumer products that apply the fundamental engineering advances
to the standards required to support the television industry.

Standards, the first of these elements, are well underway in most areas of space teleme-
try system development. With so many advances in basic hardware and software en-
gineering capability today, the second element, the development of essential engineering
capability, has, in most regards, been met. The development of low cost, easy to use, and
reliable consumer telemetry products is becoming more of a reality today and is the basic
subject of this paper.

2nd NASA SERC Symposium on VLSI Design 1990 6.4.3

2 Functional Components

The Data Systems Technology Division (DSTD), at NASA's Goddard Space Flight Ce
nter (GSFC) has, over the last five years, applied state of the art technology to enhance
the performance and reduce the costs of NASA ground telemetry data system design and
development. As part of this effort, the MicroElectronic Systems Branch of the DSTD,
has designed and developed a variety of generic hardware and software processing elements
used to capture, process, and distribute space telemetry data. The functional components
approach includes a general philosophy which attempts to combine these basic elements
into larger functional components which are easily integrated into a high performance,
configurable, low cost, and high reliability space telemetry system. The key elements in this
approach are Very Large Scale Integrated (VLSI) circuits and advanced, highly integrated,
real time software system environments. The VLSI devices meet the high performance,
small size, and low cost associated with the more standard functions required in modern
telemetry systems, while the real-time software systems provide the necessary flexibility
to meet project specific needs. The high densities and clock speeds now available from a
variety of commercial programmable logic devices allow these devices to meet nearly all
other combinational logic needs. The general requirements for control, status, and data
exchange/processing are supported by extensive use of commercially available:

1. modules (e.g. CPUs, memory & I/O, etc.);

2. system environments (e.g. VME, Multibus, NuBus, etc.);

3. communication protocols (Ethernet/FDDI); and

4. software languages, real-time operating systems, and support utilities.

These systems provide easy access to next stage computer processors often required for
higher level data processing of space telemetry data. Figure 1 shows a mapping of a
functional component system to the CCSDS layered system architecture. The actual line
between the various hardware, firmware, and software implementations is actually quite
variable but on a steady course to higher VLSI integration providing ever more perfor-
mance, functionality, small size, lower cost, and higher degrees of reliability than thought
possible just a few short years ago.

3 System Overview - Platforms

The VME open bus system and the Apple Macintosh II NuBus system are the two main
platforms presently being used to support telemetry data system development and oper-
ation under the functional components approach. These systems presently support data
rates up to 20 Mbps and a broad range of space telemetry functionality such as synchroniza-
tion, Reed/Solomon decoding, packet processing, Virtual Channel sorting/multiplexing,
data simulation, and high density (256x256) cross-point switching. Architectural stabil-
ity over the spectrum of supported functionality is required in order to minimize design

6.4.4

! System Master
| Processor
68030/040 up to 50 Mhz

[up to 4 MBytes RAM

Remote Interface
Processor

68030/040 up to 50 Mhz
j up to 4 MBytes RAM

Data Buffering
Processor

68030/040 up to 50 Mhz j
up to 4 MBytes RAM

System RAM
up to 128 MBytes fast

DRAM per card

Ethernet/FDDI
Interface Controller

System Disk Module
up to 200 MByte Winchester

and floppy disk

Data Buffer
Disk Module

Two 200 MByte SCSI
Winchester disks

Custom Telemetry
Data Processors
68030 up to 25 Mhz

1 MByte RAM

Figure 2: Typical VME platform

changes and error introduction when providing various degrees of performance for the same
function. This implies that once a functional component design has been completed and
tested, a new design for that same function to increase bit rate (for example) will use the
same architecture to the maximum extent possible. As a result of this policy, the architec-
ture and the actual logic design for the Gallium Arsenide (GaAs) frame synchronizer VLSI
device (300 Mbps rate) are nearly identical to the Complementary Metal Oxide Semicon-
ductor (CMOS) technology device used to support much lower bit rates (to 50 Mbps).
Current activity utilizing both Emitter Coupled Logic (ECL) and GaAs logic gate arrays
will provide a general capability to 300 Mbps for virtual channel sorting and multiplexing
by June 1991 [2].

