
N94-17339

Finite Difference Time Domain Analysis of
Chirped Dielectric Gratings

Diane H. Hochmuth and Eric G. Johnson

Teledyne Brown Engineering
300 Sparkman Drive

Huntsville, Alabama 35807-7007

Dielectric gratings have long been used for various applications at both optical and
microwave frequencies; however, most of the optical applications were limited to
performance regimes dictated by scalar theories and assumptions. Recently, with the
development of finite difference time domain (FDTD) methods [1], both transient and
steady-state solutions can be modeled to exploit the spectral filtering properties of
chirped grating structures. In this paper, FDTD techniques are used to analyze various
types of surface-relief structures including chirped dielectric gratings.

The FDTD method for solving Maxwell's time-dependent curl equations is accurate,
computationally efficient, and straight-forward to implement. Since both time and
space derivatives are employed, the propagation of an electromagnetic wave can be
treated as an initial-value problem. Second-order central-difference approximations
are applied to the space and time derivatives of the electric and magnetic fields
providing a discretization of the fields in a volume of space, for a period of time. The
solution to this system of equations is stepped through time thus simulating the
propagation of the incident wave. If the simulation is continued until a steady-state is
reached, an appropriate far-field transformation can be applied to the time-domain
scattered fields to obtain reflected and transmitted powers. From this information,
diffraction efficiencies can also be determined.

In analyzing the chirped structure, a mesh is applied only to the area immediately
around the grating. The size of the mesh is then proportional to the electric size of the
grating. Doing this, however, imposes an artificial boundary around the area of
interest. An absorbing boundary condition must be applied along the artificial
boundary so that the outgoing waves are absorbed as if the boundary were absent.
Many such boundary conditions have been developed that give near-perfect
absorption. In this analysis, the M0r absorbing boundary conditions are employed [2].

Several grating structures were analyzed using the FDTD method. First, the method
was validated by comparing its results to that of the coupled-wave approach [3]. Two
periods of a binary periodic grating were modeled in the center of an extended
surface. The period was two wavelengths and the depth was one wavelength as
measured in free space. The refractive index of the dielectric was 1.5. Both TE and
TM polarizations were calculated. A comparison between the two methods is
illustrated in Figures 1 and 2. Figure 1 shows the amplitude and phase for TE
polarization calculated at the interface, and Figure 2 shows the same for TM
polarization. In the FDTD analysis, the simulation was run until a steady-state was
reached. At this point, the amplitude and phase were extracted from the complex field
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values. The agreement is quite good. The FDTD results appear to be noisier due to
the imperfect absorbing boundary conditions applied at the edges of the computation
region.
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Figure 1 Comparison Between FDTD and Coupled-Wave, TE Case
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Figure 2. Comparison Between FDTD and Coupled-Wave, TM Case
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Next, the number of periods was increased to demonstrate the effects of finite
structures. In addition to the case mentioned above with two periods, four more cases
were run with the maximum number of periods being ten. The far-field diffraction
patterns were calculated by doing a fast Fourier transform on the amplitude and phase
data. These results are shown in Figure 3. As would be expected, the zero-order
decreases and the higher orders increase in intensity as the number of periods is
increased. Figure 4 shows similar results from the same exercise performed on
gratings with four phase levels. Just as a side note, the computation time required to
analyze the four level gratings was no more than that for the binary gratings. This is a
definite advantage of using this technique over the coupled-wave approach Or the
method of moments.
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The final type of grating modeled was chirped gratings. The Fresnel zone equation

where r =
m

f =

7. =

n =

m-th zone radius

focal length
free-space wavelength
dielectric refractive index

was used to determine the radii of the zones. If a large enough region is simulated,
the focussing effect of the lens can be seen. Of equal interest is the behavior of the
fields near the grating. A video of the time frames from this simulation shows this
behavior as well as the focussing effect.
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The finite difference time domain technique is well suited to analyzing finite grating
structures. The results were seen to be very close to those achieved with the coupled-
wave method° Also, since this method incorporates time, transient pulses can als0 be
modeled.
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