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NOMENCLATURE

AI% = percent aluminum by weight
Cp = specific heat
D = diameter
g = gravitational constant
h = heat-transfer coefficient
i = enthalpy
Le,M = Lewis and Mach numbers, respectively
7h = mass flow
P = pressure
Pr = Prandtl number
q = dynamic pressure = pu2/2

= heat flux; _c,convective;_r, radiative
R = gas constant
Re = Reynolds number
r = radius or radial flow length
rl/2 = radius at the half velocity
T = temperature
u = velocity
X = axial distance from nozzle exit
/Y = velocity gradient
.-/ = specific heat ratio
# = viscosity
p = density

2
axial moment; _t = 2_rf pu2rdr - _fPooMop_Aop_

Subscripts °
c = chamber (or convective, with (_)
cc = constant core
cl, c-_ = centedine and cold wall, respectively
D = dissociation
e, ex = jet edge and exit, rspectively
g, i = gas and plate flow, respectively
k = kth ring in plate flow analysis
opt = optimum (after isentropic change from Pe=to Poo)
R_s = recovery and stagnation, respectively
r . = plate radius
ss, sup = sonic tip and supersonic, respectively
t, w = total and wall, respectively
2,_ = downstream of shock, and ambient, respectively
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Section 1
INTRODUCTION

Plume Impingementmodelingis requiredwheneveran object immersedin a rocket
exhaustplumemustsurviveor remainundamagedwithinspecifiedlimits,due to thermal
andpressureenvironmentsinducedbythe plume. Athighaltitudesinviscidplumemodels
(RAMP2,[1],MOC [2]), MonteCarlotechniques[3-5] alongwiththe PlumeImpingement
Programcan be usedto predictreasonablyaccurateenvironmentssincethereare usually
no strongflowfield/bodyinteractionsor atmosphericeffects. However, at low altitudes
there is plume-atmosphericmixingand potentiallarge flowfieldperturbationsdue to
plume-structure interaction. If the impinged surface is large relative to the flowfield and
the flowfield is supersonic, the shock near the surface can stand off the surface several
exit radii. This results in an effective total pressure that is higher than that which exists
in the free plume at the surface. Additionally, in two phase plumes, there can be strong
particle-gas interaction in the flowfield immediately ahead of the surface.

To date there have been three levels of sophistication that have been used for low
altitude plume induced environment predictions. Level I calculations rely on empirical
characterizations of the flowfield and relatively simple impingement modeling. An exam-
ple of this technique is described by Piesik in Refs. [6,7]. A Level II approach consists
of characterizing the viscous plume using the SPF/2 code [8] or RAMP2/LAMP [9] and
using the Plume Impingement Program to predict the environments. A Level III analysis
would consist of using a Navier-Stokes code such as the FDNS code [10] to model the
flowfield and structure during a single calculation. To date, Level I and Level II type
analyses have been primarily used to perform environment calculations. The recent ad-
vances in CFD modeling and computer resources allow Level II type analysis to be used
for final design studies. Following some background on low altitude impingement, Level
I, II and II type analysis will be described.
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Section 2
BACKGROUND

The most importantingredientin determiningthe plume inducedenvironmentsto
launchstandsis an accuratedescriptionofthe launchvehicleor missileplumeflowfields.
At low altitudesthe rocketengine exhaustplume is dissipatedby the entrainmentof
the relativelylow energyambient atmosphereintothe highvelocityexhaustproducts.
In order to properlycharacterize plumeenvironmentsto launchstands,deflectorsand
adjacent hardware,the mixingof the exhaustplumeand ambientatmospheremustbe
considered. Figure1 illustratesthe necessityof includingmixingin low altitudeplume
predictions.Figure1 presentsthecentedinepitottotalpressuredistributionforthe Space
ShuttleSolidRocket Motor(SRM) calculatedwithand withoutmixing.The dashedline
isthe inviscidcalculationandthe solidlineisthe resultsof a calculationincludingmixing.
Beyond200 ft the inviscidresultsare muchtoo conservative.

LaunchStandenvironmentsforthe Saturn[11,12]andSpace Shuttle[13,14] utilized
a methodby whichthe inviscidandviscousflowfieldswere calculatedseparately,then
manuallymergedto generate a compositeflowfieldwhichwas then usedto define the
environments.The inviscidflowfieldsfor the Saturnand Shuttle liquidengineexhaust
plumeswere calculated using single phase (i.e., gas only) Methodof Characteristics
codes [2],whilethe Space ShuttleSRM inviscidplumewascalculatedusingthe Reacting
and MultiphaseProgram(RAMP) [15] whichtreated two-phase(gas and particulates)
floweffects.RAMP2 andMOC calculationsare initiatedat thethroatof the enginebased
on the resultsof combustionchamber and transonicanalysisfor startingconditions.
These calculationsincludethe effectsof equilibriumchemistryand inthe case of RAMP,
the exchange of energy and momentumbetween particles and gas (for solid rocket
motors). The inviscidflowfieldsare calculatedto distancesin the plumebeyondwhich
the ambientatmospherewould mix to the plumeaxis.

The viscous portion of the Saturn and Shuttle plumes were calculated with
models[9,16] that utilize a forward marchingfinite differencemethodthat solve the
boundarylayer form of the governingequations.

The initialconditionsusedforthe mixingcalculationswereobtainedby averagingthe
exit planegas propertiesas calculatedby RAMP2 and onedimensionallyexpandingor
compressingthem to atmosphericconditions.

The turbulentshear stressmodelusedfor Shuttlecalculationswas the two-equation
TKE model of Launderet al. [17]. This model was chosen based on previouswork
presentedin Ref. [13] whichused thisTKE modelto comparewith modelenginedata
similarin Mach numberanddensityratioto the SRM sea levelplume.The Saturncalcu-
lationsutilizededdy viscositymodelssincethe newerTKE modelswere notdeveloped
at the time.

Atthe timeof the initialSpace ShuttlePlumeandLaunchStandenvironmentstudies,
the mixingcodeswouldnottreattwo-phaseflowina coupledmanner.The overallmodel
whichwas developedfor ShuttleLaunchcomplex[18] for SRM impingementused the

2
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assumption that the particles in the mixing region were at the same temperature and
velocity as the gas and diffused at the same rate as the gas. While thermal and dynamic
equilibrium of the particles and gas is probably not a bad assumption many nozzle exit
diameters downstream of the exit, in the region between the inviscid portion of the plume
down to about 25 diameters from the exit, the particles will in reality not be in equilibrium
with the gas. The overall model [18] which was used for the Space Shuttle Launch
environments was validated against a limited amount of heat transfer data as well as a
good deal of pressure data. Part of the model included factors such as accommodation
coefficients which account for how most of the particulate energy is transferred to an
impinged surface. These factors were determined based on the above mentioned data
and plumes which were calculated in the same manner as the SRM. The model used for
the Space Shuttle Launch Stand environment was fairly well validated but it is uncertain
how the assumption of gas-particle equilibrium in the mixing region affects some of the
empirical factors that were determined based on the model validation studies.