The basic configuration of a typical VME system generally consists of:

1. VME standard open bus enclosure, power supply, and a 21 slot backplane including
a VME bus (Jl & J2) and a custom telemetry bus (J3);

2. a selection of commercial VME card modules;

3. a selection of GSFC custom cards (A/B/C channel cards);

4. an operator's console;

5. a real-time, multi-processor operating system environment; and

2nd NASA SERC Symposium on VLSI Design 1990 6.4.5

Commercial VMEbus
CPU card used for Control

Custom Telemetry Data
Processing Card

Channel specific
VLSI components

Figure 3: Custom card diagram

6. application programs supporting specific application requirements [3,4].

The physical diagram of a typical VME configuration is shown in Figure 2.
The VME environment and its commercial cards are used to support the general ex-

change and storage of control, status, and quality data required for local and remote
operator console and control operations. These elements provide the general CPU pro-
cessing, storage, and I/O functions required by the overall system application including
the network (e.g. Ethernet, FDDI etc.) or host interface. They also initiate diagnostic
tasks and format test results for presentation as required.

Custom cards and the third bus connector (9U VME card cages are used) comprise the
telemetry data pipeline. This pipeline allows both incoming and outgoing telemetry data
to be processed and transferred through the system without overburdening the VME bus
with every data word transfer. This "pipelined" technique allows great flexibility in the
processes performed on the telemetry data and as well as for increased data bandwidth.
The custom cards directly support the CCSDS standards for telemetry data acquisition and
processing through the extensive use of the NASA VLSI Application Specific Integrated
Circuits (ASICs) developed at GSFC. Each custom card is composed of a custom hardware
section especially designed to implement a particular NASA communication function(s)
and a commercial CPU section used for local and global control/status exchange (Figure 3).
Some very high performance cards (e.g. packet processor card) require up to three 68020/30
CPU mezzanines (custom built) over a full 9U card area of support hardware. These

6.4.6

System Base Unit - Commercial Components

Standard
.VME/VSBbus

Ji/j:

Telemetry Data
Pipeline Bus

J3

System
Disk

Module
Winch/

Data
Buffer

Disk
Module

2 Winch's

ata
Buffering
Processor
68030/040

emote
Interface
Processor
68030/040

Telemetry
Frame

Synchrnzr
Card

Reed
Solomon
Decoder

Card

Telemetry
Stream

Multiplexr
Card

cket
Processor

Card

egment
Processor

Card

ata lake
Processor

Card

Front End Unit - Basic Functional Components I Back End Unit - For LZP

Figure 4: Typical VME block diagram

components and card systems provide programmability to support format or operation
variations normally encountered during data capture and process operations.

The block diagram of this general VME implementation shown in Figure 4 demonstrates
the flexibility and power available to the developer and to the end user. Because the cus-
tom cards adhere to VME/VSB standards and because of the flexibility of the telemetry
software environments supporting this system (see SOFTWARE COMPONENTS), virtu-
ally any commercial VME card or card system can be easily ported to this environment.
The separate telemetry pipeline bus offers great flexibility at the telemetry channel inter-
face. The processing of telemetry data is actually a pipeline process by which telemetry
data moves from custom card to custom card as needed to complete the processing re-
quirement. Movement of data into (or out of) the VME/VSB environment for reasons of
status, control, or data exchange/processing is possible at every card stage.

The general Macintosh based telemetry system [5], referred to as the Transportable
Telemetry Workstation or TTW (see Figure 5), consists of:

1. a custom telemetry backplane bus;

2. a telemetry system software environment including user interface;

3. a Macintosh II/IIx host computer;

4. a MC68020 CPU NuBus card (real-time system controller);

5. a NuBus custom telemetry Synchronizer Card (same GSFC VLSI design as VME);
and

6. Additional cards for such functions as Reed/Solomon decoding, Packet Processing,
Sorting, and Multiplexing of telemetry data.

2nd NASA SERC Symposium on VLSI Design 1990 6.4.7

Transportable Telemetry Workstation
System Architecture

Figure 5: Macintosh Platform

Many of the general comments relating to the VME platform apply also to the TTW
system.

The specific hardware (e.g. synchronization, Reed/Solomon decoding, packet process-
ing etc.) associated with a particular functionality is defined within the Computer Aided
Engineering (CAE) environment used at GSFC to design, develop, and test these compo-
nents. The porting of this functionality to yet another platform such as the IBM PS/2 or
RS6000 (Micro Channel) is similarly achievable.

