
N94-71131

2nd NASA SERC Symposium on VLSI Design 1990 9.1.1

Implications of Tracey's Theorem to
Asynchronous Sequential Circuit

Design
S. Gopalakrishnan, G. Kim and G. Maki

NASA Space Engineering Research Center
for VLSI System Design

University of Idaho
Moscow, Idaho 83843

Abstract - Tracey's Theorem has long been recognized as essential in generating
state assignments for asynchronous sequential circuits. This paper shows that
Tracey's Theorem also has a significant impact in generating the design equa-
tions. Moreover, this theorem is important to the fundamental understanding
of asynchronous sequential operation. The results of this work simplify asyn-
chronous logic design. Moreover, detection of safe circuits is made easier.

Introduction

Most digital controllers in use are synchronous sequential circuits. As the integration
density of VLSI circuits increase, synchronous circuits face clock and power distribution
problems. An asynchronous circuit on the other hand does not use a clock and hence the
clock distribution overhead is eliminated. Further, the modules within an asynchronous cir-
cuit switch over a period of time instead of at a clock edge thereby reducing instantaneous
current requirement and the complexity of the power distribution problem. Moreover,
asynchronous circuits usually produce the fastest possible circuits as they are not limited
in speed by the clock [1]. These advantages would project asynchronous controllers as a
viable alternative. The major factor preventing the widespread use of asynchronous se-
quential circuits is that they involve a complex design procedure which must account for
problems like critical races and hazards.

Tracey introduced a fundamental theorem that define the necessary and sufficient condi-
tions for realizing state assignments [2]. This work shows the relationship between Tracey's
state assignment procedure and design equations, that can impact the process of generating
design equations.

This research was supported in part by the NASA Space Engineering Research Center Program under
grant NAGW-1406 and the State of Idaho Grant SBOE 89-041. Dr. Gopalakrishnan is with the California
Design Center of Hewlett Packard; Gui-hang Moon Kim is with The Mutual Life Insurance Company

9.1.2

yi
i
i
o
o
o

i
o
i
o
o

!fe
1
0
0
0
1

A
B
C
D
E

I\ /a h
B
B
E
E
E

C
D
C
D
E

A
C
C
C
A

Table 1: Asynchronous Sequential Flow Table with Tracey Assignment

0
0
1
1
0
1

0
1
1
0
1
0

0
0
0
0
1
1

A
B
C
D
E
F

Ip
A/1
A
C/0
D/l
F
F/0

Table 2: Partial flow table

Asynchronous Sequential Circuit Fundamentals

It is assumed that the asynchronous sequential circuits operate in the fundamental mode
[1] and are encoded with single transition time (STT) state assignments [2]. This implies
that once an input change occurs the circuit is allowed to reach a stable condition before
any further input change is allowed. Moreover, all state variables that must change dur-
ing a transition are excited to change simultaneously at the beginning of the transition.
STT assignments allow for the fastest possible state transitions. STT state assignment
procedures have been advanced by Tracey, Liu and Tan [2,3,4].

In a column of a flow table, all the k-1 unstable states which lead to the corresponding
stable state, together with the stable state form a k-set. For example in Table 1, the k-sets
under input I\ are AB and CED. The set of states that a circuit can assume during a
transition between the states of a transition pair is called the transition path. Liu's and
Tan's state assignments partition the k-sets under an input column [3,4]. Tracey's state
assignment procedure, on the other hand, partitions the transition pairs under a given
input column [2].

Definition 1 The two block partitions TI,TJ, .. .rn, induced by the internal state variables
yiiVii • • -Vnt respectively, are called the T partitions of that assignment.

For the state assignment given in Table 2, the r partitions are as listed below.

2nd NASA SERC Symposium on VLSI Design 1990 9.1.3

TX = {CDF; ABE}
TJ = {BCE;ADF} (1)
T3 = [EF] BCD A}

TI = {Sj.> « ;S* • • •} implies that the internal state Sj is coded '!' by the state variable
yi and state 5* is coded '0'. Thus the first block of r partitions are coded '!' by the
corresponding internal state variables, and the second block of all r partitions are coded
'0' by the corresponding internal state variables.

Tracey's Theorem For STT operation in an asynchronous sequential circuit, all tran-
sition pairs of different k-sets under an input state must be partitioned by at least one state
variable [2].

Tracey's theorem must be satisfied to eliminate critical races. Moreover, this theorem
and the procedures used in this work [2] guarantees to produce all minimum variable state
assignments. No other state assignment procedure can make such claims. Other assign-
ment procedures may produce minimum variable assignments for some flow tables, but
cannot guarantee to always produce the minimum variable assignment. Another feature
of the Tracey assignment procedure is that it will generate all the STT assignments, not
just the minimum variable assignments.