Subsequent to the previously mentioned modeling of inviscid/viscous flows, a new
model has been developed that will greatly reduce the labor requiredto model a low alti-
tude plume. The Standard Plume Flowfield code (SPF/2) [8] has been developed under
joint government funding of the Joint Army-Navy-NASA-Air Force (JANNAF) committee.
The SPF/2 code was envisioned as a standardized program which can treat all of the im-
portant plume effects at low altitudes. The primary emphasis in the SPF/2 development
was for application to radiation signatures. However, the code can be used to provide
plume characteristics for plume impingement environments. Table 1 (taken from Ref. [8])
gives a summary of the features and capabilities of the SPF class of programs. SPF/1
was the original code which has been replaced with SPF/2. SPF/3which utilizes parabo-
lized Navier-Stokes methodology is still under development but could be readilyused for
plume impingement applications when it is fully developed and validated. SPF/2 is com-
prised of three separate programs: PROCESS, SKIPPY and BOAT. The PROCESS
module sets up the input files for the SKIPPY and BOAT codes. SKIPPY solves the
inviscid flowfield starting at the exit plane and will treat the Mach disc regions and two-
phase flow assuming frozen chemistry (uniform gas species distribution). The BOAT
code calculates the mixing portion of the plume. The BOAT code will treat two-phase
flow and includes finite rate chemistry which is important in low altitude plumes where
afterburning may raise the temperature in the mixing layer due to the combustion of the
fuel rich exhaust products and air. The BOAT code has the advantage over the earlier
mixing codes in that the properties at the inner edge of the shear layer are automatically
varied using the results of the inviscid SKIPPY calculation, so that an exact match of the
inviscid/viscous results is obtained for both gas as well as particulates. Figure 2 gives
a schematic representation of a SPF/2 plume. The distribution of gaseous and particu-
late properties at the exit plane of the motor are input to the SPF/2 code. The RAMP2
code which was developed under NASA funding has been modified to output a file which
contains the exit plane data which is in the proper format for input to the SPF/2 code.

4



Table 1" Features of SPF/1, SPF/2 and SPF/3 [8]i
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V_ION MEARFIELD TRANSITION REGION FARFIELD KEY FEATURES/LIMITATIONS

• SlngXe-phase flow
Mixing Overlaid Mixing with Pre- Constant * No Mach disc RixLng/cheulstry
on Invlsold Map scribed Pressure Pressure • Unlfor_ conposltlon exhaust

8PF/I Decay Mixing • Finite rate chemistry in
mixing solution

• Initial plume expansion angle
70"

• Single- and two-phase flay
Plule M[xLng As abovet Plume Constant • Mach disc mixing
Layer overlaLd and Mach Disc Pressure • Uniform composition exhaust

8PF/2 on Viscous/ Mixing 1,ayers Mixing • Finite rate and equilibrium
Inviecid Map Merged chemistry options In mixing
Containing Mach solution
Disc Mixing • Initial plume expansion angle

Cn Solution • 90"

• Single- and two-phase tlow
Fully-Coupled Constant • Mach disc elxlng/chenistry

Parabollzed Navler-Stokes Pressure • uniform composition exhaust
SPF/3 Solution Mixing • Finite rate and equilibrium

cheeiatry options in _lxlng
solution

• Initial plmm expansion
angle • 90"
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Figure 2: Schematic of SPF/2 Gas/Particle Overlaid Procedure

The Plume Impingement Program (PLIMP) which was funded by NASA is widely
used for predicting plume impingement induced forces, moments, heating rates and
contamination to bodies immersed in the flow of liquid and solid rocket plumes. PLIMP
uses a free body concept whereby a plume is precomputed, the body is located in the
plume, and appropriate shock and heating theory is used to determine impingement
pressures and forces. PLIMP has numerous options for modeling geometries that are
very applicable to launch complexes. Additionally, the way it is configured allows the user
to set up the geometry one time then move the engine relativeto the impinged surfaces
to simulate the movement of the launch vehicle or missile relative to the launcher.
Improvements in the PLIMP theory that are necessaryto model low altitude impingement
will be addressed under the Level II analysis described in Section 4.

As was mentioned in Section 1, Navier-Stokescodes have been developed to the
level that they can be utilized to produce low altitudeplume induced environments. Three
dimensional Navier-Stokes codes can model both the plume flowfield and the disturbed
flowfield in the vicinity of the impinged body since the body geometry can be simulated by
the codes via boundary conditions. For solid rocket motor plumes, the ability of the CFD
codes to calculate the interaction of particulates and gas in the shock layer adjacent to
the body is of particular interest since the actual particle fluxes (momentum and energy)
which strike the surface are calculated.

Traditionally, the amount of particulate incident energy which is transferred to the
surface is treated using an accommodation coefficient. Usually, the accommodation
coefficient accounts for the particle-gas interaction in the shock layer, the shielding of
the surface by the particle debris layer and the time the particles actually interact with
the surface and transfer energy. It is easy to see that the accommodation coefficient
can change radically for the same plume depending on the orientation, size and incident
massflux of the particles. Thus, in order to beconservativefor all impingementscenarios
a relatively high (0.5) accommodation coefficient must be used. Previous studies [19]
have attempted to determine accommodation coefficientsas a function of incident particle
mass flux for a particular impingement geometry. The resultant correlation was fairly
good. However, the same correlation may or may not be applicable to other geometries,

6
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orientations, and motors. Navier-Stokes codes now provide a model that can possibly
be used to determine a realistic accommodation coefficient/particle incident mass flux
dependence that can be used to determine two-phase impingement heat loads.

The FDNS code which is under development for NASA is a two-phase Navier-Stokes
code which can treat ideal, equilibrium, frozen or finite-rate chemistry. This code uses
a Lagrangian particle trajectory scheme. Recently, it has been applied to solid rocket
motor impingementscenarios. The FDNS code can be used for environment predictions
that require a Level III analysis. Section 5 will discuss the FDNS code and applications
which have used the model.

7
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Section• 3
LOW ALTITUDE PLUME/PLUME

IMPINGEMENT MODELING

Level I plume/impingementmodelsare consideredto be simplesemi-empiricalmeth-
ods that can be used to providepreliminarydesignenvironmentsfor relativelysimple
geometries.These methodsshouldbe easilyprogrammableon personalcomputersand
run in seconds. An excellentexampleof this type techniquewas developedby Piesik
and is describedin Refs. [6,7]. Excerptsof these two papersare used in the follow-
ing discussionto describe the model. Completedetailsof the modelcan be found in
Refs. [6,7].

Piesik's model uses semi-empirical methods for the prediction of the pressure and
heat transfer effects of a stationary (or slowly moving) rocket impinging normally on a
flat surface at sea level. He divides the problem into three parts.