4 Hardware Components

All hardware components support NASAs requirement to acquire, process, and distribute
space telemetry data. These components include some 12 VLSI Application Specific In-
tegrated Circuits (ASICs) and more than 14 card level components supporting some 11
different projects. These components were developed in-house at GSFC utilizing modern
Computer Aided Engineering (CAE) tools. These tools also provide such capability as
state-of-the-art Printed Circuit Board (PCB) place and route. The DSTD also supports
an in-house fabrication capability including Surface Mount Technology (SMT) to meet
limited production of system components. Above the card level, the actual performance
level of a particular component (chip, card, or subsystem) is transparent. This implies
that the look and feel of the user application and development environments is largely
unchanged by bit rate performance requirements.

5 VLSI Components

The VLSI components provide the backbone of the functional component approach and
define the actual potential of this approach to provide high performance, low cost telemetry
systems. These components currently range in density from 4,400 to 15,000 gates and in-

6.4.8

FRMRK

Figure 6: Telemetry frame synchronizer chip II block diagram

elude CMOS, ECL, and GaAs semi-custom arrays and a few full custom chips. To enhance
each component's flexibility and reusability (in other designs), all components include such
features as a microprocessor interface, a comprehensive set of internal read/write registers,
hardware/software resets, and external mode control pins. Figure 6 show the component
block diagram of the Telemetry Frame Sync II chip (TFS II). Figure 7 shows the associated
register model used to program the TFS II.

The following are typical VLSI components currently used to support general system
development:

• Telemetry Frame Sync Chip (CMOS)

— Programmable search, check, lock, and flywheel strategy.

— Synchronization of frames up to 32 kbits in length.

— Inversion correction, reversal correction, and sh'p correction.

— Double buffering of data.

- 16 bit CRC check.

— Microprocessor Controlled.

- 4,400 gate - 2 micron CMOS.

- Operation up to 20 Mbits/sec.

2nd NASA SERC Symposium on VLSI Design 1990 6.4.9

• Telemetry Correlator Chip (CMOS)

— Correlation to any synchronization pattern up to 32 bits in length.

— True and inverted sync indications.

— Programmable error tolerance for Search, Check, and Lock modes.

— Independent 22 bit CRC encoder/decoder.

— Microprocessor Controlled.

- 4,400 gate - 2 micron CMOS.

— Operation up to 20 Mbits/sec.

• Telemetry Frame Sync Chip (GaAs) *

— Programmable search, check, lock, and flywheel strategy.

— Synchronization of frames up to 32 kbits in length.

— Inversion correction, reversal correction, and slip correction.

— Real Time Quality Trailer generation.

— Double buffering of data.

— Programmable CRC check.

— Microprocessor Controlled.

- 15,000 gate - GaAs.

— Operation up to 300 Mbits/sec.

• NASCOM Block Processor chip

- Extraction of telemetry data from 4800 bit NASCOM block.

— Storage of entire 144 bit header.

— CRC and sequence check.

— Double buffering for both telemetry and non-telemetry data.

— Timing signals for end of header and end of block.

— Microprocessor Controlled.

- 4,400 gate - 2 micron CMOS.

— Operation up to 20 Mbits/sec.

Other key VLSI components include a NASA - 36 time decoder (CMOS), Random
Access Memory Controller (CMOS), Support Chip for MC68020/30 CPU (CMOS), Cor-
relator Chip (ECL), Test Pattern Generator chip (CMOS & GaAs), and the Tri-buffer
Controller Chip (CMOS).

1Note: prototypes of this part expected by 10/90.

6.4.10

Over the next two years, the second generation of VLSI components will be designed,
developed, and tested. With new array gate counts up to 200,000 for CMOS and 100,000
for GaAs, these components promise the ultimate in integration of functionality, a single
chip solution for much of the combinational logic now used on all functional component
card subsystems. In addition, RAD hard, JAN 38510 gate arrays in the 50,000 plus
densities could provide 'ready for flight' chip sets meeting much of NASA's up and down
link functional and performance requirements.

6 Board Level Components - The Synchronizer Card

The VME Synchronizer Card is one of 14 card level components designed at GSFC and is
an example of the potential power and flexibility of this approach. A general functional
block diagram of this card is shown in Figure 8. This 9U VME card consists of a commercial
single board computer referred to as the Synchronizer Card Channel Controller (SCCC)
and a custom logic card connected via a side connector to the SCCC. The SCCC is a
dedicated processor (68020/30 class) which provides setup, self-test, hardware diagnostics,
debug, and control over the custom logic card. Extensive software to control the card and
provide complete status information has been written and integrated on the SCCC.

