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Abstract--Residual vector quantizatlon (RVQ), or multistage VQ, as it is also

called, has recently been shown to be a competitive technique for data com-

pression [1]. The competitive performance of RVQ reported in [1] results from

the joint optimization of variable rate encoding and RVQ direct-sum codebooks.

In this paper, necessary conditions for the optimality of variable rate RVQs

are derived, and an iterative descent algorithm based on a Lagrangian formu-

lation is introduced for designing RVQs having minimum average distortion

subject to an entropy constraint. Simulation results for these entropy-constrained

RVQs (EC-RVQs) are presented for memoryless Gaussian, Laplacian, and uni-

form sources. A Gauss-Markov source is also considered. The performance is

superior to that of entropy-constrained scalar quantizers (EC-SQs) and prac-

tical entropy-constrained vector quantizers (EC-VQs), and is competitive with

that of some of the best source coding techniques that have appeared in the

literature.

lndez Terms--Residual vector quantization, multistage vector quantization, en-

tropy, source coding.
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1 Introduction

Residual Vector Quantization (RVQ), or multistage VQ, as it is also called, was orig-

inally introduced in 1982 [2]. Its structure, which is shown in Figure 1, consists of

a cascade of VQ stages (hence the name multistage VQ). For the pth stage VQ the

input vector zp is quantized resulting in the approximation &p. The difference is then

computed to form the residual zp+l = zp -/_p, which serves as an input to the next

stage. This aspect of the structure motivates the name residual VQ or RVQ.

Perhaps the most striking benefit of RVQ is its memory efficient structure. An

RVQ with P stages and Np vectors per stage (1 < p < P) can uniquely represent

P
_p=l Np vectors needed for storage. Furthermore, similarI'lp=l N_ vectors with only r'

savings in computation may be achieved by exploiting the RVQ tree structure.

Despite these attractive features, RVQ has received little attention until recently.

Early assessments of its utility, as reported by Baker [3] and in a survey paper by

Makhoul, et al. [4], were somewhat discouraging. In the former ease, some preliminary

investigations with RVQ structures having more than two stages (applied to image

coding) led to the conclusion that it is not advantageous to iteratively vector quantize

image waveform residuals [3, p. 102]. In the latter case, Makhoul, et al. observed a

rapid degradation in performance for RVQ applied to speech coding as the number

of stages was increased and suggested that RVQ be limited to not more than two or

three stages.

In 1989, Barnes [5] introduced an analysis of RVQ in which the RVQ is optimized

subject to the imposed structural constraint. The new design method led to an

improvement in performance over previous design methods. Since then the technical

literature has shown much activity in the area of RVQ and the application of RVQ

to data compression has become more widespread [6, 7, 8, 9, 10, 11, 12, 13].
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In this paper, we extend the theory and design methods of fixed rate RVQs to the

case of variable rate RVQ. The first part of the paper (Section 2) follows the work

presented in [14, 15] where necessary conditions for the optimality of fixed rate RVQ

are derived. Here, however, we present a mathematical treatment of convergence for

the RVQ design algorithm. The next part of the paper gives a derivation of optimality

conditions for variable rate RVQ. It is well known that variable rate systems can yield

a lower average rate than fixed rate systems. This property has been demonstrated

in [16, 17] for entropy-constrained VQ (EC-VQ). EC-VQ has shown some of the best

performance results among entropy coded quantization schemes. In our discussions,

a theory for entropy constrained RVQ (EC-RVQ) is developed. In addition, a locally

optimal design algorithm is introduced and convergence issues are addressed. The

paper concludes with an evaluation and comparison of the performance of EC-RVQ

on some well-known synthetic sources. Simulation results show that EC-RVQ achieves

some of the best performance results reported to date.

2 Fixed Rate RVQ

The first approach introduced for the design of RVQs consists of using the LBG

algorithm sequentially on each stage [2]. Although each of the stage codebooks is

designed to minimize the average distortion introduced by that stage (given fixed

prior stages), there is no guarantee that the overall average distortion introduced

by the RVQ is minimized. A better design technique is one that designs the stage

codebooks jointly to minimize the overall average distortion. The key to optimizing

the RVQ stages jointly is to view the RVQ in terms of a structurally constrained

direct-sum codebook (that is, a codebook that contains all possible ordered direct-

sums of stage code vectors) and find necessary conditions for the optimality of that
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direct-sum codebook (i.e., joint optimality of all stage codebooks).

A direct-sum codebook may be depicted in several ways. Here we choose to view

it diagramatically as a tree. To illustrate this, consider a three-stage RVQ with

two vectors in each stage codebook: stage 1 contains vectors yl(1),yl(2); stage 2

contains vectors 1/_(1), y2(2); and stage 3 contains i/3(1),ys(2). Figure 2 shows a tree

corresponding to this RVQ where the stages are delineated by the dashed lines and

the stage code vectors appear inside the nodes. Eight nodes appear at the base of

the tree, each one corresponding to a direct-sum code vector. The value of any one

of the eight code vectors is obtained by tracing the unique path from bottom to top

and summing the stage code vectors (shown inside the nodes) along the way. This

simple tree interpretation is helpful for suggesting efficient RVQ encoder structures,

and for understanding both the optimality conditions and the corresponding RVQ

design algorithms.