1. definition of the flow parameters of the free exhaust (which may be anywhere from
overexpanded to moderately underexpanded) by use of empirical relations for the
centerline variations of the parameters and Gaussian distribution to describe radial
distributions;

2. definition of the flow parameters on a flat surface resulting from normal impingement
of the free exhaust; and

3. the heat-transfer definition using the plate flow model parametersand the well-known
heat-transfer equations of Fay and Riddell, and Van Driest.

3.1 Free Exhaust Flowfleld

It is assumedthat Pc,Tc,R, % De=,andMe=are known,and thatthe staticpressure
in the exhaustflowfieldis everywhereequal to the ambientpressure(Poo= 14.7 psia).
Further assumptionswhich are made are:

1. The momentumof the exhaustafter expansionor compressionto ambientpressure
is conserved.

2. Metal oxides in the exhaustspecies are consideredto be in the gaseousstate in
thermaland dynamicequilibriumwith the gas

3. No shock structureis consideredin the supersonicportionof the plume.
•4.. The supersonicflow of the plumedecayssmoothlyas an exponentialfunction:

The descriptionsof the centerlinedistributionsof recoverypressureandtemperature
in the subsonicregionof the plumewere generatedbased on a wide range of exper-
imentaldata. First, the locationof the sonictip is located. The sonic tip is a function
of exit Mach number,pressure,and jet diameter expandedto the ambient pressure
(Mop_,Popt,Dopt), specific heat ratio and ambient pressure. The Mach number distri-
bution up to the sonic tip is an exponential function of the Mopt and the sonic length.

8
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Figure 3: Centerline Recovery Pressures

The centerline length of the inviscid region is calculated based on the sonic length and
the percent loading of aluminum. The original formulation of this model did not include
effects of AI loading but the new model presented in Ref. [7] includes this effect and
does a better job of describing solid motor plumes. Next, the centerline pitot pressure in
the subsonic portion is calculated as a function of X, Dovt, Mort, Ptovt, Pooand the sonic
length. The total temperature is calculated as a function of sonic length, inviscid length,
AI loading, Dov=,To, and ambient temperature.

Figures 3 and 4 present typical results of comparisons of Piesik's centerline model
with experimental data. Figure 3 presents pitot pressure distributions and Fig. 4shows
total temperature distribution.These comparisons are fairly good in the decaying portion
of the plume. However, in the core region, the model will either under- or overpredict
the total pressure due to shock or compression wave, but on the average the model
produces reasonable results.

The radial distribution is calculated starting with the assumption the total momentum
in the flow is conserved and is equal to the momentum of the jet after it has expanded
to ambient conditions. It is further assumed that the flow properties in the core region
at any particular axial location do not vary in a radial direction. The radius of the core
flow-is a function of Met, rovt and Mort. The velocity distribution in the mixing region is
calculated using a Gaussian distribution and the conservation of momentum.

In the mixing (subsonic) region, Fig. 5, the radial distribution of the mass fraction of
ambient air (x = c_(r), at a particular station (X) is assumed to be dependent upon the
momentum distribution. The gas properties (Tt, T, 7) required for the flowfield predictions
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at any radius in the subsonic region are taken as the bulk averages of the exhaust/air
constituents.

Figures 6 and 7 present radial distributions of calculated and measure pitot pressure
and total temperature for a 22% A! motor 73 radii downstream of the exit. Calculations
using this model, SPF/2 and data are shown. In general, this model does a reasonable
job in predicting the radial distributions for far field mixing. SPF/2 tends to underpredict
pitot pressure. Part of this underprediction by SPF/2 could be accounted for by using
a different mixing model. However, for highly aluminized motors, SPF/2 tends to
underpredict pitot pressure near the centerline in the core of the plume. This will be
further discussed in Section 4.
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3.2 Flat Plate Flow

The flow parameters parallel to the flat plate after the normal impingement of the
exhaust are based upon a simple mixing theory. It is assumed that at any radial location
in the free exhaust the flow approaches the plate (negotiating a normal shock where
necessary) and instantaneously turns parallel to the plate, completely mixing with any
plate flow up to that location. It is further assumed that the P(r) on the plate can be
closely approximated as being equal to the free exhaust's P=2(r). This assumption is
consistent with observations of experiments for normal flat plate impingement especially
when the flow is fully mixed.

The flow parameters on the plate are readily determined from the gas-dynamic
relations and the equation of continuity as one allows the impinging normal flow to
be divided into concentric rings, k (k =1,2 .... r=)which are thin enough that the flow

!

parameters can be considered constant within each ring. Starting at the center, the flow
across the radial boundary of each ring is calculated. Mach number along the plate
surface is determined using the free-exhaust Pt2(r) and the Pt(r) of the flow along the
plate. Remember that P(r) on the plate is equal to Pt2(r). Thus Pt(r) along the plate is
composed of the partial pressure of the flow on the plate up to that ring plus the partial
pressure of the flow coming into the ring from the free exhaust.

The T=(r) of the plate flow is the bulk average of all flow rings from the jet centerline
up to and including the ring, k, in question. Similarly, re(r) is simply the total mass flow
for all rings through ring, k. With _'lk and Ttk defined, &r'kand uk are easily obtained.

3.3 Heat-Transfer Analysis

For convective heating, the gas impinging on the flat plate can be divided into
three regions (Fig. 8) which require slightly different treatments: (1) the exhaust core

I ',

I

I I
I T

....... 1"'1 ....

. _'-I_,1 ! ,

i ' ,'<"7"------
- - (3)-"

_ RADIUS

Figure 8: Flow Region for Flat Plate Heat Transfer
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impingement region, (2) the region of high pressure gradient dP/dr just outsidethe core,
and (3) the essentially constant-pressure region at large distances from the jet axis. in
region 1 (which is of concern only when the plate is located at X < Xss), the free
exhaust flow properties, u, P, and T, are constant at each X. It is assumed that the
velocity gradient on the plate (_ = du/dr) is constant in this region, so the heat-transfer
coefficient, h, varies only with distance, r, from the center. In region2, the flow is rapidly
accelerated, so that/3 is high and varies rapidly. In region 3, Pt2_ P=, and u is nearly
constant, but at great distances begins to decline; this is similar to constant velocity flow
over a flat plate.

Two equations are used to predict qc for the entire flowfield. For qc_z,the laminar
stagnation region equation of Fay-Riddell [20] is used. Otherwise, qc is predicted using
the Van Driest equation for turbulent stagnation region heating. It is necessary only to
modify the/3 term in each of the three defined flow regions.

Figure 9 presents calculated cold wall centerline heat rate distribution (including
measured radiant heat flux) compared with experimental total heat flux for scale model
liquid rocket engine impingement. In general, the comparison is quite good (+30%).
Figure 10 presents flat plate impingement heating rate data and calculations for a 22%
Aluminized motor. Two measurements are shown. The data is presented as hot wall
heating rate vs. time. For this case the predicted values are _+100%and the integrated
heat Ioa is +40, -0. This is understandable, since AI203 impingement is treated as a
gas. The model could be improved by assuming that the AI203 is a particulate and is
in thermal and dynamic equilibrium with the gas and comprises a fixed percentage of
the flow. Then particle kinetic and thermal energy fluxes can be calculated. Finally, by
multiplying these fluxes by an accommodation coefficient, the actual particulate heat flux
could be calculated.