The Synchronizer card develops most of its performance from four VLSI chip set s.
While operational, these custom chip sets provides the hardware functions necessary to
perform high speed NASCOM block processing, telemetry frame synchronization, real
time frame trailer appendage, and cumulative quality generation. It can also perform data
simulation for self-checking purposes.

The NASCOM Block Processor Chip (NBPCS) Set can be enabled to accept data from
either the Data Simulation Chip Set or from the RS422 interface. Data formatted in 4800
bit NASCOM blocks is synchronized to the programmed sync pattern. Two output paths
from this subsystem exist. For both paths the header (entire 144 bits) of each NASCOM
Block can be read by the SCCC. If data is determined to be telemetry data, the NASCOM
Block header and trailer is stripped away and a serial stream of only telemetry bits (fill
bits ignored) is output to the Telemetry Frame Synchronizer Chip Set (TFSCS). If the
block is determined to be non-telemetry (i.e. command block) the entire block can be
transported off the Synchronizer Card. Additionally, the NBPCS performs quality checks
on each block received including cyclic redundancy code (CRC) and sequence checks.

The TFSCS can be programmed to select data from either the RS422 interface, the
DSCS, or the NBPCS. A complete synchronization strategy can be programmed for the
selected data stream. Complete search, check, lock strategies, and slip windowing is pro-
vided. Additionally, the TFSCS has the ability to correct inverted or reversed frames. A
status word for each frame is reported back to the SCCC. This status word contains sync
mode, sync errors, slip indication, CRC errors (if applicable), and data type (forward, re-
verse, inverted, or true) of frame received. The TFSCS provides complete double buffering
of frames and automatic output with framing control signals. Output control strobes allow
for automatic status counting.

2nd NASA SERC Symposium on VLSI Design 1990 6.4.11

Status Register Read Only^ e Sync Error Register Read Only
0 Indicates Irame was in SEARCH mode (l)
1 Indicates frame was in CHECK mode (1)
2 Indicates frame was in LOCK mode (1)
3 Indicates (rame was in FLYWHEEL mode (1)
4 Direction of data (forward - 1, reverse = 0)
5 Polarity of dnta (true = 1, inverted - 0)
6 Back to search; chip has been reset, start over
7 Indicates a CRC error has occured (1)

Adr<4>

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Register Map
Bibus<8>

7 6 5 4 3 2 1 0

CRC
linn BS T/l

f
 s

F/R F

' -. '"• "-

SLPBT<3>
. -, "X-x^ ,»«*

^

Din

L C S

LERR<3>
' ',-.
SLP NUN

*,"S>" *\ ' -v^

A SLP I
ERR |

"'V'Tl

OFFCNT<7..0>
' .*.'• ^v > V^ V^i>? ^

OFFCNT<15..8>

Onlyf

OEN<2> SS<2> SLTOL<4>

p..

°M

MV . -j-
AT ' '

EN3 ESET CRC APP SLP FLSH FLSH \rfj

CRC CRC MD STAT CAP I LVL EN RST

OFFSET PRELOAD<8>

FLYTOL<4> CHKTOL<4>

FRMBITS<7..0>

FRMBITS<15..8>

Frmbytes<7..0>

^OTH MRK Frmbytes<11..8>

FWDCRC<7..0>

FWDCRC<15..8>

2-0 Number of errors in the sync word

Slip Bits Register Read
0 Indicates a slip error has occured
2-1 Number or slip bits
3 Direction of slip (short - 1 , long - 0)

Contains the captured slip bits H any exist

3-4 Offset Count Register Read Only

OFFCNT<15..0> This register contains the number of
bits from the end of the header (EOH) to the beginning of

^ the sync. End of Block (EOS) resets the counter.

Mode Select Register 1
0 Accept forward sync (1) 4
1 Accept reverse sync (1) 5
2 Accept true sync (1) 6
3 Accept inverted sync (1) 7

Correct inverted data (1)
Correct inverted sync (i;
Fix reversed data (1)
Use best match (1)

Mode Select Register 2
0 Internal software reset (1)
1 Start pipeline flush (1)
2 Flush in value (1 orO)
3 Enable slip bit capture
4 Append status word to the end of ouput frames (1)
5 CRC mode (with sync = 1, w/out sync - 0)
6 Initial state of encoding CRC circuit

_ 7 Enable CRC error check

7 Offset Preload Register
Value preloaded into the offset counter on reset or EOB.

8 Tolerance Register
3-0 Check Tolerance - the number of syncs needed in
check mode before entering lock mode.
7-4 Fly Tolerance - the number of sync misses in
flywheel mode before going back to search mode.