The design equations for an asynchronous sequential circuit can be formulated as fol-
lows:

-f ... + /m(/2
m)

:

+ .- + Jm(/D

Yn =

Definition 2 A next state partition TJ? partitions those states where Yi — 1 from those
states where Yi = 0, under the input Ip.

The rj partitions corresponding to the partial flow table given in Table 2 are given below.

Ttf = {CDEF;AB}
rfi = {C]ABDEF} (3)
r/f = {EF;ABCD}

Definition 3 An f? is a sum of products expression of internal state variables that parti-
tion the states o/T/f.

The /f expressions corresponding to the next state partitions of the partial flow table
shown in Table 2 are given below.

/f = y(y'3
ft = 1Mb (4)

9.1.4

Definition 4 An internal state variable that partitions the states of one transition pair
from the states of another is called a partitioning variable.

It will be shown that the partitioning variables play an important role in the design
equations.

Tracey Partitioning Variables

The relationship between the Tracey partitioning variables and the design equations has
not been presented before. Consider the following development. Let 5, and Sj be states
of a transition pair and S be the set of all states other than Si and Sj.

Lemma 1

// n = $5,;$!

where S\ U Sj U ... U Sk = S, then 5,-5,-j 5 can be covered by the product term yjyj...y£,
where y* = y; or yj.

Proof: If states SiSj are in the same block of each TJ in the set of r-partitions, then the
intersection of partitions TJ (or r/) will produce partition SiSj ; 5. The product expression
that covers SiSj ; 5" is yjyj...yfc.

Lemma 2

V {*7i; S} »* covered by product term PI
; 5} is covered by product term PI

{f/mj S} is covered by product term Pm

then the partition {rnr)t...r)m; S} can be covered by a sum of products expression
Pi + PI + ... + Pm.

Proof: The proof follows directly from fundamental partition algebra.

Theorem 1 The f? terms of Eq. (1) are a function of the partitioning variables of input

2nd NASA SERC Symposium on VLSI Design 1990 9.1.5

Proof: Consider a transition path T0 where Yi = 1 in TO and Y, = 0 in the other transition
paths Ti in Ip. The next state partition r/f can be expressed as T0;S, where S contains all
other transition pairs from different k-sets than TO- The goal is to find an expression that
partitions TO from S. From Tracey's Theorem [2] there exists a set of partitioning variables
7\ that partition T0 from all other Tj. Therefore from Lemma 1, there exists an expression
for Yi covering TO that consists only of the partitioning variables.

In general, Yi = 1 in several transition paths under a given input. A portion of the
next state partition ty for those transition paths where 1^ = 1 can be depicted as 7/f = T&
; S. However, each transition path T* is partitioned by partitioning variables and can be
expressed as a product of the state variables that partition the transition path where Yi
= 1 from those where Yi = 0. Therefore by Lemma 2, each ff term can be expressed as a
sum of products of the partitioning variables from I + p. QED

The following theorem yields a surprising basic result which shows that partitioning
variables do not change state during circuit transitions.

Theorem 2 The partitioning variables that partition a transition path TO from all other
transition paths do not change state while the circuit proceeds from unstable to stable state
of To-

Proof: Since both unstable and stable states of a transition pair of TO are coded the same
by the partitioning variables, these partitioning variables are not excited as the circuit
transitions between the states of T0. QED

1
1
1
1
0
0
0
0

iy
i
i
0
0
i
i
0
0

>y
i
i
0
i
i
0
0
0

»y
i
i
i
0
0
0
0
i

4ys
1
0
0
1
0
1
0
i

A
B
C
D
E
F
G
H

Ii
A
A
C
C
E
E
G
G

h
D
B
B
D
D
F
F
H

h
H
C
C
F
E
F
E
H

Table 3: Machine B

To illustrate Theorem 1 and to show its impact on classical logic design, consider the
flow table shown in Table 3. The state assignment partitions all the transition paths
and is a Tracey assignment. The state variables {1/1,1/2}, {3/3,3/4,2/5} and {t/4,t/5} are the
partitioning variables that partition the transition paths under /i, Jj, and /a respectively.
From Theorem 1, the expression representing each next state variable is a function only of
the following partitioning variables under each input:

I\ J/i, 3/2
Ii ya, 3/4,3/5
•fa y4, ys

9.1.6

Yl Ii

0

0

GH

00000
EP

01100

CD

10010
AB

11111

Y4
Y5

0

EG

01100
DF

01001

BC

10010

AH

00011

Y5

Y3Y4
5 \ O P _ 01 n 10

0

G

01001

E

10101

C

11110

H

00011

B

11110

A

10110

F

01001

D

10101

Figure 1: State Tables for Each Input

The state tables for each input need be constructed with only the partitioning variables
associated with each input state. The significance of this example is that even though a
5 variable state assignment is needed in the traditional synthesis process, nothing larger
than a 3 variable k-map need be constructed on a per input basis as shown in Fig. 1. The
following design equations are obtained easily from Fig. 1.