The overall model described in this section is fairly simple and can be used to
generate preliminary design numbers. If the uncertainties in this type of an analysis
are unacceptable for design, then it would be necessary to use a Level Ii or Level III
analysis.
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Figure 9: Centerline Heat Flux Comparison
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Section 4
LEVEL !1 IMPINGEMENT ANALYSIS

A Level II lowaltitudeimpingementanalysiswouldconsistof usinga viscousflowfield
code such as SPF/2 and a separate impingementmodelingcode such as the PLIMP
code. This sectionof the appendixwill describethe interactionof SPF/2 with PLIMP,
presenta simpleanalysisand finallydescribemodelingwhichis requiredfor lowaltitude
solid rocketimpingementheat transfer analysis.

4.1 SPF/2/and PLIMP Models

SPF/2 calculatesall the necessaryinformationthat can be used by PLIMP to de-
terminepressuresand heatingrates. However,PLIMPwas previouslyset upto handle
the thermodynamicand flowfielddata generatedbythe RAMP and MOC programs.Re-
cently SPF/2 and PLIMP have been modifiedso that impingementcalculationcan be
made usingthe SPF/2 flowfield[21].

SPF/2 uses a Cartesian coordinatesystem with the data surfacesnormalto the
centedineof the engine. The solutionis a forwardmarchingschemewiththe flowfield
calculatedstartingat the exitand progressingdownstreamto the problemlimits.Aswas
previouslymentioned,SPF/2 was originallyintendedto be used primarilyfor radiation
applicationsand one of the optionsin the code is to outputa file that can be used by
the StandardInfraredRadiationModel [22,23] to perform radiationcalculations.SPF/2
hasseveralsubroutinesthat are usedto mergethe SKIPPY inviscidand BOATviscous
flowfieldsforoutputto SIRRM. However,the dataoutputinthisfile is notsufficientforthe
requirementsof PLIMP. There was also a limitationof 50 totalflowfieldpointsthatcould
be outputat eachsolutionstation.Since it is possibleto haveas manyas 75-80 points
when mergingthe SKIPPY and BOAT flowfields,this limitationwas eliminatedfromthe
new modifiedversionof SPF/2 so that the entire flowfieldis output.Modificationswere
made to several subroutines[BOATII, BOATIP, BOATJT,BOATOT, PARTOT, PITOT
(new)] in the BOAT module to generate the outputflowfield in a mannerwhich was
generallyconsistentwith the format of the RAMP code so that modificationsfor input
of the flowfieldto PLIMP could be minimized. All the gaseousas well as particulate
propertieswere outputon a file (Unit 21) for communicationwithPLIMP. Table2 shows
the organizationof the data file. If at a later date any other user of the PLIMP code
needed to interface another flowfield modelwith PLIMP, by configuringthe flowfield
codeto outputdata in the same format,no modificationswillbe necessaryto the PLIMP
codeto use the flowfieldto performimpingementcalculations.In orderto generatethe
SPF/2 flowfieldfile duringthe BOAT mixingcalculationsNRAD (generatesflowfieldfile
for SIRRM) mustbe set = 1, on card 33 of Ref. [24] inputguide. No otherchangesto
the SPF/2 code or inputare requiredto outputthe flowfieldon File21.

The modificationswhich were made to the PLIMP code during this effort were
extensive. Besides making the modifications to the subroutines which read in the
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Table 2: Description of Unformatted Binary Output of SPF/2 PLIMP
Compatible Flowfield File (Unit 21)

GROUP I-General Information

Number of Records = 1

Write (21) (HEADER(I), I=1, 20), NS, ISPECS

•HEADER

• problem descriptions (20A4)

• NS = number of gaseous species (25 max)

• ISPECS = number of particle species to be considered
(10 max)

GROUP II - Finite-Rate Chemistry Species Names

Write (21) ((AID(I,LL),LL=I,2),I=I ,NS)

• AID(I,1) first half of species number (A4)
• AID(I,2) second half of species name (A4)

Group II - Flowfield Data - One Set of This Group for each SPF/2
Output Station

Write (21) ITOT
• ITOT number of data points on the following vertical surface. If

ITOT = O there is no information to follow

DO I=1, ITOT

Write (21) ITYPE,R,X,M,,S,#,6,Htg,V,PTOT,D,P,T,-,/,Rc
I=1,ITOT

• ITYPE identifies type of point (wall, shock, interior, etc.)
0 input point
1 interior point
2 wall point
3 free boundary

• R radial coordinate (ft)

16
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Table 2: (Continued) Description of Unformatted Binary Output of
SPF/2 PLIMP Compatible Flowfield File (Unit 21)

• X axial coordinate (ft)
• M Mach number

0 flow angle (rad)
S entropy (ft2/sec2.-°R)

• # Mach angle (rad)
• _ shock angle (rad)
• Htg gas total enthalpy (ft2/sec 2)
• V velocity (ft/sec)
• PTOT pitot total pressure (Ibf/ft2)

p gas density (slug/ft3)P pressure (Ibf/ft2)
• T temperature (°R)
• _,specific heat ratio
• Rc gas constant (ft2/sec2-°R)

Write (21) (SPECN,I=I,NS)

• NS number of gas species
• SPEN species mole fractions

*Write (21) ((U,V,T,H,p), J=I,ISP)

• ISP number of particle sizes at this point
• U axial velocity component (ft/sec)
• V radial velocity component (ft/sec)
• T temperature (°R)
• H enthalpy (ft2/sec2)
• p particle density (slug/ft3)

END DO LOOP

*This record is written only for two-phase flowfields.

NOTE: The flowfield data are repetitivelystored on tape as indicated
above normal surface after normal surface. When ILAST = 0 the end of
the data has been reached.

flowfield file, the PLIMP code had to be modified to be able to handle the thermodynamic
properties and state variables in the same manner that the SPF/2 code uses them.
Previous versions of the PLIMP program had the option of treating ideal gas plumes
or plumes that were generated utilizing tables of one dimensionally expanded exhaust
properties generated by the NASA Lewis Equilibrium Combustion Code (CEC)[25].
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These tables allowed the RAMP2 or MOC flowfield to pass along only the independent
variables (entropy, enthalpy and velocity).

Thus, any time the dependent variables (pressure, temperature, Mach number,
species, etc.) were needed, the thermodynamic data tables and the independent
variables could be used to determine them. The SPF/2 code however does not utilize a
table lookup for the stated variables. The SPF/2 code has four chemistry options; ideal
gas, frozen, equilibrium and finite-rate. Only the frozen or finite-rate options of SPF/2
are considered for inclusion into the PLIMP methodology since all previous as well as
all anticipated future plumes will be calculated utilizing this option.