Q Tol/Sync Size/Out Enb Register
1 -0 Slip window for search and lock modes
3-2 Slip window for lock and flywheel modes

00 01 10 11
5-4 Sync size: 8 bits 16 bits 24 bits 32 bits

,7-6 Output en: never always in check in lock

Frame Bits Registerf 10-11
I FRMBIT
ybits mini

FRMBITS This register contains the size of the frame in
linus three (64 bits: use 61 or 003D)

r12-13 Frame Bytes Register
Frmbytes<11 ..0> This register contains the size of the
frame in bytes minus 1.
Frm Mark<0> enables output of frame first byte mark (1)
Frm Mark<1> enables output of frame last byte mark (1)
Write Pulse Width: 00 - 2/8; 01 - 3/8; 10 - 4/8; 11 - 5/8.

M4-15 CRC Polynomial Coeff Register
FWDCRC<15..0> This register determines the
coefficients of the forward CRC polynomial (for X" 16 the
coefficient is assumed - 1). The reverse CRC polynomial

\Js derived from the mirror of the forward. .

Figure 7: Telemetry frame synchronizer Chip II register model

6.4.12

sccc

CPU
wilh

SI 2 kbyte
memory

Single •
Boanl :

Computer -

Channel -
Controller -

_u
_ oil

I2

:
a
n
d

 C
on

tr
o

; *
o

Q

sccc
Addivss,

UiUi
:«1

Control
tins

1

NASC(
Bloc

Proccs
chip s

|

Data
Simulation

chip scl

<
Clock and Data

H

sor
Cl

CUi

Non-Telemetry
Inlcdittv

Quiiulalivc
Quality
chip set

1

Lz Tclcinctiy

Svnchrnni/cr

RS422

chip scl

Tclcn
Inter

/
ictiy
racc

TOM LOGIC CARD

O
u
tp

u
t

In
te

rf
ac

e
 (
T
ra

ile
r

A
p
p
e
n
d
e
d
)

^-
Synchronixccl

CCSDS
IVumcs

and trailers

Figure 8: Telemetry frame synchronizer card block diagram

The Output Interface can be programmed to select either the telemetry or non-telemetry
data path. Quality data generated by the SCCC is appended to the selected output path.
The output interface then controls the transfer of this annotated data to the next process-
ing system.

The Cumulative Quality Chip Set (CQCS) accepts control strobes from the NBPCS,
the TFSCS, and from the SCCC and accumulates 32 status counts for up to 24 million
events. These counts are read by the SCCC periodically and formatted into a complete
status block. The status block can be formatted on a display terminal connected to the
SCCC or communicated to a higher level system controller.

The Data Simulation Chip Set (DSCS) provides complete self-testing of all functions
on the Synchronizer Card with high speed (up to 20 Mbps) simulation data. Once set up
for output, the DSCS can provide independent output of a serial telemetry data stream.
This stream can be programmed to provide any type of data (forward, inverted, reverse,
or true) in any format for a known number of repetitions. By comparing the status results
for the test run against known correct results, the SCCC can determine if the card is
functioning correctly before activating it for operational data.

7 Software Components

The design and development of highly functional and flexible telemetry data systems re-
quires the use and application of state-of-the-art real-time software techniques and ap-
proaches that are tightly coupled with the high performance VLSI based hardware sys-
tems [1,6]. The automated data driven operation of NASA's next generation telemetry
data handling systems will require that standard system functions be virtually turnkey
in every aspect of their operation. These system characteristics for the VME platform

2nd NASA SERC Symposium on VLSI Design 1990 6.4.13

Ethernet',-
TCP/IP:-",, '

Network ;
Coinmuhioatiorisi

> System
Initialization,
Diagnostics,

& Boo tup
Code

Interrupt
HanoUers

Operator;
^ _ •• .
Interface
Support'

Remote,,
Operator
Intarfeoe
Support^

Kernel
Startup
.Co**•processor

Support
RAM/ROM

disk
support, Remote

Telemetry,
-Onto

Transfer

, Commanding
,''BndStatuS ",
"•Monitoring '

Generic '
- Shell,- ;
Structure,

Figure 9: Software Environment

are provided by a commercial high performance real-time Operating System, and by three
software systems environments referred to as the Base System Environment (BaSE), Mod-
ular Environment for Data Systems (MEDS), and the Network Environment for Telemetry
Systems (NETS) (see Figure 9).