^1 =
Y3 =
•y

•y

Y6 =

3/1/1

3/a/i
3/i/i

3/5/2

(3/43/6

(3/!6

y*ys
3/4/3

3/33/6

3/43/6)/3

3/43/6)/3 3/X/3 (5)

3/5)/J

One could easily come to the conclusion that satisfying Tracey's conditions are sufficient
to realize STT state assignments. This notion is not always true as depicted from an
example taken from [5]. Shown in Fig. 4 is the flow table and the design equations follow.
The state assignment satisfies Tracey's theorem.

2nd NASA SERC Symposium on VLSI Design 1990 9.1.7

(y4y5yi •••1/3)
(1 1 0 0 0) A
(1 0 0 0 1) B
(0 1 0 1 1) C
(1 0 0 1 0) D
(0 1 1 0 1) E
(0 0 1 1 1) F
(0 1 1 1 0) G
(1 0 1 0 0) H

Jo
B
B
D
D
F
F
H
H

Ii
A
A
A
A
E
G
G
E

h
A
-
G
-
A
-
G
-

/3

A
C
C
A
E
E
E
E

Table 4: Flow Table with Modified State Assignment for Fail Safe Realization

+ /s)

+

+

+

» +

+

(6)
The partition variables for each input are:

Ii yi, 1
y4,

Notice that the state variables used in the design equations are not a function of the
partitioning variables. An analysis of the state tables shows that this design is replete with
critical races simply because the design equations were improperly generated.

Safe Sequential Circuits

The above results can be applied to analyze the safeness of sequential circuits. Conventional
asynchronous sequential circuit design procedures generate circuits that implement the
flow table as per specification; under normal conditions of operation it is assumed that
the circuit assumes only those states shown in the flow table. However, under abnormal
conditions, like power fluctuations or noise spikes, the circuit can enter unspecified states.
This condition may go undetected and may even be impossible to correct without the
application of a master reset. Further, in some circuits there may be no reset signal

9.1.8

available for resetting the circuit to a known stable state. Therefore, it is important that
the designer be aware of the existence of such unspecified stable states in producing a
safe design. A safe circuit is essentially a circuit in which it is always possible to assume
specified stable states and the circuit is never allowed to remain indefinitely in unspecified
states.

Unspecified stable states are formed when the design equations unintentionally specify
the state as stable. The first study on safe circuit design was presented by Wickersham
and Maki [6]. In this paper, a procedure for safe circuit detection was introduced. They
also introduce a safe design procedure which may require more than the minimum number
of state variables.

Safeness Analysis

Definition 5 Two internal states of a sequential circuit are in the same equivalence class
under Ip, if they have the same next state entry.

Definition 6 A lock-up state under an input Ip, is any stable state under Ip that is not a
member of a transition path under that input.

Definition 7 A lock-up state and the states of the flow table that have a lock-up state as
a next state entry form a lock-up equivalence class.

When a circuit assumes a lock-up state, there are several ways to attempt force the
circuit back to the specified states of the flow table. One of the schemes is to apply an
input or a sequence of inputs so that the circuit transitions through a set of unspecified
stable states until it finally reaches a specified stable state. However, in some cases this
may not be possible. Another approach is to turn the power off and on and hope that
the circuit would come up in a specified stable state. Once a specified state is reached,
further input changes keep the circuit in its specified transition paths, until an abnormal
condition forces it out of the specified transition path.

Definition 8 A critical situation exists if there are states from which it is impossible to
re-enter a specified transition path by simply changing inputs.

Definition 9 A circuit is safe if a critical situation does not exist.

This implies that a safe circuit can be designed by making sure that there is at least
one input column under which there are no lock-up states. If the circuit ever enters a
lock-up state, the input with no lock-up states can be applied to force the circuit in to one
of the transition paths of the circuit. However, for some situations it may be desired to
ensure that all the inputs are lock-up free. The safeness analysis procedure is a modified
version of the procedure outline by Wickersham and Maki [6], the difference being that
only the partitioning variables under each input are used for the analysis instead of all the
state variables being used. Procedure 1 is based on the following theorems.

2nd NASA SERC Symposium on VLSI Design 1990 9.1.9

Theorem 3 Equivalence classes under an input state can be represented as functions of
the partitioning variables under that input state.

