N94-17342

David Dobson School of Mathematics University of Minnesota Minneapolis, MN

J. Allen Cox Honeywell Systems & Research Center Bloomington, MN

Abstract

We consider a "diffractive optic" to be a biperiodic surface separating two half-spaces, each having constant constitutive parameters; within a unit cell of the periodic surface and across the transition zone between the two half-spaces, the constitutive parameters can be a continuous, complex-valued function. Mathematical models for diffractive optics have been developed, and implemented as numerical codes, both for the "direct" problem and for the "inverse" problem. In problems of the "direct" class, the diffractive optic is specified, and the full set of Maxwell's equations is cast in a variational form and solved numerically by a finite element approach. This approach is well-posed in the sense that existence and uniqueness of the solution can be proved and specific convergence conditions can be derived. An example of a metallic grating at a Wood anomaly is presented as a case where other approaches are known to have convergence problems. In problems of the "inverse" class, some information about the diffracted field (e.g., the far-field intensity) is given, and the problem is to find the periodic structure in some optimal sense. Two approaches are described: phase reconstruction in the far-field approximation; and relaxed optimal design based on the Helmholtz equation. Practical examples are discussed for each approach to the inverse problem, including array generators in the far-field case and antireflective structures for the relaxed optimal design.

Conf. on Binary Optics, 1993

David Dobson Institute for Mathematics and Its Applications University of Minnesota Minneapolis, MN

J. Allen Cox Honeywell Systems&Research Center Bloomington, MN

Outline

Need Statement of Problem Overview of Approaches Examples

Systems and Research Center

JAC

i

Classes of Problems

The Direct Problem

Given the incident field and grating structure Predict the behavior of the outgoing fields Solve Maxwell's equations rigorously

The Inverse Problem

Given the incident field and the desired output field Model a scalar wave equation with simplifications Calculate the optimum structure

Creteric and Booneth Center	139	Survey of Approach Approach I. Integral Method 2. Differential Method (coupled waves) 3. Coupled waves) 4. Variational Method 5. Riemann-Hilbert Problem 6. Analytic Continuation	 Sto the Direc Common <l< th=""><th>t Problem ents grating profile fed in infinite led linear eqs led linear eqs set of linear eqs = b ting profile or series for oef. (recursion) ximant sum</th></l<>	t Problem ents grating profile fed in infinite led linear eqs led linear eqs set of linear eqs = b ting profile or series for oef. (recursion) ximant sum
	Svetems ;	and Research Center		

g for Diffractive Optics	MA Program		nan Singly periodic grating Simple profile(graph)	Biperiodic grating General profile	Biperiodic grating Simple profile(function)	Scalar field / Fraunhofer approx Nonperiodic structures Nonlinear least squares method	Scalar field / Helmholtz eq Singly periodic grating Complex profile	JAC
al Modeling	Honeywell / IN	Honeywell / IN	Dobson & Friedn	Dobson	Bruno & Reitich	Dobson	Dobson	
Mathematic		<u>The Direct Problem</u>	1. Integral Method (Maxcoll)	2. Variational Method (Maxfelm)	 Analytic Continuation (TBD) <u>The Inverse Problem</u> 	 Phase Reconstruction (Phaseopt) 	2. Relaxed Optimization (Profopt)	Systems and Research Center

140

I

ŝ

1

Examples

The Direct Problem

- 1. Reflective Polarization Beamsplitter
- 2. LIGA Grating
- 3. Mixed Index Biperiodic Grating

141

The Inverse Problem

- 1. Phase Reconstruction Hypercube Beamsplitter
- 2. Relaxed Optimization Angle Optimized Motheye Structure

Systems and Research Center

search search of the se

Variational Method (Maxfelm) Example LIGA Grating

Systems and Research Center

Ξ

Variational Method (Maxfelm) Example

Mixed Index Biperiodic Grating

 $\lambda = 0.55 \,\mu\text{m} \,(\text{E} \mid\mid \text{x}_2)$ $\theta = 30^{\circ}$

X₃

Systems and Research Center

JAC

X₁ or X₂

 $\Lambda = 0.5 \ \mu m$

FIG. 2. Cross-section of the amplitude |H|, taken through the metal region in the (x_2, x_3) plane.

FIG. 3. Cross-section of the amplitude |H|, taken through the non-absorbtive region in the (x_1, x_3) plane.

Ξ

FIG. 4. Cross-section of the amplitude |H|, taken through the metal region in the (x_1, x_2) plane.

FIG. 5. Cross-section of the amplitude |II|, taken below the metal region in the (x_1, x_2) plane.

Ē

Systems and Research Center

JAC

Relaxed Optimization (Profopt) Example

Systems and Research Center

JAC

ALL DATE AND A MAN

=

_

-

:

150

Summary

The Direct Problem

Variational Approach with Finite Elements Method

- exhibits good convergence, numerical stability
 - treats complicated biperiodic structures
 - can be computationally intensive

Analytic Continuation Approach

- elegant solution
- limited domain of convergence and biperiodic structures
- computationally very fast

The Inverse Problem

Phase Reconstruction - comparable to other approaches

Relaxed Optimization - potential to identify new structures

.

-