The BaSE allows system interactions between various manufacturer's cards to be pro-
totyped, explored, and tested before being placed into operational use. Using the MEDS
software package, application specific real-time code has a strong modular foundation
that begins with a generic multiprocessing shell and supports the basic software functions
needed by all multiprocessor based telemetry data systems. While still in the conceptual
stage of development at GSFC, NETS is intended to ease the design and development ef-
fort required to integrate various telemetry data system nodes (e.g. VME capture system,
workstation data processor, workstation host center controller etc.) using wide and local
area networks.

Current development work with the Macintosh II NuBus system will also include the
basic look and feel' of the original VME Base and MEDS environments.

8 BaSE Software Environment

NASA's next generation telemetry systems must provide a fairly simple and fast path to
future enhancements. For this reason, the electronics hardware is based around widely
supported open bus systems such as VME and NuBus. Likewise, a versatile software envi-
ronment that can support the flexibility of these systems is also required. The telemetry
system environment must contain enough intelligence to automatically configure the sys-

6.4.14

User Requests,
Displays and
Stream Data

External
Data

Source

Raw
— Data E

Stream(s)

r
Custom
Card -»

1

Custom
Card

O 0 O
Custom

Card

Processed
_ Data _^

Streom(s)

External
Data
Sink

Figure 10: MEDS General Flow Diagram

tern based on a (often) changing hardware environment. It is the goal of BaSE to provide
this type of functionality for the VME system and to provide the 'basic' interface at the
bus hardware/software interface level. Through the use of BaSE, the systems developer
can easily apply (or port) any of the hundreds of commercial cards or card systems to
his particular telemetry system configuration. Once incorporated into the functional com-
ponents BaSE environment, this new card(s) is compatible with and potentially part of
any functional components system. BaSE allows the designer to pick and choose those
VMEbus based products that best fit the application at hand and it ensures that products
from different manufacturers can be used together in a plug and play fashion. BaSE allows
seamless integration of NASA's custom VMEbus based telemetry processing cards into
the operational environment and provides a single environment that is used for all phases
of system development. BaSE is used from initial hardware test and checkout, to system
software development, to final operational system deployment. The goal of the BaSE en-
vironment is to provide a cost effective telemetry platform environment that is generic in
both hardware and software, can be used for both development and operations, and can
be quickly and easily tailored to meet changing system needs.

9 MEDS

The systems based on the functional components approach all have a similar pipelined,
multiprocessor, and dual bus hardware architecture, as a platform on which to build ap-
plication specific hardware. When designing software for such a system, there are many
questions which need to be answered. What data and parameters will each processor need
to accomplish its job? How will the processors communicate with each other? And with
the operator? How can the total job be subdivided into tasks? On which processors will

2nd NASA SERC Symposium on VLSI Design 1990 6.4.15

they run? What data and parameters will each task need to accomplish its job? How
will each task get data? The Modular Environment for Data Systems (MEDS) was devel-
oped to help answer these questions and give an application programmer a starting point
for designing a system based on the standard hardware platform. While BaSE provides
a generic commonality at the bus hardware/ soft ware interface level, MEDS provides the
knowledge of a "space telemetry data system". This implies the knowledge that a partic-
ular card system, say a Reed/Solomon decoder card, is not just a set of command, status,
and data registers mapped in a specific memory space on the VME bus. Indeed, MEDS
provide system wide knowledge that this card is in fact a Reed/Solomon decoder card with
specific data in specific location with specific rules for formatting, debugging, controlling,
user interface etc.

The Modular Environment for Data Systems (MEDS) is designed as a general pur-
pose software platform which is expanded and customized by application programmers to
suit their particular requirements. It supports the basic software functions needed in all
systems, namely, the ability to setup application specific hardware and software, process
the telemetry data based on the setup style parameters, monitor the processing and sup-
ply network support for remote operator interface and data transfer. MEDS supplies an
infrastructure to pass data between systems, processors and tasks as well as support for
operator interface development. A complete system is built by adding custom code to
the general purpose MEDS code. Therefore MEDS spares the application developer from
the burden of creating an infrastructure for each new system and adds consistency in all
system design, implementation and maintenance.

