Diffractive Optics: Design, Fabrication, and Applications

G. Michael Morris

The Institute of Optics University of Rocherster Rochester, New York 14627

> (716) 275-5140 TEL (716) 271-1027 FAX

> > and

Rochester Photonics Corporation 330 Clay Road Rochester, New York 14623

> (716) 272-3010 TEL (716) 272-9374 FAX

> > Conf. on Binary Optics, 1993

Diffractive (or Binary) Optics

Features

Large aperture and lightweight elements
 Aspheric wavefront generation
 Achromatization of optical systems
 Reduction in weight and number of lenses
 Eliminates the need for exotic materials
 Synthesis of key research and development issues
 Extensive technological leveraging

Replication methods for mass production

Diffractive (or Binary) Optics

Applications

Narrowband (Laser) Optics

Wide-field Imaging
Fourier Transform Lenses
Collimation & Beam Expansion
F-Theta Scan Lenses
Anamorphic (Cylindrical Elements)
Microlens arrays --Hartmann Sensors, Laser Diodes and Detector Arrays
Optical Interconnects
Null Optics for Interferometric Testing

Broadband Optical Systems

Hybrid Diffractive/Refractive Achromats Beam Shaping for Diode Lasers Bi-Focal Contact & Intraocular Lenses Optical Data Storage Head-up (HUD) and Head-Mounted (HMD) Displays Aft-Imager Optics for NASA Sensors Integrated Optics

Diffractive (or Binary) Optics

Applications (cont'd)

Sub-Wavelength Structured Surfaces

Anti-Reflection Structured (ARS) Surfaces Windows and Domes Low Observable (Stealth) Technology Detectors and Solar Cells

Polarization Components LInear Polarizers Waveplates (half-wave, quarter-wave) Retarders Beam Splitters

Narrowband Filters Static Filters (laser end mirrors) Tunable Filters (laser mode tuners, optical switches) Security Applications (Indentification -friend or foe)

Athermalization of Optical Systems

Phase Function of Lens

r_m is the radius such that $\phi(r_m) = 2 \pi m$

• Blaze Height

$$h_{\max} = \frac{\lambda_0}{n(\lambda_0) - 1}$$

• Diffraction Efficiency (scalar diffraction theory)

Blaze	Efficiency
Polynomial	100 %
Linear	9 9 %
16 level	9 8.7 %
8 level	95 %
4 level	81.1 %

Surface Relief Diffractive Optics

Advanced Designs Exist !

Fabrication of Surface Master

Photolithography Multiple e-beam masks (staircase blaze profile)

Diamond Turning Linear and spherical blaze

Laser Writer System Vary exposure to shape blaze profile

Replication Methods

Compression Molding

Cast and Cure Methods (excellent temperature & mechanical properties)

Binary Optics Lens 4-Level

Etched Silicon Master

Electro-Formed Nickel Master

Blazed Diffractive Lens

÷

÷

F.L. = 75 mm, f/#3, λ_0 = 587.6 nm

-

-

÷

|| II || II || I

Laser Pattern Generator (Single-Point, X-Y)

Specifications

Wavelength **Spot Size Pixel Spacing** Edge Location Error

Part Size

Write Time

Phase Levels

441.6 nm 0.7 - 10 μm 0.25 - 5 μm $< 0.7 \ \mu m$ per 0.03 µm/inch 4" x 4" x 0.5" 3.1 hrs/100 sq. mm 2 - 256**Substrate Curvature** $< 3\lambda$ /inch

Photoresist Thickness 0.2 - 3 µm

Achromatic Doublet

Features of Hybrid Doublets

 lower curvatures
 lower F/#
 lower weight
 no need for exotic glasses

-

Application - Optical Data Storage

General ODS element

F / 0.9 f \approx 3.0mm HFOV = 1° $\lambda_0 = 0.780 \pm 0.01 \mu m$ monochromatic

Conventional Glass Doublet

Hybrid Doublet

Conventional achromatic doublet adds weight and size

그는 아이는 이렇게 가

Hybrid lens reduces weight, and helps correct other aberrations

Strehl Ratio vs Field Angle

- Numerical Apertures:
 - Hybrid Doublet 0.57
 - Olympus Triplet 0.50
 - SF57 Singlet 0.53

Waveguide Lenses

Longitudinal Chromatic Aberration

4

44

Waveguide Lens Performance Comparison

	Insertion Loss	Diffraction Efficiency
Mode-Index Lens	40%	
Diffractive Lens	40%	70%
Hybrid Achromatic Lens	40%	70%

un a filtration a filt

Diffractive Lens Imaging

Position

k k aland

Diffraction Efficiency

Analytic result for diffraction efficiency

$$\eta = \frac{\sin^2[\pi(\alpha - m)]}{[\pi(\alpha - m)]^2}$$

Wavelength detuning parameter

$$\alpha(\lambda) = \frac{\lambda_0}{\lambda} \frac{n(\lambda) - 1}{n(\lambda_0) - 1}$$

ALL REPORT OF A DAMAGE AND A

Synthesis of Phase Gratings From Known Fourier Modulus Data

- Al lite 1 | 11/16 As an 1 | 11 (December 10.011 | 14 al 10.11 | 19.14 FEBER 10.12

Phase Grating Synthesis 11 x 11 Array, Equal Intensity Diffracted Orders

Phase Grating Synthesis Triangular Array, Equal Intensity Diffracted Orders

Desired Fourier Modulus

Phase Grating

> Reconstructed Fourier Modulus

Sub-Wavelength Structured Surfaces

Concept

Use surface structure (small compared to the illumination wavelength) to *synthesize* an effective index of refraction

Approach

Effective Medium Theory Rigorous Electromagnetic Theory Tapered Transmission-Line Theory Fabricate using Photolithographic Techniques

Features

Supression of Fresnel Reflections Large Field-of-View and Spectral Bandwidth Advantages over Thin Film Coatings No Cohesion Problems Birefringent Surface

• Require <u>ONLY</u> R₀ and T₀ non-evanescent incident wave θ_i R_m d n_i R_m R_m d n_s T_m T_0 T_m $\int_{\Lambda} \langle \frac{1}{\lambda} \langle \frac{1}{Max[n_i, n_s] + n_i \sin \theta_{max}} \rangle$

• Period Λ smaller than wavelength λ

Effective Medium Theory (EMT)

 Light averages optical properties of structured region

Angle of Incidence Sensitivity of GaAs 2-D Multilevel ARS Surfaces

Performance for randomly-polarized radiation

ARS Surface Parameters

$n_i=1, n_s=3.27, \Lambda_x=\Lambda_y=2.480 \mu m$		
Profile	Profile depth (µm)	Duty Cycle (%)
Binary	1.463	69.7
4-level	3.244	91.7
8-level	4.441	98.5

Spectral Sensitivity of GaAs 2-D Multi-level ARS Surfaces

• 4-level Pyramidal Profile

8-level Pyramidal Profile

Experimental Work 2-D Binary ARS Surface for GaAs

• Preliminary Results: CAIBE etched GaAs

10.00k Magnification

16.50k Magnification

Surfaces Fabricated at Cornell's National Nanofabrication Facilities (NNF)

Polarization Components using Form Birefringence

High-Frequency Surface-Relief Gratings

Future Directions in Diffractive Optics

Commercial Products

Laser Diode Optics Laser Printing Opthalmic Lenses Optical Data Storage Illumination Systems Optical Testing Medical Optics

Government Systems

IR Systems HMDs and HUDs SWS Surfaces Micro-Optics Amacronics Optical Interconnects Aft-Imagers