As was previously mentioned, the original version of PLIMP which was structured
for the MOC and RAMP2 flowfields uses the independent variables (O/F(ET), V, and
5') along with the thermodynamic data tables to determine the local flow properties and
species at any given point in the plume. The SPF/2 code which uses the finite rate or
frozen option calculates all the state properties and species mole fractions in a different
manner so that much more information must be passed on to the PLIMP code in order
to be able to do impingement calculations. The original PLIMP code only saved the
first nine variables in Table 3, while the new version of the code has modifications that
contain all the other variables that are shown in Table 3. In addition to the two ordered
data files of the standard PLIMP code it was also necessary to add another file which
contains the species mole fractions at each point in the flowfield. As each point is read
in from the flowfield file during the ordering of the flowfield, the species mole fractions
are sequentially written to Unit 4 and an index is added to the point. Thus, when the
PLIMP code determines the local flow properties at any arbitrary point in the plume, the
specie data can also be determined. Previously, the specie information was determined
from the thermodynamic data on the format of the flowfield file, but now PLIMP can also
determine species from flowfields which calculate species using other methodologies.
One fallout of this modification is that PLIMP will be able to use a RAMP2 finite rate
flowfield which it could not previously do.

The original PLIMP code could perform particle impingement force and heating rate
calculations for two phase RAMP2 plumes. However, separate executions of the PLIMP
code were required to do both gaseous and particulate calculations. A fallout of the
modifications described in Ref. [21] is the ability to do both the gas and particulate cal-
culations during a single PLIMP execution. This greatly reducesthe amount of computer
time and post processing of the data which was previously required when two execu-
tions were necessary. The last five variables shown in Table 3 are the particle property
information necessary to calculate the force and heating rates to a body due to partic-
ulate impingement. The PLIMP particle impingement model is a simplified method for
calculating particle effects to the surface. This simplified approach uses a user input
accommodation coefficient to determine how much of the particle momentum and en-
ergy are actually transferred to the surface. The accommodation coefficient which has
been determined experimentally accounts for the interaction of the particles in the shock
layer and at the surface. The accommodation coefficient can vary over a significant range
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depending on the aluminum oxide loading (mass flux) and the shock layer ahead of the
body. For calculations using the PLIMP version of the code a value of .5 is suggested.
The existing version calculates the momentum transfer to the surface using Eq. 1 and
heating rates using Eq. 2.

np

= pv? (1)
i=1

, (_v = a (TE + KE) (2)

where

np

TE = Cvv _ piVi(Ti - T,,,au) (3)
i=1

np

gz = _ 0.5 piVi 3 (4)
i=1

All heating rate, pressure and contamination options which exist in the PLIMP code
for a RAMP or MOC flowfield are operational for a SPF/2 flowfield.

4.2 Application of the SPF/2/PLIMP Calculation for the Tomahawk
LC39 Simulations

The set of data for whichthe SPF/2/PLIMP model was validated againstwas im-
pingementpressuredatatakenduringa test [26] thatsupportedthe designof the Space
ShuttleLaunchComplex30. Thistest utilizeda 20% AI TomahawkSolidMotor[exitdi-
ameter- 8.5 inches,chamberpressure-- 1000 (psia)]anda simulatedMobileLauncher
Platformto determinethe impingementpressuredistributionat 12.2 and 17 ft fromthe
Tomahawkexitplane (fullscaleshuttleof 214 and 298 ft). Twosets of calculationswere
performed usingthe SPF/2/PLIMP model.

The firstset of calculationswere performedusinga two-phaseSP/F/2 plume. The
SPF/2 plumesolutionwas startedwith a fullycoupled exit plane startlinedetermined
fromthe RAMP2 solutionof the Tomahawknozzle. The resultsof the two-phaseSPF/2
and plume impingementcalculationsof impact pressurefor this case are presentedin
Figures11 and 12. Figure11 showsa comparisonof measuredand predictedimpact
pressuresat 12.2 ft from the exit and Fig. 12 shows the resultsat 17 ft. The two-
phase results underpredict the data at both locations. These results are similar to those
observed in the pitot pressure correlations shown by Piesik [7].

The second set of SPF/2/PLIMP calculations was made using a SPF/2 plume which
used the gas/particle equilibrium assumption. For this case the particulates are treated
as a gas so that they stay in thermal and dynamic equilibrium with the gas. This is the
same methodologythat was used to develop the Space Shuttle Launch Complex plume
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induced environments described in Ref. [18]. This methodologyincluding a heat transfer
analysis will be further discussed in Section 4.4. The same exit plane startline was used
to start the SPF/2 calculation except that the particulates were put back into the gas
phase. Two-phase losses which occurred in the nozzle are included in the startline,
but no further two-phase losses occur in the plume. Figures 11 and 12 also show the
gas/particle equilibrium results. These impact pressure results compare very well with
the data. One of the conclusions reached in specifying the environments [14,18] was
that gas/particle equilibrium provided the best correlation with impingement pressures
in the viscous portion of the plume. The SPF/2/PLIMP results assuming gas/particle
equilibrium are consistent with previous findings. However, fully coupled two-phase
calculations should be able to exactly predict the correct impingement pressures for two-
phase impingement. It is possible that uncoupling the inviscid and viscous plumes for
solid motors cannot adequately describe the flowfield and a fully coupled Navier-Stokes
analysis such as a Level III calculation is necessary.

4.3 Sample Problem Using SPF/2/PLIMP Level II Analysis

A samplecase for two-phase, low altitude,plume impingementis presentedin this
section. The sample case consists of a Space Shuttle Advanced Solid Rocket Motor
(ASRM) plume impinging on the flame deflector. The deflector is a 32 ft long by 58 ft
wide flat plate inclined 34 deg to the center of the ASRM plume, which has the nozzle
200 ft above the center of the deflector. An accommodation coefficient of .5 was used
for the analysis. The input file is shown in Table 4. For demonstration purposes only, a
single strip is calculated along the centerline of the deflector, using 5 points along the
length of the deflector. For real calculations more strips and points should be used (say
40 points along 40 strips). Table 5 is a printed output of the results.

4.4 Description of a Low Altitude Plume/Thermal Response Model

This section describes a Level II type analysis that was performed to support the
launch stand design for the Space Shuttle. There were three key areas that were
addressed in order to develop an overall impingement model for the launch stand
environments: (1) flowfield modeling, (2) model of the particle/gas interaction in the
shock layer, and (3) a thermal response model of the structure. This model used another
mixing code [9] along with RAMP and PLIMP, however the conclusions reached during
the shuttle environment definition can be applied to a RAMP2/SPF/2/PLIMPanalysis for
future studies. References to RAMP/LAMP can be replaced with RAMP2/SPF/2. It is
suggested that the hybrid mixing model (IVIS = -4) be used for low altitude plumes since
plumes generated with RAMP2/SPF/2 using this model have similar characteristics as
those calculated with RAMP/LAMP.