A MEDS based system unites and manages the standard multiple processor hardware
platform. The processors are organized as a single master processor directing multiple
subordinate application specific custom cards (Figure 10). The master processor is the
single point of control within the system; it interfaces with the operator, on either a local
terminal or a remote workstation. Using a set of operator defined setup files, the master
processor will initialize the custom cards and monitor their processing on various status
pages. Telemetry data may enter and exit the system via the remote interface as well. In
any case, it is the pipeline of custom cards that actually process the telemetry data.

The MEDS software resides mainly on the master with cooperating software running
on each custom card. The basic MEDS functions include:

• Setup system and subsystems for processing (e.g. setup VLSI chip registers).

• Control the application specific processing (e.g. enable, disable, reset a card).

• Monitor the system and subsystems (e.g. gather and display card processing status).

• Stream data transfer over network (e.g transfer telemetry data to/from a worksta-
tion).

6.4.16

10 NETS

The Network Environment for Telemetry Systems (NETS), although currently in the con-
ceptual design phase, is forseen as one of the basic software environments supporting the
functional component concept. NETS will provide for the control and management of
multiple telemetry processing systems in a data processing facility. Similar to MEDS in
architecture, NETS will provide a set of standard functions for communicating, scheduling
and configuring telemetry processing systems distributed in a facility through a shared
commercial network such as Ethernet or FDDI.

11 Level Zero Processor Project

The Level Zero Processor (LZP) now under development at GSFC [7] is an excellent
example of the real benefits of the VLSI functional components approach. A primary goal
of NASA's space and ground network system is to make the telemetry data transportation
transparent to the customer so that it seems like the experimenter's instrument is within
his own facility. This requires a process to remove from delivered data products all artifacts
and disturbances introduced during data transport. This type of processing is a key part
of what is usually referred to as the Level Zero Processing. In addition to error decoding
and correcting functions to eliminate bit errors, the LZP system restores the order of data
for a given observation or collection period. Such a data set is called a datatake and is
delivered to the customer as a LZP product. Restoration of a datatake requires one or all
of the following four basic LZP functions to be performed:

1. reassembling user packets from Virtual Channel Data Units (VCDUs);

2. reversing "backward" playback data;

3. merging together real-time data and playback data with proper time order; and

4. deleting redundant data due to the overlap between real-time and playback data.

To perform these tasks a new processing algorithm and a new architecture for the LZP
system utilizing VLSI technologies has been proposed by the DSTD at GSF C. The new
LZP system is based on the functional components approach and utilizes the VMEbus with
multiple microprocessors running concurrently. The telemetry data will be processed for
datatakes by various microprocessors and custom VLSI controllers while flowing through
a data pipeline. Disk farms will be used as mass storage to buffer data for up to three
orbits. This LZP will use Consultative Committee for Space Data Systems (CCSDS)
Recommendations for format standards. The LZP system will provide standard services
for taking data either NASCOM blocked or in synchronous VCDU format into a time
ordered data take for delivery to the experimenter or customer.

The system will operate in three non-exclusive operation modes: real-time, quick-
look, and production processing. In the real-time processing mode, customer's packets are

2nd NASA SERC Symposium on VLSI Design 1990 6.4.17

System Mask:

GSOilO rt 25 Mb/
2 M Bytes RAM

Remote Interface
PitK-.essor

(iSOHO <!"<) 2,r> Mb/
1 Ml lvU: liAM

! System RAM
I 32MBytesf ; i . s t l)RAMj

t

Ethernet Interface
Contwller

System Disk
Module

45 MByte Winchester
and floppy disk

Segment Processor #1

Segment Processor #2

Disk Farm Interface
Processor

Annotation Processor

Data Take Assembler

Simulation Processor |

Frame Sync

Reed Solomon

Packet Processor

Figure 11: Level Zero Processor Physical Diagram

6.4.18

transmitted as soon as each packet is received and reassembled. Also, the data is retained
for normal production. In the quick-look processing mode, a higher priority subset of the
datatake will be made available to the customer. No redundancy deletion is performed.
Again, the data is retained for normal production. The final and most important mode
is the production processing mode. In this mode, data is processed and grouped into
datatakes specified by the customer through scheduling tables. The completed datatake
could be available to the customers within 90 minutes after receiving the last source packet
from the datatake. (Additional factors in the actual throughput of the system include the
time required to completely dump on-board recorder data and the performance achievable
in the output product management and distribution.)