Equally important to the discussion is the mathematical notation used to describe

inputs, outputs, and the various components of the RVQ. Let zl be a realization of

the random k-dimensional vector X1 described by the probability density function

(pdf) fxl(z_) on _. A P-stage RVQ (see Figure 1) consists of a finite sequence

of P vector quantizers. For the pth stage VQ where 1 __ p _< P, let us define the

following symbols:

N,
h
,1,
V,(h)
S,(j,)

C,

the pth stage codebook size

the pth stage index: (1 _< JF -< Np}

the pth set of all possible values for jp: i.e. (1,2,... ,Nr}

the jpth code vector of the pth stage

the jrth partition cell of the pth stage

the jrth stage-removed residual equivalent class of the pth stage

the pth stage codebook {Yr(Jr) : Jr E Jr}

the pth stage partition {St(jr) : Jr E Jr}

the pth stage quantizer mapping
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The pth stage VQ quantizes the residual vector z r and outputs Qr(zr). The pth

stage quantizer mapping Qr : _k _ Cp can be realized by a composition of a fixed

length encoder mapping E r : _ _ Jr where

Ep(zr) = Jr if and only if z r • S_(jr),

and a fixed length decoder mapping D r : Jr _ Cr where

Dn(Jn) - Yr(Jn)"

As stated in the previous section, a P-stage RVQ can be represented by a tree

as illustrated in Figure 2. The associated "single-stage" direct-sum VQ codebook

and the tree-structured RVQ codebook are identical in the sense that they produce

the same representation of the source output, and thus, have the same expected

distortion. For the direct-sum VQ, let us define the following symbols:

N

J

J
v(J)
v(j)
C

P

Q

direct-sum codebook size (N v= 11,=1N,)
direct-sum P-tuple index set, J = J1 x ,/2 x ... x Jv

a P-tuple index in J

jth direct-sum code vector
jth direct-sum partition cell

direct-sum codebook {y(j): j E J}
direct-sum partition {V(j): j E J}
direct-sum mapping

The direct-sum codebook contains all possible ordered sums of the stage code vectors,

i.e., C = C1 + C2 +... + Cp. The direct-sum code vectors are given by

u(J) = u,(h),
p--I

where jp is the pth member of the ordered P-tuple index j. The direct-sum VQ

quantizes the source vector zl and outputs the representation _l = Q(zl) given by

=
p----1
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where
p-1

®,- _, - _ Q,(.,), p > 1,
/ffil

is the pth stage causal residual. The term causal refers to the sequential process used

to compute the residual, i.e., the stage residuals are computed sequentially starting

from the first stage to the pth stage.

2.1 Necessary Conditions for Optimal Fixed Rate RVQ

Let the distortion that results from representing z with y be expressed by d(z, y).

The distortion measure d(z, I/) is assumed to be a non-negative real-valued function

that satisfies the following requirements:

1. For any fixed z E _k, d(z, 1/) is a continuously differentiable function of y E _k.

2. d(z, y) is translation invariant.

3. For any fixed z E _k, d(z, y) is a strictly convex function of y, that is, Vyl, I/2 E

_ and A E (0, 1),d(z,)_lh + (1 - A)y2) < ,_d(z, ih) + (1 - )_)d(z,lt2).

A P-stage RVQ is said to be optimal if it gives at least a locally minimum value of

the average distortion incurred in representing zl with _1,

([" ]/D(_,,_,)- E d _,,_2 O,(_,) • (1)

For stage codebook and partition optimality, (1) should be minimized with respect to

stage codebook and partition parameters. However, this minimization is complicated

by the fact that knowledge of the joint pdf fX,...Xp(Zl, ..., zp) is required, which,

in turn, depends in a complicated fashion upon the sequence of stage codebooks and

partitions. This optimization problem can be made tractable by viewing the RVQ
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product code as a single-stageVQ with a structurally constrained dlrect-sum code-

book (i.e., the direct-sum code vectors are structurally dependent). By minimizing

the average distortion of the direct-sum quantizer,

D(®_,_I) = E {d(=_,q(=0)),

the problem of dealing explicitly with the complicated structural interdependencies

that exist among the stages of the RVQ is avoided.

First, to derive optimality conditions for a fixed rate RVQ direct-sum partition,

assume that the stage codebooks {C1,C2,...,Cp} are fixed, which implies that the

direct-sum codebook C is also fixed. Then

E{d[=I,Q(=1)]}>E_ min d[zl,y(j)]}.- lud) c

That is, no direct-sum partition can yield lower average distortion than the partition

obtained by the nearest-neighbor mapping. Accordingly, we have the nearest-neighbor

encoding rule,

=1 v'(j) < forall t J. (2)

The optimal direct-sum partition cells are denoted with asterisks, V*(j).

The next step is to determine necessary conditions for optimal stage code vec-

tors. For the derivation that follows it is useful to introduce the stage-removed index

mapping _1, : J _ ,)rp, .)r, = ,/1 x J_ x... x JI,-1 x J_l x... x Jp, defined by

Sn(J) = _h,j2,... ,Y_-',Yn+',"" ,JP)

for j E J. Note that _,(j) includes all members of j except the pth mem-

ber, hence the name 8rage-removed index. This index represents a shortened path

through the RVQ tree where the pth level branch has been removed, and the re-

mainder of the path starting with the (p + 1)th level branch has been added or
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grafted back into the tree structure. Hence, each direct-sum code vector I/(J), where

j -- (jl,j2,... ,Jp-l,Jl,,Jn+l,... ,fl') 6. J, can be written as

u(J) = z(_,CJ))+ u,(J,),

where
P

a(_,(J)) = T_,u,(J,)

is the pth stage-removed direct-sum path of the RVQ tree.

Given a particular zl 6. _k and a fixed RVQ encoding rule, there exists a pth

stage-removed residual vector defined by

_, = =_- g(_,(j)).

This residual vector is the difference between the input and the stage-removed direct-

sum vector. Because the stage-removed residual % is a translation (conditioned on

the pth stage) of the realization zl of the random vector X1, it is also a realization

of a random vector rp with associated stage-removed residual probability density

function frp(%).