4.4.1 Plume Flowfield

The nozzle and inviscid plume flowfields were calculated using the RAMP
program [15]. RAMP is a supersonic equilibrium chemistry two-phase flow code which
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Table 5: Plume Impingement Program Output File for Low Altitude Sample Problems
J

CASE NO. 1 PAGE 4

ROCKET EXHAUST PLUME IMPINGEMENT ANALYSIS USING THE LOCKHEED/HUNTSVILLE PLUME IMPINGEMENT COMPUTER PROGRAM

LC 39 ASRB FLAME DEFLECTOR

SUBSHAPE IY IZ SHAPE X (SUBSHAPE) Y (SUBSHAPE) Z (SUBSHAPE) PLUME X PLUME R MACH NO-PLUME

IN PLUME SHADED REGIME P IMPACT IMPACT ANGLE PRESS. FORCE MASS FLUX-PLM P-STAT-PLM ....

RAD. CIRV. Q LAMINAR Q-TURBULENT REV. NO. (FT) O TRANSIT O FREE MOLEC SHEAR STRESS M-LOCAL

PARTICLE INFO Q-PARTICLE P IMPACT(PAR) IMPACT ANG(PAR) PRESS FORCE(P) MASS FLUX-PLM KINETIC-PAR THERMAL-PART

1 1 1 PLAT 0.00000E+00 -0.12800E+02 0.00000E+00 0.18939E+03 0.71577E+01 0.13846E+01

YES NO CONT 0.28306E+02 0.34512E+02 0.15131E+07 0.34479E+02 0.14617E+02 0.00000E+00

0.00000E+00 0.23623E+00 0.22036E+03 0.22000E+07 0.00000E+00 0.00000E+00 0.91334E-02 0.92621E+00

0.44643E+04 0.51763E+01 0.35982E+02 0.27669E+06 0.86194E+01 0.38626E+04 0.I1335E+05

1 2 1 PLAT 0.00000E+00 -0.64000E+01 0.00000E+00 0.19469E+03 0.35768E+01 0.18050E+01

YES NO CONT 0.37732E+02 0.34264E+02 0.20179E+07 0.42510E+02 0.14562E+02 0.00000E+00

0.00000E+00 0.24843E+02 0.33754E+03 0.84657E+07 0.00000E+00 0.00000E+00 0.99245E-02 0.11863E+01

0.86651E+04 0.11678E+02 0.34668E+02 0.62421E+06 0.14640E+02 0.12346E+05 0.18121E+05

[k) 1 3 1 PLAT 0.00000E+00 -0.95367E-06 0.00000E+00 0.20000E+03 0.53329E-06 0.19428E+01
03 YES NO CONT 0.41251E+02 0.34000E+02 0.22050E+07 0.43656E+02 0.14560E+02 0.00000E+00

0.00000E+00 0.23445E+02 0.36550E+03 0.16792E+08 0.00000E+00 0.00000E+00 0.88809E-02 0.12796E+01

0.10788E+05 0.14778E+02 0.34000E+02 0.78993E+06 0.16679E+02 0.17954E+05 0.20632E+05

1 4 1 PLAT 0.00000E+00 0.64000E+01 0.00000E+00 0.20531E+03 0.35788E+01 0.17442E+01

YES NO CONT 0.35769E+02 0.23702E+02 0.19119E+07 0.41295E+02 0.14605E+02 0.00000E+00

0.00000E+00 0.12869E+02 0.24558E+03 0.26038E+08 0.00000E+00 0.00000E+00 0.51613E-02 0.11625E+01

0.73032E+04 0.96890E+01 0.32922E+02 0.51791E+06 0.13199E+02 0.10325E+05 0.16550E+05

1 5 1 PLAT 0.00000E+00 0.12800E+02 0.00000E+00 0.21061E+03 0.71577E+01 0.13318E+01

YES NO CONT 0.26757E+02 0.33424E+02 0.14302E+07 0.33368E+02 0.14656E+02 0.00000E+00

0.00000E+00 0.60972E+01 0.12638E+03 0.32626E+08 0.00000E+00 0.00000E+00 0.24960E-02 0.97644E+00

0.34673E+04 0.39277E+01 0.31463E+02 0.20995E+06 0.76923E+01 0.31584E+04 0.10128E+05

m
0
I
--I
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treats the energy and momentum exchange between the gas and particles. Since the
regions of interest on the Space Shuttle launch complex are dominated by the impinge-
ment of the viscous portions of the exhaust plumes, it was necessary to perform a plume
mixing calculation and superimpose these results on the inviscid RAMP results.

The model chosen to perform the mixing calculation was the LAMP code [9] which
is similar to the LAPP code [16]. The LAMP code is a forward marching finite difference
code which solves the boundary layer form of the governing equations. Necessary
input to the code is a set of initial jet and free-stream conditions (pressure, temperature,
velocity, Prandtl number, Lewis number, and species distributions) as well as an eddy
viscosity or Turbulent Kinetic Energy (TKE) model to relate the turbulent shear stress to
a viscosity. The selection of an appropriate set of initial conditions as well as the use of
a proper eddy viscosity or TKE model has been the subject of an enormous amount of
study by numerous investigators over the past several years.

The initial conditions used for the mixing calculations were obtained by averaging
the exit plane gas properties as calculated by RAMP and expanding or compressing
them to atmospheric conditions using the method of Sukanek [27]. A jet radius was then
calculated so as to get the same mass flow as the rocket motor. It should be noted that
all gas species except aluminum containing species are used to generate the startline.
The mass flow rate used to determine the jet size is the total flow rate of the motor
including the AI203.

The turbulent shear stress model used for these calculations was the 2-equation TKE
model of Launder et al. [17]. This model was chosen based on previous work presented
in Ref. [13] which used this TKE model to compare with model engine data similar in
Mach number and density ratio to the SRM sea level plume. One of the drawbacks of a
TKE model is the necessityto specify initial distributions of kinetic energy and dissipation
rate. The initial kinetic energy is a function of the turbulent velocity fluctuations, and the
dissipation rate is related to the kinetic energy via a turbulent length scale. To obtain
the results of Ref. [13], a parametric study was performed using the TKE model, the
LAMP code, and a data base of model rocket plume pitot pressure data to determine a
general set of initial length scales and turbulent fluctuations. This study recommended
a 5 percent velocity fluctuation at the jet edge, a 0.5 percent fluctuation in the remainder
of the core and a 0.1 percent velocity fluctuation in the ambient air. The initial turbulent
scale length was 2.5 percent of the nozzle exit radius.

An application [22] of the plume analysis technique is shown in Fig. 13. The data
consist of an impingement pressuredistribution which results from an 8.5 in. exit diameter
solid motor impinging on a flat plate 12.2 and 17 ft from the exit. As can be seen, the
comparison is quite good.