The LZP system can perform annotation of packets and datatakes, including data
quality and accounting functions. Moreover, the catalog files for system operation, quality
and production are maintained.

The following assumptions have been made for the processing environment in which
the proposed LZP system will operate:

• All data complies with the Consultative Committee for Space Data Syste ms (CCSDS)
Recommendations [2]. This implies that packetized data of multiple sources are
transferred through multiple virtual channels.

• Maximum data rate of any virtual channel is 150 Mbps and total data from one
virtual channel over one orbit does not exceed 15 Gbytes.

• Orbit time of the platforms is 90 minutes, 2/3 of which being daylight and 1/3 of
which darkness and all data from one orbit will be received by the end of following
orbit.

• Data packets bearing the same source ID have fixed length and the average packet
size is 1 Kbytes, or 8 Kbits.

• The number of real-time and playback data segments is less than 1000 for each source
per orbit.

Level Zero Processing is a two stage process. In the first stage, a serial data stream
is assembled into user packets and then stored in a mass storage buffer. The bit ordering
of playback data within each packet is corrected. In the second stage, packets are sorted
according to their source IDs and time sequence, and grouped together to form datatakes.

In order to achieve high speed and low cost, the functional VLSI component approach
was used in designing the LZP system. Figure 4 depicts the general system functional
block diagram for the LZP system (mass storage system not shown). Implemented with
commercial microcomputer modules and custom telemetry data processing cards, the LZP
system consists of three subsystems: the front-end VLSI data capture system, the Datatake
Processor, and the Mass Storage Subsystem. Figure 11 shows the actual physical diagram
of the telemetry data system portion of the LZP without the required mass storage com-
ponents.

2nd NASA SERC Symposium on VLSI Design 1990 6.4.19

12 Conclusion

To fully develop the potential of future space activities, NASA's telemetry data systems
must do more than simply meet specific technical requirements. They must provide for
reliable, low cost, and modular systems which NASA and its user community can tailor
in size and performance to particular needs. These systems must allow for growth and
expansion in the years to come. Also, with the push toward an automated data driven
operation of NASA's next generation telemetry data handling systems, it is important that
standard system functional components be virtually turnkey in operation. Even though
these systems are a tightly integrated mi*- of hardware and software elements, they are
but single elements in a large, highly complex NASCOM telemetry data handling system.
The functional component approach was designed to meet these needs.

References

[1] Hand, S. and Sabia, S., "Functional Component Approach to Telemetry Data Capture
Systems," VOL XXIV, Proceedings of the International Telemetering Conference, Las
Vegas, Nevada, October 1988.

[2] Shi, J., Grebowsky, G., Homer, W., "Prototype Architecture for a VLSI Level Zero
Processing System," VOL XXV, Proceedings of the International Telemetering Con-
ference, San Diego, CA, October 1989.

Nomenclature

6.4.20

ASIC Application Specific Integrated Circuit
BaSE Base System Environment
CAE Computer Aided Engineering
CCITT Consultative Committee for International Telegraph and Telephone
CCSDS Consultative Committee for Space Data Systems " '
CMOS Complimentary Metal Oxide Semiconductor
CQCS Cumulative Quality Chip Set
CRC Cyclic Redundancy Check
CVCDU Coded Virtual Channel Data Unit
DSCS Data Simulation Chip Set
DSTD Data Systems Technology Division
ECL Emitter Coupled Logic
FDDI Fiber Data Distribution Interface
GaAs Gallium Arenide
GSFC Goddard Space Flight Center
ISO International Organization for Standards
LZP Level Zero Processor
MEDS Modular Environment for Data Systems
N AS COM NASA Communications
NBPCS NASCOM Block Processor Chip Set
NETS Network Environment for Telemetry Systems
PCB Printed Circuit Board
SCCC Synchronizer Card Channel Controller
SMT Surface Mount Technology
TFSCS Telemetry Frame Synchronization Chip Set
TFS II Telemetry Frame Synchronization Chip II
VCDU Virtual Channel Data Unit
VLSI Very Large Scale Integration