In addition, let Hp(jp) be the set of P-tuple indices corresponding to all direct-

sum code vectors y(j) that contain 1/p(Jp) in their construction. In other words,

Hs,(jp) C J is the set of all indices such that Jr 6. Jp is the pth element of j. The

set Hp(jp) can be used to describe the j_th stage-removed residual equivalence class

Vn(j, ) by

_(J,) = U (v_j)- o(_,(J))), (3)
jcxp(j,)

where V(j)-g(_p(j)) indicates that all _l 6. V(j) have been translated by g(_p(j)).

If V(j) is assumed to be an optimal partition, i.e. V(j) - V'(j), then V_(jn) -

Vn'(jn) is an optimal stage-removed residual equivalence class.
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To determine necessary conditions for optimal stage code vectors, assume that

the stage partitions {7_1,P2,... ,Pp] are fixed, which implies that the direct-sum

partition P is fixed. Now let Kp be the set of all possible pth stage codebooks Cp

with N_ vectors, and let K be the set of all possible direct-sum codebooks formed

from the Kp's with 1 _< p _< P. Also let F : K _ [0, oo) be the function given by

F(C) -'- ___ EX, {d(zl,lt(j))lzl E V(j)} pr{zl E V(j)}, (4)

j_J

for y(j) E C and C E K. To find a minimum for the average distortion (4), it

suffices to find a sequence of codebooks (C_,C_,...,C_,) E /(1 x Ks x ... x Kp

and corresponding direct-sum codebook C* E K that minimizes F. Coordinate

descent algorithms can be used to find such a minimum. These algorithms are based

on the following procedure: we hold fixed all stage codebooks, except for the pth

stage codebook, and then we minimize F with respect to Cp. This is an iterative

procedure and is performed for each stage (i.e. all values of p) until F(C) converges

to a minimum. There are two common forms of implementation [18]. In the first,

often called the nonlinear Jacobi algorithm, the minimizations with respect to the

different codebooks {C1, C_,..., Cp} are carried out simultaneously. Mathematically,

the nonlinear Jacobi algorithm is described by

C_(t + 1) = arg rain F (C,(t),...,Cp_,(t),Cp, C_+l(t),...,C_,(t)), (5)
et,

for 1 < p < P. In the second approach, often called the nonlinear Gauss-Seidel

algorithm, the minimizations axe carried out successively for each codebook and may

be described mathematically by

C_(t + 1)= argminF(C,(t + 1),...,Cp_,(t + 1),Cp, Cp+,(t),...,Ce(t)), (6)
Ct,



for 1 <_.p _< P. Let us assume all stage codebooks (except for the pth stage codebook)

are fixed. Also, let us modify (4) by writing

F(C)= E E EX, {d[_,,O(_,(_))+V,(_,)l_,_ V(j)]}pr(_, _ V(j)}.

Using the assumption that the distortion measure is translation invariant, and also

using (3) together with the law of total probability, we can rewrite the above equation

as

jpEJp

> E inf. Er.lJ, (d (Tp, u)17, E Vp(j,)} pr (% E V,(j,)}. (7)
-- jpEJp UE_

In [19], it is shown that provided pr (7_ E V_,(jp)} _ O, there exist y_(jp) E _k (which

we call stage-removed residual centroids) for the stage-removed residual equivalence

classes Vp(j,) such that

= inf f d(7,, u)fr, li,(7,)dT, < oo, (8)
II, ER k

and that the set of all solutions S/;(Jp) to (8) is convex, closed, and bounded. Since

the distortion measure d(z, y) is assumed to be strictly convex in y, the solution is

unique. In (8) the pdf/rpIj,(%) is related to the source pdf fx,(zl) according to

/r,_,(7,) = EjE_,(j,)X[V(j)]fX,[a(_,(J))+ _,]
pr{_, _ V,(_,)} ' (9)

where l[V(j)] is an indicator function for the direct-sum partition cell V(j), that

is, I[V(j)] = 1 if zl E V(j) and I[V(j)] = 0 otherwise. The yp(j_)'s which satisfy

(8) are generalized centroids of stage-removed residual vectors (i.e., residual vectors

formed from the encodings of all priorand subsequent RVQ stages). Hence, the second

condition will be referred to as the stage-removed residual centroid condition.
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Convergenceof the nonlinearGauss-Seidelalgorithm applied to RVQ can now be

established using a descent approach.

Proposition 1: Suppose F is continuously differentiable and convex on KI x K_ x

... x Kp. Furthermore, suppose that for each p E {1, 2,..., P}, F is a strictly convex

function of C_ when the other codebooks are held fixed. Let {(Cl(t),...,Ct,(t))} with

t = 0, 1, 2,... be a sequence of stage codebooks generated by the nonlinear Gauss-

Seidel algorithm. Then, every limit point of {(Cl(t),...,Cp(t))} minimizes F over

Kl x K2 x ... x Kp.

Details of the convergence proof are given in [20]. The proof is based on a de-

scent approach. In particular, successive minimizations cannot increase the value of

F[CI(t),...,Cp(t)]. This shows that F[CI(t + 1),...,Cp(t + 1)] < F[C_(t),...,Cp(t)]

and implies the convergence of F[C_(t),... ,Cp(t)] provided that F is bounded below.

It should be noted that if F is not differentiable, the Gauss-Seidel algorithm may fail

to converge to a minimum.