For these calculations, the particles were assumed to be in thermal and dynamic
equilibrium with the viscous plume. This assumption is probably adequate, leaving the
question as to how the particle cloud disperses in the viscous plume. Calculations were
made in which particulate mass was first eliminated from the viscous calculations, then
the particulate momentum flux was calculated at a particular station of interest, while
making the assumptions of either no dispersion or complete dispersion. The results of
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these calculations did not result in as good an overall prediction as did the previously
mentioned technique. Inherent in this plume model is the assumption that the particles
transfer most of their momentum to the gas before they impinge on the body of interest.
For large bodies relative to the plume (MLP deck), the experimental results of Ref. [26]
support this assumption. For small bodies relative to the plume, this assumption is
probably not as valid, but the resulting forces on the body are probably close to the
results which are predicted using the plume model presented here.

The results presented here are for the fully viscous plumes since the area of interest
in the SRM plume was downstream of the point where the shear layer penetrated to the
centerline. Therefore, the flow properties of the SRM plume which are shown in Figs.14
through 18 present only the viscous flow characteristics. A description of the inviscid
plume can be found in Ref. [28].

Figure 14 presents the radial distribution of Mach number at various axial stations in
the plume. Figure 15 gives radial distribution of pitot total pressure. Figure 16 shows the
radial distributions of the gas recovery temperature. Figures 17 and 18 show the particle
properties of the plume. Figure 17 shows the radial distributions of particle mass flux
while Fig. 18 gives the radial distribution of particle total energy (kinetic + thermal) flux.

A limited amount of experimental [26,29] heat transfer data was available which
could be used to determine an accommodation coefficient which could be used for
thermal environment predictions for the MLP. Plumes were developed for the "13tan
and Tomahawk motors for which the data was available, but no single accommodation
coefficient could be determined which would correlatethe experimental data, even though
the particulatemass fluxes at the regions of interest in the two plumes were approximately
the same. These results led to investigations of possible impingement flowfield or shock
layer effects which might supply an adequate correlation.

4.4.2 Impingement Flowfield
The standardmethodof calculatingparticleimpingementheatingto a bodyimmersed

in a two-phaseplume is to consider that the particles pass through the shock layer
experiencingno change in the kineticor thermalenergies. The differencein observed
heatingrate and incidentparticle total energy is then accountedfor by means of an
accommodationcoefficient. This method is probablyadequate for very small bodies
relativeto the plumediameterand at highaltitudeswherethe shockis relativelycloseto
the impingedsurface.At lowaltitudes(lowMach number)andcases wherelargebodies
are impingedby small plumesthe shockahead of the bodymay stand off the bodyat
significantdistances. In thiscase, as the particlestravel throughthe shock layer they
can be influencedby the relativelydense gas. As a result,the particlescan be turned
as well as heatedand decelerated.

To moreadequatelydeterminethe massand energyfluxesof the particlesthat can
actuallystrikea body (suchas the MLP deck) in the SRM plume, particlestreamlines
were traced throughthe shock layer ahead of an impingedbody. A parametricanaly-
sis of the particletrajectoriesbehindthe shockwere performedfor the plumesthrough
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variations in Mach number and effective body radius of curvature. Effective radius of
curvature is the radius of curvature of a sphere that has the same velocity distribution
as the body of interest. The shock standoff distance and velocity distribution behind the
shock were determined using the method of Truitt [30]. Once the shock layer properties
were established, particles of the same size as the SRM plume were tracked through
to the wall and the actual mass and energy fluxes at the surface were calculated. The
results of these calculations are presented in Figs. 19 and 20. Figure 19 presents the
ratio of the particle mass flux at the surface to the upstream mass flux (Fig. 17) as a
function of local plume Mach number and body effective radius of curvature. Figure 20
presents the ratio of particle total energy at the impinged surface to the free-stream total
energy (Fig. 18) as a function of local plume Mach number and body radius of curvature.
The effective radius of curvature of an infinite flat plate (MLP deck) located at various
distances from the SRM exit plane are given in Fig. 21. For other arbitrary geometries
the method presented in Ref. [31] can be used. If the body uses a sphere or a cylinder
then the actual radius of curvature may be used.

4.4.3 Convective Heating Rates
The gaseous convective heating rates are contributors to the overall thermal envi-

ronment produced by solid rocket exhaust plume impingement. Since the SRM plume
impingement problem of interest involves predominantly stagnation type heating, a sim-
plified approach to calculating the convective heating environment was adopted for the
overall model.

Stagnation point heating rates for a 1 ft sphere were calculated at various points
down the centerline of the SRM plume. These calculations were made using the method
of Marvin and Diewert [32] and the computer code of Ref. [33]. Additionally,the viscous
plume is highly turbulent. Previous investigators [34] have shown that turbulence in the
exhaust plume amplifies the heating rate one would normally predict. Reference [34] has
a correlation of amplificationfactor as a function of local Eckert number and mean velocity
fluctuation. Amplification factors were calculated for the SRM plume and applied to the
stagnation point heating rates previously calculated. The resultant centerline distribution
of stagnation point heating rates for the SRM plume are shown in Fig. 22.

The primary application of the SRM plume was to predict the thermal environment
to the MLP deck (a large body relative to the plume). To account for variations in total
pressure and temperature of the centerline of the plume, Fig. 23 was generated. This
figure presents Iocal/centerline heating rate ratios at various axial stations in the SRM
plume. The use of Figs. 22 and 23 allows the designer to determine a convective heating
rate at any point in the plume, assuming that the plume is impinging on an infinite flat
plate.

It is possible to use the data presented in Figs. 22 and 23 for small bodies which
are impinged on by the SRM plume. To obtain a Iocal/centerline heating rate-ratio for
a small body use the following equation:
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q/qcl (small body) = (qe/qcl)(Fig. 23) × (Pcl/el) "5

where Petis the centerline impingement pressure and Pt is the local plume impingement
pressure. This equationaccounts for the fact that for a large body the local heating rate is
a function of the local impingementpressure/stagnation impingement pressure to the 0.9
power, while for small bodies the off centerline/centerlinestagnation heating rate ratio is a
function of stagnationpressure ratiosto the 0.5 power. Oncethe stagnation point heating
rate has been determined to a 1 ft radius sphere, the heating rate must be corrected
for the actual effective radius of curvature. The effective body radius of curvature for a
sphere is the actual body radius, but the calculation of the radius of curvature for arbitrary
bodies is somewhat more complicated. Reference [31] has a detailed discussion of the
determination of the effective radius of curvature of the MLP deck at various locations
in the SRM plume. These results were previously shown in Fig. 21. Once the effective
radius of curvature is determined, divide the 1 ft sphere stagnation heating rate by the
square root of the effective body radius of curvature to determine the actual heating rate.

4.4.4 Thermal Model

The datawhichhavebeen previouslydescribedare sufficientto calculatethe thermal
responseof a structureimmersedin the SRM plume except for an accommodation
coefficientthatspecifieswhatportionofthe particletotalenergythatexistsatthe surface
is actuallytransferredto the surface as a heatingrate.