Proof: Equivalence classes are specified by the next state entries under an input. From
Theorem 1, the next state equations are a function only of the partitioning variables.
Therefore equivalence classes are a function only of the partitioning variables. QED.

Theorem 4 To identify the stable states under an input state, only the present state and
next state value of the partitioning variables under that input need be checked.

Proof: For any input state, product expressions of the partitioning variables under that
input state uniquely represent the stable state and the associated equivalence class. If
the circuit is in one of the stable equivalence classes then it assumes one of these unique
product expressions. To check whether a circuit is in a stable state under an input state,
only the present state and next state values of the partitioning variables under that input
state need be checked. QED.

Procedure 1 New safeness analysis procedure.

Step 1: Map the design equations on to a K-map. The K-map for each input need contain
only the partitioning variables. A stable state occurs whenever present and next state
are equal. Only the /f terms for the partitioning variables under that particular input
need be considered in this step. This can be repeated for all the inputs.

Step 2: Identify all the lock-up states. Lock-states are those stable states that are not
specified in the flow table.

Step 3: If lock-up states are found then determine if a critical situation exists. This can be
accomplished by determining which equivalence class the circuit enters under other
inputs from the lock-up equivalence class. If there exists a lock-up equivalence class
which transitions only to other lock-up equivalence classes and specified equivalence
classes cannot be entered, then a critical situation exists. If a critical situation exists
then the circuit is not safe.

Example 1 Consider the flow table shown in Table t, the state assignment used is the
Tan assignment.

The design equations for implementing this circuit is given in Equation 7.

YI = li(yi) + -faCjfe) + -fjCys)
Yt — /i(y2) + /2(j/4) + -^(ye)

YI = /i(y2) + /a(y4) + Js(y5)

•&(*)

9.1.10

J/i
1
1
1
0
0
0

y.
0
0
0
1
1
1

Table

J/3

1
1
0
0
0
1

5:

2/4

0
0
1
1
1
0

Flow

Jfe
0
1
1
1
0
0

ye
1
0
0
0
1
1

table for

A
B
C
D
E
F

Ii I* /a
A
A
A
D
D
D

B
B
E
E
E
B

F
C
C
C
F
F

Safe Design

0
^^•HB^M

1

^^F«;

J/4

0
^MMBBH

1

ye
0

1

*
000000

010110

101001
*

111111 _

0 1
*

000000

010101

101010

iimf!

0 1
*

"^000000

011001

100110

mill"

Transitions

Lock-up equivalence class

Figure 2: Safeness analysis

2nd NASA SERC Symposium on VLSI Design 1990 9.1.11

The partitioning variables under input Ii are yi,j/2, input It are j/3,j/4 and input I3 are
3/6,3/6- The safeness analysis for this implementation is shown in Fig. 2. It can be seen that
there are two lock-up states per input namely, 000000 and 111111. It can also seen that
these lock-up states lead to a critical situation since once any of these states is assumed
the circuit cannot re-enter a proper transition path by change of inputs.

Summary

The relationship between Tracey's fundamental state assignment theorem and the result-
ing design equations has been shown. The state variables that are partitioning variables to
prevent critical races must appear in the design equations to insure STT operation. Clas-
sical design can be accomplished easier as a result of this work because k-maps with fewer
state variables are required in representing the state tables. Showing state tables with only
the partitioning variables allows easy analysis of asynchronous sequential circuits.

References

[1] S. Unger, Asynchronous Sequential Switching Circuits, New York, NY, Wiley-

Interscience, 1969.

[2] J. Tracey, "Internal State Assignments for Asynchronous Sequential Machines'', IEEE

Transactions on Electronic Computers, Vol. EC-15, pp. 551-560, Aug. 1966.

[3] C. Liu, "A State Variable Assignment Method for Asynchronous Sequential Switching

Circuits," J. ACM, Vol 10, pp. 209-216, Apr. 1963.

[4] C. Tan, "State Assignments for Asynchronous Sequential Machines", IEEE Transac-

tions on Computers, Vol. C-20, No. 4, pp. 382-391, April 1971.

[5] S. Das and Y. H. Chuang, "A Unified Approach to the Realization of Fail-Safe Se-

quential Machines," IEEE Fault Tolerant Computing Symposium, pp. 3-2, 3-6, June,

1974.

[6] R. Wickersham and G. Maki, "Safe Asynchronous Sequential Circuits", IEEE Trans-

actions on Computers, Vol. C-23, No. 5. May 1974.

9.1.12

Acknowledgement- The professional children and grandchildren of Dr. James
H. Tracey would like to acknowledge his contribution to the theory of circuit
design. Moreover, we would like to express our appreciation for his personal
encouragement in our lives. We regard him as a dear friend and sincerely
admire the dynamic enthusiasm expressed through his life.