The proof outlined above does not apply to the Jacobi algorithm. Even though

minimizations with respect to each stage cannot increase the value of F, the fact

that these minimizations are carried out simultaneously allows the possibility that

F[C, ( t + 1 ),..., Cp(t + 1 )] > F[C, ( t),..., Cp( t)]. However, convergence of the nonlinear

Jacobi algorithm can be established under suitable assumptions on the new codebook

selection rule or mapping R: /(1 x K_ x ... x Kp _ 1(1 x Ka ×... x Kp, given by

,ce) = - cvFCe ,e2,... ,cp), (10)

where c is a positive real number and VF denotes the gradient of F [21].

Proposition 2: Let F be a continuously differentiable function, let c be a real

number, and suppose that the mapping R(C1, C2,..., Cp) given by (10) is a contraction

mapping with respect to the block-max norm B(CI,C2,...,Cp) = maxp IICpllp/wp,
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where each [[-I[_ is the Euclidean norm on Kp and each to_ is a positive real number.

Then, there exists a unique vector (C;,CL... ,C/,) that minimizes F over KI x/(2 x

... x Kp. Moreover, the sequence {(el(t),...,Cp(t))} generated by either of the two

algorithms (described by (5) and (6)) converges to (e;,q,...,C_) geometrically. For

proof, see [20].

A common distortion measure is the squared error distortion measure defined by

k

d(x, = IIz- yll = u,)
i;1

where [[. [[ denotes the Euclidean norm and xi and yi are elements of the vectors z

and y, respectively. This distortion measure can be written in the form

d(=,y) = p(ll= - Itll)

where p(a) = a 2. Obviously,p isa continuouslydifl'erentiableand strictlyconvex

functionon [0,co)with p(0)--0. Itfollowsthatthe squarederrordistortionmeasure

satisfiesthe requirements(I)-(3)in Section2.1. Therefore,itcan be easilyshown

that F iscontinuouslydifl'erentiableand convex on KI x K2 x ...x Kp, and that

F isa strictlyconvex functionofC_. Thus, Proposition1 guaranteesthat when the

squared errordistortionisused,the nonlinearGanss-Seidelalgorithmconvergesto a

minimum.

A necessaryconditionfor R(CI,C2,...,Cp) to be a contractionmapping isthat

z - c[p(z)]' be a contraction mapping for any positive real number c. It is clear

that the function p(z) = z 2 does not satisfy such a requirement, and Proposition

2 cannot be used to guarantee the convergence of the Jacobi algorithm (when the

squared error distortion measure is used). In fact, computer simulations confirm the

Jacobi algorithm is not guaranteed to converge, even when the initial vector is close

to (C_,q,... ,C,g).
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2.2 The RVQ Design Algorithm

The RVQ design algorithm, introduced in [5], attempts to jointly optimize all stage

codebooks to minimize the overall reconstruction error of the RVQ subject to a con-

straint on the number of direct-sum code vectors. It is an iterative procedure that is

similar to the LBG algorithm. However, unlike the LBG algorithm, the optimization

of the decoder (assuming the encoder is fixed) is an embedded iterative procedure

that guarantees that new stage codebooks minimize the overall average distortion

introduced by the RVQ. Therefore, there are two interlaced iterative procedures: one

for optimization of the encoder/decoder pair, and another to simultaneously satisfy

the stage-removed residual centroid condition in all stages.

Assuming that all stage codebooks are held fixed, the first optimality condition

(given by (2)) implies that only exhaustive search encoders are guaranteed, in general,

to generate an optimal direct-sum Voronoi partition. However, exhaustive search

encoding is usually too expensive. An alternative (but generally sub-optimal) encoder

is the stage-sequential encoder. Although fast, this encoder is often unable to find the

best direct-sum code vector, thereby resulting in what may be a significant increase

in average distortion. Another sub-optimal, but efficient and effective encoder is the

M-search encoder. The M-search technique, introduced in [22] for tree searching, was

shown to be very efficient when used to search the RVQ tree [23, 15]. The M-search

algorithm proceeds one level deeper into the RVQ tree by extending all branches from

M surviving nodes, and only the best M of these extended branches survive to the

next level. This procedure continues until the last stage of the codebook is reached,

and then the code vector of the best path among the final M paths is used. Employing

M-search during the optimization of the encoder usually leads to a relatively small

complexity, but to close-to-optimal performance [23, 15].
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Assuming a fixed direct-sum partition P, or equivalently, a fixed set of stage par-

titions {_l,_2,...,PP}, the Gauss-Seidel algorithm is used to find the constituent

codebooks {C_,C_,... ,C.g} with stage code vectors that simultaneously satisfy the

stage-removed residual centroid condition (8). It is shown above that, for the squared

error distortion measure, the Gauss-Seidel algorithm always converges to a minimum.

Therefore, the "decoder-only" iteration used to find a minimizing set of stage code-

books can only reduce or leave unchanged the average distortion.

It is shown in [20] that if the encoder yields a Voronoi partition (in the squared

error distortion sense) with respect to the direct-sum codebook and the Gauss-Seidel

algorithm is used in the decoder optimization step, the fixed rate RVQ design algo-

rithm converges monotonically to a fixed point which satisfies necessary conditions

for minimum squared error distortion. However, it should be emphasized that if a

sub-optimal encoder is used, then the encoder optimization step may actually in-

crease the average distortion and monotonic convergence cannot be guaranteed. The

possibility of a nonmonotonic average squared error distortion raises the issue of how

to effectively terminate the iterative process. Fortunately, experimental results show

that the stage-sequential search RVQ design algorithm effectively reduces the aver-

age distortion with only occasional deviations from monotonicity. Furthermore, the

M-search RVQ design algorithm converged monotonically in all our experiments to

a fixed point.