Recently,thereweresomemeasurementstakenduringa Titan IIIC launch[29] and
some observed meltingof a steel plate duringthe Tomahawkimpingementtest [26].
The Titan IIIC dataconsistedof somemeasuredheatingratesalongwiththe qualitative
resultsthat the surfacedid come fairlycloseto melting.The Tomahawkdata consisted
of pressuredata at 12 and 17 ft fromthe motorexit and observedmeltingthrougha 1
in. plate at 12.2 ft and 3/4 in. meltingat 17 ft.

In order to use this type of data, it was necessary to utilize a thermal analyzer
that wouldtake the surface heatingratetime historyas calculatedusingthe previously
mentionedmodeland determinethe time historytemperatureand natural responses
of the impingedsurfaces. The thermal analyzer which was utilized is describedin
Refs. [35,36].

By usingthe same methodologyfor the Titan IIIC and Tomahawkplumes and cal-
culating the thermal responseof the bare steel of the Titan IIIC box and Tomahawk
plate, it was notpossibleto matchthe two sets of data. Figure24 showsthe resultsof
these calculations.For the Tomahawkdata, a 3/4 in. melt depth of the steel requires
an accommodationcoefficientof approximately0.34. Applyingthe same coefficientto
the Titan plumewouldpredictapproximately1/8 in. of the box meltingwhich.was not
observedafter the test. Basedon these calculationsand becausesignificantamounts
of AI203 coatingwere observedonthe Titan boxandTomahawkplate at the endof the
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firing, it was decided to investigate an AI203 deposition model to see if a coating might
possibly correlate the two pieces of data and allow a single accommodation coefficient
that would match the data.

The resulting thermal model used the time history of gas recovery temperature, cold
wall convective heating rate, particle mass and energy fluxes at the surface and an
assumed accommodation coefficient as input conditions. The model starts off with cold
steel and keeps track of how much AI203 is deposited on the surface until enough has
been added to build up a 0.002 in. layer at which point a node is added. The mass is
added to the surface via the following:

t+dt
P

= (/pA 2o3)/ (pV) dA

t

where A is the incremental AI203 thickness, a is the accommodation coefficient,pAI203

is the specific density of AI203 and (pv)w is the mass flux at the surface. Mass
continues to build up on the surface in 0.002 in. layers until the surface temperature
of the AI203 reaches melt temperature of 4170°R. Heat is added to the surface at the
surface temperature by the following:

QItw = Qc,cw,((ToR - Twau)/(ToR - 540)) + a (pv)w (Hp - Hw)

where QHw is the actual heating rate to the surface at the surface temperature, Qc,cw.
is the input cold wall heating rate, ToR is the gas recovery temperature, Tw_,zlis the
surface temperature, Ep is the particle enthalpy at the surface which is determined by
dividing the particle total energy at the wall by the particle mass flux at the wall, and
Hw is the enthalpy of aluminum oxide evaluated at the surface temperature. Once the
surface has heated up to 4170°R, heat continues to be added and the AI203 is allowed
to absorb the heat of fusion and then super heat. This process continues until enough
heat has been conducted through the AI203 layer to the first steel node to elevate its
temperature to the melting point. Then the steel node is allowed to absorb its heat of
fusion. Oncethis occurs the steel node and the entire AI203 deposition layer is removed
and the entire deposition process continues until the plume no longer influences the
surface. Many other assumptions, node sizes, etc., were made prior to finalizing the
thermal model. The model which was finally chosen did the best job of correlating the
limited amount of data.

When this thermal model was applied to the Titan IIIC and Tomahawk data, an
• accommodation coefficient of 0.55 resulted in no melting of the Titan IIIC box sur-

face, and 3/4 in. of steel melted for the Tomahawk case. The results of these cal-
culations are presented in Fig. 25. This figure presents the melt thickness and AI203
deposition thickness versus accommodation coefficient. The model when applied to
the Titan data predicted no melting at any accommodation coefficient. Figure 26
presents a time history of what the model predicts for the response of the Titan box
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to the plume. The AI203 surface temperature superheats to about 5200R while the steel
surface barely reaches melt temperature but cannot absorb the heat of fusion and thus
does not melt. Also shown on this figure is the deposition thickness time history and
the temperature distribution through the steel surface. The AI203 deposition thickness
which is predicted is consistent with the observed layer thickness following the test.

Probably the biggest factor in allowing the correlation of the two pieces of data was
allowing a superheated molten layer of AI203 to form on the surface. Once the surface
layer has absorbed the heat of fusion of the AI203 and the temperature has risen above
the melt temperature the heat of fusion of the incoming AI203 energy flux cannot be
added to the surface, which effectively lowers the surface heat load.

Finally, this entire model was applied to a point on the edge of the SRM exhaust
hole of the MLP. It is expected that this locationshould be subjected to a fairly high heat
load and would be indicative of the amount of deck melt that might be expected. The
results of these calculations are shown in Fig. 27. This figure indicates that the steel
surface reachesthe melt temperature but does not absorb enough heat to melt. There is
probably some slight surface melting. Also shown on this figure is the temperature-time
history at different depths in the plate.
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Section 5
LEVEL II! LOW ALTITUDE IMPINGEMENT ANALYSIS

The highestlevel of sophisticationfor low altitude impingementmodelingwould
entailutilizingthe more recentlydevelopedNavier-Stokescodes. These codes have
the potentialfor modelingthe entireexhaustplume includingthe structurethat is being
impinged.Thesecodeshavebeen extendedto threedimensionsso that multipleplumes
can theoreticallybetreatedalthoughconsiderablevalidationexerciseswouldbe required.
It shouldbe notedthat Level III CFD analysisare computationallyfairly expensiveand
can require significantamounts of labor to set up the geometry and properly initialize
them. CFD models would probably only be used if a Level I or II analysis could not
adequately address particular problems.

An example os a Level III model is the FDNS code [10]. FDNS is a implicit Navier-
Stokes solver which has several turbulence model options. It also has ideal, frozen,
equilibrium and finite-rate chemistry options. Presently, under NASA funding, the code
is being upgraded to treat two-phase flows. A Lagrangian particle treatment has been
added and preliminary check cases have been completed. Figure 28 presents the
distribution of impact pressure for the experimental data previously shown in Fig. 11.
This particular case was modeled with the flat plate as a part of the solution. The
calculations are within 7 percent of the measured results. These calculations included
two-phase flow (22% AI), finite-rate chemistry and a two-equation turbulence model. The
turbulence model is the standard model which is used by FDNS to calculate plumes and
was not adjusted for this case. The solution was initiated in the combustion chamber.
This is an example of the type of results that can be expected from a Navier-Stokes
solver. However, these codes must be exercised against a large amount of experimental
data and configurations before they can be regularly used for low altitude impingement
predictions.
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