3 Variable Rate RVQ

An optimal variable rate RVQ can be constructed by incorporating the entropy con-

straint directly into the RVQ design loop. In [1], it is shown that the direct-sum

codebook constraint can generally be expected to lead to both an increased average
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distortion and a decreased output entropy. This motivates an RVQ design algorithm

which finds stage code vectors that minimize the average distortion subject to a con-

stra_nt on the output entropy of the RVQ. Necessary conditions for optimality of

variable rate RVQ are derived in the next section, and an entropy-constrained RVQ

design algorithm which satisfies these conditions is discussed in the following section.

3.1 Necessary Conditions for Optimal Variable Rate RVQ

For the direct-sum vq, let 3" be set of variable length indices {c(j) : j E J}. The

direct-sum VQ mapping, Q : _k _ C, may be realized by a composition of a variable

length encoder mapping £ : _k _ 3", where

£(zl) = c(j) if and only if zl E V(j),

and a variable length decoder mapping D : 3" _ C where

= vCj).

The variable length encoder can be further decomposed into two mappings, _" = LoE,

where E : _k _._ j and L : J _ 3-, and o denotes composition. Similarly, one can

decompose the variable length decoder into two mappings, _D = D o (L) -1, where

(L) -1 : 3- _ J, and D : J _ C. Note that the mapping L is one-to-one and onto,

and hence, is an invertible mapping with inverse (L) -1.

Let the distortion that results from representing zl with 41, d(zl,_l), be a

non-negative real-valued function that satisfies requirements (1)-(3) of Section 2.1.

According to distortion-rate theory [24],[25], [26], the kth-order distortion function

(where k is the vector size)

Dk(R) = inf {E[d(zz,_,_)] l l(=z;$z ) <_ R}
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is a lower bound to the kth-order operational distortion-rate function

Dk(R) = inf {E[d(zl,&l)l l E[l(zl)] < R}
(e,v)

where l(zl) = I_'(zl)[ is the length of the codeword representing z_ and I(zl; _1) is

the mutual information between zl and 41. The convez hull of Dk(R) can be found

[16] by minimizing the functional

J(g,T_) = E[d(zl,&l)]-I- _E[l(zl)]

where _ can be interpreted as the slope of a line supporting the convex hull of the

operational distortion-rate function bk(R).

A variable rate P-stage RVQ (with an average rate no greater than R) is said

to be optimal for fX, (') if it gives at least a locally minimum value of the average

distortion. The design problem can be stated as follows: Choose the codebook C,

partition P, and variable-length mapping L that minimize the average distortion

D(zl,_) = E{d(zl,Q(zl))}

subject to

E{ICzl)} < R,

where 1 : _k _ _ is the variable length of the codeword representing zl, and is

defined by

-Ic(z,)l = [L(ECzl))[- [L(j)[.

This constrained minimization problem can be replaced by the following uncon-

strained minimization problem: Choose the codebook C, partition P, and variable

length mapping I, that minimize the Lagrangian

Jx(E,L,D) = E {d(zl,$_) + _ [L(j)I} • (11)
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Proceeding, assume the codebooks {CI,C_,... ,Cp} are fixed. This implies the

direct-sum codebook C is fixed. Also, assume the lengths IL(j)[ of the channel

codewords associated with the direct-sum code vectors are fixed. Then, a partition P

that minimizes (11) is one that minimizes the integrand d(z,,_l) + )_ IL(j)I almost

everywhere. That is,

z_ E V*(j) iff d[z_,y(j)]q-A [L(j)I __ d[zl,y(k)]q-A [L(&)[ for all k E J. (12)

Note that (2) is a special case of (12) when _ = 0.

Next, assume the codebooks {C_,C_,...,Cp} and the partitions {_'_,'P2,...,_'p}

are fixed. This implies that both the direct-sum codebook C and the direct-sum

partition P are fixed. Then, note that (11) can be expressed as

J_(E,L,D) = _ E {d[zz,y(j)] + AIL(j)I [ =_ e V(j)} pr(j)

j_J

(13)

where pr(j) = pr {z_ E V(j)}. A mapping L that minimizes (13) is one that mini-

mizes the expected codeword length

R--- _ IL(j)[ pr(j).

jcJ

Setting the codeword length [L(j)I to

IL ° (j)] = - log s pr(j) = - log s pr(jl, j_, • • •, jp ) (14 )

results in an average rate which is equal to the output entropy of the direct-sum

quantizer.

The probability pr(jl,j2,... ,jP) of a path in the RVQ can also be written as the

product of conditional probabilities, i.e.,

pr(j,, j2,..., iF) --- pr(jPIjP-l,..., J,) pr(jp-i liP-2,-.-, J,)-.. pr(j2]j,) pr(jl )

17



Therefore, we can write

IL'(J)[ = - l°g2 pr(jpljp_l,..., jl) -- log2 pr(jp-I IJP-_,''', jl)

-... - logs pr(j2[jl) - logs pr(jl) (15)

and the output entropy of the optimal direct-sum RVQ can be written as

P

H'(JI,J_,. . .,Jp) = _-_ H(J, IJ,-1,. . .,J1).
p---1

Finally, assume the stage partitions {7_1,_2... ,_vp} are fixed. This implies the

direct-sum partition P is fixed. Also, assume that the lengths IL(j)[ of the channel

codewords associated with the direct-sum code vectors are fixed. Then, rewrite (11)

J_(E,L,D) =

jEJ

ILq

E {d[zl,D(j)] ]zl E V(j)} pr(j) +

_ E {IL(j)I Iz_ E V(j)} pr(j).
jEJ

Clearly, a mapping D that minimizes (16) is one that minimizes

E {d[zl,D(j)] [zl E V(j)} pr(j).

j_J

(16)

To achieve this minimum, the multistage code vectors yp(jp) at the pth stage must

satisfy (8), i.e.,

_E_ k

where _', = ffi: - g(]q,(j)), and fr,ti,('Y,) is defined by (9).

3.2 The EC-RVQ Design Algorithm

(17)

The EC-RVQ design algorithm proposed here is an iterative descent algorithm sim-

ilar to the one used for the design of EC-VQ codebooks. Each iteration consists of

18



applying the transformation

(ECt + 1),LCt + 1),D(t + 1))- T(E(t),L(t),DCt))

where

E(t+ 1)= argm_n(E,L(t),D(t))

Lit + 1) = _g m_n(E(t+ 1),L,D(t))

D(t q-1)= argm_n(E(_q-1),L(t+ 1),D)

(optimum partitions)

(optimum codeword lengths)

(optimum code vectors)

Following the lines of argument of [27], one can show that every limit point of the

sequence (E(t),L(t),D(t)), t = 0,1,..., generated by the transformation T mini-

mizes the Lagrangian Jx(E, L,D) (as given by (11)). Therefore, the EC-RVQ design

algorithm is guaranteed to converge to a local minimum.

To find several points on the convex hull of the operational rate-distortion curve,

the minimization of Jx(E, L, D) is repeated for various _'s. Starting with _ = 0

(which corresponds to the RVQ codebook designed by the fixed rate RVQ design

algorithm), the EC-RVQ design algorithm uses a pre-determined sequence of _'s to

design locally optimal variable rate EC-RVQ codebooks.

For optimal performance, the EC-RVQ design algorithm must generally employ

an exhanstive-search encoder, a jointly optimized direct-sum decoder, and an optimal

entropy coder as described by (14). Unfortunately, the computational complexity and

memory requirements associated with optimal EC-RVQs are usually prohibitive, and

sub-optimal design procedures are usually used to generate practical EC-RVQs.

As with fixed rate RVQ design aigorithms, the encoder does not necessarily have

to be optimal to be useful. Sub-optimal tree-structured searching techniques such

as stage-sequential searching or multipath searching can be employed, leading to
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relatively fast encoder implementations. Experimental results indicate that stage-

sequential searching usually leads to a significant increase in average distortion, but

multipath M-searching can result in a close-to-optimal performance, even with values

of M as small as 2 or 3 [23, 15].

Ideally, all stage codebooks in the RVQ should be jointly optimized. However,

since the complexity of the joint optimization design process increases rapidly (quadrat-

ically) with increasing number of stages, the RVQ design effort can become exces-

sive. The complexity of the design can be greatly reduced by using conventional

stage-sequential optimization, but the resulting performance can also be significantly

reduced. The performance gap between sequential and joint optimization can be

bridged by local joint optimization of the stage codebooks. The optimization is local

in the sense that the stages are partitioned into overlapping blocks and the joint op-

timization process is restricted to only the stages of each block. This technique was

previously employed to accelerate the design of large-block fixed rate RVQ codebooks

with a relatively large number of stages [28]. However, we also note that, unlike fixed

rate RVQ, EC-RVQ (with a modest number of stages) is shown experimentally to

generally perform quite well when sequential stage-wise optimization is used. This

encouraging result implies that, at moderate bit rates, the EC-RVQ design speed can

be substantially increased without significantly impairing performance.

A unique complexity reducing feature of EC-RVQ is its potential to use stage-

conditional (i.e., conditioned on previous stages) entropy tables of relatively small

sizes. Equation (15) shows that the optimal length (given by (14)) of the variable

length codeword associated with an index j E J is also the sum of P stage-conditional

self-information components. During the design process, the lengths of the stage-

conditional entropy codewords can be estimated by using a sumciently large training
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set. Clearly, the aggregate number of tables of stage-conditional entropy codes can

become extremely large as the number of stages increases, which may offset the mem-

ory savings obtained by using the RVQ structure. However, the number of tables can

be made relatively small by limiting the number m of previous stages upon which

conditioning is based. In other words, the direct-sum codeword length IL(j)I is ap-

proximated by

IL(j)I_ -- log2pr(jp liP-l,..., jP-m) - log2pr(jp-I IJP-2,..., jP-m)

--... -- log2pr(j2ljl) -- log2pr(j_). (18)

Obviously, since H(J_lJp-1,...,J_) <_ H(Js,[Jp-1,...,J_,-m) for each p = 1,2,...,P

and m < p- 1, it is easy to show that Hm (J) P- Ep=_ H(J_,lJp-_,...,J,-,,,) )_ H(J).

Experimental results show that the value of rn that results in a good complex-

ity/performance tradeoff increases with both increasing number of stages and vector

size, but decreases with increasing stage codebook size. Recent results also show that

the best value for m depends heavily on the source. For sources with memory, the

best value of m is usually small (0 _< m _< 2). For memoryless sources, however, a

larger value of m is usually needed for a good tradeoff, which results in increased

memory requirements.

While the sub-optimal EC-RVQ design algorithms discussed above are not guaran-

teed to converge to local minima, they provide good complexity/performance trade-

offs, and they facilitate the design of practical EC-RVQs. We also point out that the

sub-optimal algorithms employed in all EC-RVQ experiments performed in this work

converged monotonically to a fixed point, and occasional deviations from monotonic-

ity were observed only when stage-sequential searching was used during the encoding

step of the EC-RVQ design.
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4 Experimental Results

Many quantization techniques have been used to code Gaussian, Laplacian, and uni-

form memoryless sources, as well as Gauss-Markov sources. Table 1 shows some of

the well-known coders as compared qualitatively with EC-RVQ in terms of encoder

complexity and memory. For the class of VQ-based coders, EC-RVQ is less demand-

ing in terms of both memory and encoding complexity. It has comparable encoding

complexity and memory requirements to that of EC-TCQ but does not suffer from

the relatively large coding delays associated with large trellises. Finally, it should

be noted that when the dimension is one, EC-RVQ, or entropy-constrained residual

scalar quantization (EC-RSQ), has the simplest encoding complexity and the smallest

memory requirements.

In this paper we report on the relative performance of these coding techniques

for memoryless Ganssian, Laplacian, and uniform sources as well as a Gauss-Markov

source. Experimental results demonstrate the performance of EC-RVQ and show

its advantages and disadvantages when compared to some of the competitive cod-

ing techniques that have appeared in the literature. In particular, EC-RVQ perfor-

mance is compared to that of scalar quantization (SQ), entropy-constrained SQ (EC-

SQ), entropy-constrained VQ (EC-VQ), trellis coded quantization (TCQ), entropy-

constrained TCQ (EC-TCQ), and lattice-based VQs. For each of the sources con-

sidered here, the EC-RVQs, the EC-RSQs, and the EC-SQs, which are described in

Table 2, were designed on training sequences rather than on the underlying distri-

butions, and were used to encode a test sequence of 40,000 samples taken from the

same source. The performance results for EC-VQ [16], TCQ [29], EC-TCQ, predic-

tive EC-SQ (PEC-SQ), predictive EC-TCQ (PEC-TCQ) [30], and lattice-based VQs

[31, 16] are taken from the literature.
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Experimental results for a Gaussian random variable with zero mean and unit

variance are shown in Figure 3 (top) and Table 3. Figure 3 (top) shows the rate-

distortion performance for the various EC-RVQs and EC-SQ relative to the R(D)

curve. Signal-to-noise ratio (SNR) values for EC-RVQ, EC-VQ, EC-SQ, D4 lattice,

A2 lattice, TCQ, EC-TCQ, and R(D) at 0.5, 1.0, 1.5, and 2.0 bits per sample (bps)

are given in Table 3. It can be seen that the performance of EC-RVQ increases with

increased vector size, and that practical EC-RVQs outperform practical EC-VQs with

the same vector size, even while maintaining relatively small encoding complexity and

memory requirements. EC-RVQ is also competitive with both TCQ and EC-TCQ.

The next set of experiments considers the Laplacian source with zero mean and

unit variance. Figure 3 (bottom) shows the rate-distortion performance of several

EC-RVQs and EC-SQ relative to a curve linearly interpolated from well-known R(D)

points. Numerical values are given in Table 4 for EC-RVQ, EC-RSQ, EC-SQ, TCQ,

EC-TCQ, $Q, VQ, and R(D) at 0.5, 1.0, and 2.0 bps. Unlike the case of the Gaussian

source, increasing the vector size does not improve the EC-RVQ rate-distortion per-

formance significantly. This is explained by the fact that, as the vector size increases,

encoding complexity and memory requirements limit the size of the initial codebook

(or the peak bit rate) that can be used to design practical EC-RVQs. This leads to a

reduction in rate-distortion performance because the Laplacian source (which has a

peaked distribution) requires a very large output alphabet size (i.e., number of levels

or code vectors), which is dlt_cult to attain in practice. In fact, EC-RSQ is very

competitive with EC-RVQ because the former has the potential to use an expanded

set of direct-sum code vectors. When compared to other coding techniques, EC-RVQ

(including the special case where the vector size k is equal to 1) outperforms the other

coders at low bit rates and is competitive with EC-TCQ at high rates.
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Simulation results for the encodingof a memorylessuniform sourceare shownin

Figure 4 (top) with numerical values given in Table 5. As stated in [29], entropy

coding does not lead to any performance gains in the case of scalar or trellis coded

quantization. However, although the source is uniform, RVQ outputs are generally not

equiprobable, and entropy coding usually leads to a slight performance gain. As can

be seen, increasing the vector size leads to an increase in rate-distortion performance.

However, EC-RVQ performance generally falls below that of TCQ [29], but becomes

competitive when the the vector size is relatively large (e.g., k = 16).

Finally, results for a Gauss-Markov source with correlation coefficient p = 0.9 are

shown in Figure 4 (bottom) and Table 6. Again, Figure 6 shows the rate-distortion

performance of several EC-RVQs and EC-SQ relative to R(D) while Table 6 shows

the SNRs for a number of predictive coding techniques as well as EC-RVQ and EC-

VQ at bit rates of 0.5, 1.0, 1.5, 2.0 and 2.5 bps. It should be noted that for rates

R > 0.926, the R(D) curve in Figure 4 (bottom) is actually an upper bound on the

true derived R(D) curve. As expected, there is a clear advantage of VQ-based coders

over most of the other non-predictive scalar coders. Although EC-VQ is expected

to theoretically outperform all VQ-based coders for such a source, practical EC-VQs

do not meet that expectation, mainly because the encoding complexity and memory

requirements associated with such coders severely limit the initial codebook size (or

the peak bit rate). In fact, EC-VQ is significantly outperformed by EC-RVQ with

the same vector size. For vector sizes larger than 6, EC-RVQ outperforms PEC-SQ

at all bit rates between 0.5 and 2.0 bits/sample, and is competitive with PEC-TCQ,

especially at relatively large vector sizes (e.g., k = 16). It should be noted that the

memory inherent in both the state and the predictor gives PEC-TCQ an effective

vector size which is usually larger than the vector sizes used by the VQ-based coders.
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5 Summary

Necessary conditions for optimal variable rate RVQ have been derived, and an itera-

tive descent algorithm for designing locally optimal variable rate EC-RVQ codebooks

has been introduced. The RVQ structure is exploited to facilitate the implementation

of practical EC-RVQs, which perform well even while maintaining very low encoding

complexity and memory requirements.

Experimental results for three memoryless sources and a Gauss-Markov source

indicate that practical EC-RVQs have performance advantages over other VQ-based

coders, including practical EC-VQs. Although EC-RVQ outperforms TCQ-based

coders only at some relatively low bit rates for the Laplacian source, it is usually

competitive and has the potential of increased rate-distortion performance when the

peak bit rate is increased. Furthermore, encoding complexity and memory require-

ments of EC-RVQ are comparable to those of TCQ-based coders, but EC-RVQ does

not have the disadvantage of the long encoding delays associated with large trellises.
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System Block(Vector) Size Encoding Memory Entropy Coder

EC-SQ 1 simple very small very simple

EC-RSQ 1 very simple very small very simple

A2 Lattice 2 moderate small simple

D4 Lattice 4 moderate small simple

EC-VQ 4 complex large complex

EC-VQ 8 very complex large complex

EC-RVQ 4 simple small simple

EC-RVQ 8 moderate small simple

EC-RVQ 16 complex moderate moderate

EC-TCQ(s=8) 1 simple small simple

EC-TCQ(s=8) 4 moderate small moderate

1 moderate moderate moderateEC-TCQ(s-128)

Table 1: Qualitative comparison of several entropy-coded quantization systems
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EC-RVQ

k=4 k=6 k=8 k=12 k=16

TSS 250 300 400 500 750

NS 4 5 5 6 8

SCS 16 16 16 16 16

PBR 4.00 3.33 2.50 2.0 2.0

NSP 2 2 2 3 3

MMO 1 2 2 2 2

NVDC 128 160 160 288 384

CM 1.02 1.92 2.56 4.61 8.19

TM 0.39 6.28 6.28 8.33 12.42

EC-RSQ EC-SQ

200 200

3 1

4 16

6.O 4.0

I I

I 0

12 16

0.48 0.64

0.09 0.08

Table 2: Training set size (TSS) in thousands of vectors, number of stages (NS),

stage codebook size (SCS) in vectors, peak bit rate (PBR) in bits/sample, number

of search paths (NSP), Markov model order (MMO), number of vector distortion

calculations (NVDC) per input vector, codebook memory (CM) in kilobytes, and

maximum memory requirements for entropy tables (TM) in kilobytes for EC-RVQ,

EC-RSQ, and EC-SQ.
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EC-RVQ

Rate k-4 k=12

0.5 2.21 2.50

1.0 5.10 5.38

1.5 7.80 8.21

2.0 10.68 N/A

EC-VQ EC-SQ

k=4

2.20 2.09

4.80 4.64

7.70 7.57

NIA 10.55

D4 A2

2.05 2.17

4.55 4.78

6.95 7.60

N/A N/A

TCQ EC-TCQ

s=256 s=128

2.78 N/A

5.56 5.50

N/A 8.79

II.04 11.83

R(D)

3.01

6.02

9.00

12.04

Table 3: Performance (SNR in dB) of various source coding schemes for the memo-

rylessGanssian source at 0.5,1.0,1.5,and 2.0 bitsper sample.

EC-RSQEC-RVQ

k=4 k=6

3.23 3.27

5.91 5.92

11.38 11.58

EC-SQ TCQ

s=256

2.20

EC-TCQ sq vq R(D)

Rate s=128

0.5 3.15 3.14 N/A

1.0 5.90 5.79 5.54 4.82

2.0 11.50 11.31 11.22 12.35

k=6

N/A 1.97 N/A

3.01 4.96 6.62

7.54 N/A 12.66

Table 4: Performance (SNR in dB) of various source coding schemes for the memo-

rylessLaplacian source at 0.5,1.0,and 2.0 bitsper sample.
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Rate

0.5

1.0

2.0

3.0

EC-RVQ

k-4 k=16

3.12 3.20

6.27 6.39

12.27 12.79

18.58 N/A

EC-SQ

3.08

6.04

12.08

18.10

TCQ

s=4 s=256

2.84 3.24

6.22 6.58

12.62 13.00

18.83 19.23

SQ R(D)

N/A N/A--
6.02 6.79

12.04 13.21

18.06 19.42

Table 5: Performance (SNR in dB) of various source coding schemes for the memo-

ryless uniform source at 0.5, 1.0, and 2.0 and 3.0 bits per sample.

EC-RVQ EC-VQ

Rate k=4 k=6 k=16 k=4 k=8

0.5 7.45 8.43 9.32 7.10 8.15

1.0 10.64 11.58 12.36 10.40 11.15

1.5 13.38 14.29 15.29 12.15 N/A

2.0 16.15 17.23 N/A 15.80 N/A

2.5 19.14 20.13 N/A N/A N/A

PEC-SQ PEC-TCQ R(D)

s=8

N/A N/A

N/A N/A

13.86 15.30

17.22 18.38

20.48 21.41

10.22

13.23

16.26

19.25

22.26

Table 6: Performance (SNR in dB) of various source coding schemes for the Gauss-

Markov source at 0.5, 1.0, 1.5, 2.0 and 2.5 bits per sample.
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Figure 2: A 3-level RVQ tree
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Figure 3: The R(D) performance of several EC-RVQs and EC-SQ relative to the true

R(D) curve for the Gaussian (Top) and the Laplacian (Bottom) memoryless sources.
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Figure 4: The R(D)performance of several EC-RVQs and EC-SQ relative to the true

R(D) curve for the uniform source (Top) and the Gauss-Markov source (Bottom).
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