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TECHNICAL MEMORANDUM

MICROSTRUCTURAL STABILITY OF WROUGHT, LASER AND
ELECTRON-BEAM GLAZED NARLOY-Z ALLOY AT
ELEVATED TEMPERATURES

INTRODUCTION

Wrought NARIloy-Z (Cu-3 wt.% Ag-0.5 wt.% Zr + traces of Oz, ~50 p/m) is now used to fabri-
cate the main combustion chamber (MCC) liner (figs. 1a and 1b) for the space shuttle main engine
(SSME). MCC liner construction is shown in figure 2. It consists of (A) hot wall, (B) channel lands, and
(C) cooling channels. The hot wall thickness ranges from 0.5 to 0.75 mm (20 to 30 mils).

The present liner undergoes a heat treat cycle that includes solutionization in a vacuum furnace
for 4 h at 935 °C (1,715 °F), water quenching to room temperature, and age hardening for 4 h at 480 °C
(900 °F). This cycle produces a coarse-grained microstructure, with a Cu matrix that contains localized
nonuniform distribution of Cu-Ag-Zr intermetallic phases and Zr oxides (fig. 2, regions A and B). The
ductility of the liner is decreased by Ag- and Zr-rich phases at grain boundaries, which change fracture
morphology from transgranular to intergranular.! These phases do not dissolve into the matrix by solu-
tionizing heat treatment.2

The hot wall undergoes microstructural changes that include precipitation and coarsening of
intermetallic phases in the matrix and grain boundaries (fig. 3). In wrought NARloy-Z, these inhomo-
geneities tend to lower the mechanical properties at temperatures above 315 °C (600 °F). Since the MCC
liner is exposed to temperatures ranging from —252 °C to >540 °C (-422 to >1,000 °F) during hot fire,
hot wall life is determined by the number of hot firings and the rate of microstructural degradation.

To ensure a service life of 300 cycles for the MCC liner, the chamber material must be capable
of withstanding 1,200 cycles under normal operating conditions.3 However, service lives have been
shorter than expected for the MCC liner. Failure analysis of the hot fired liner has shown that the operat-
ing temperature of the hot wall was much higher (>760 °C (1,400 °F)) than expected (538 °C (1,000 °F)).
Failure analyses conducted by Morgan and Kobayashi# and Sanders® determined that the liner had failed
by bursting or fracturing. The hot wall mechanical properties were degraded because of nonuni-
form microstructure, grain growth, grain boundary precipitation of intermetallic phases, and high tem-
perature deformation that caused grain boundary coarsening and sliding. The hot wall bulged out
between the cooling channels in response to high pressure inside the channels, thermal expansion, and
temperatures above 538 °C (1,000 °F) outside the hot wall (referred to as “dog house™). In addition,
oxidation/reduction reaction with Cu (known as “blanching”) was observed. Blanching was character-
ized by subsurface wormholing, which interconnected and formed longitudinal cracks, and increased
hot wall surface roughness.34 In blanched areas, the surface temperature was near 1,085 °C (1,985 °F),
with substrate temperatures that exceeded 926 °C (1,700 °F).3 The local heat transfer coefficient had
increased with hot wall roughness, which caused operating temperatures to rise well above the maxi-
mum design temperature.

Three different approaches can be taken to increase the service life of the MCC liner. One
approach is to develop a new liner alloy with higher thermal stability, better mechanical properties, and



improved thermal conductivity.3 A second approach is to apply thermal barrier coatings such as
NiCrAly, TiN, etc., to the liner to lower the operating temperatures. A third approach is to improve the
microstructure and thermal stability of the wrought NARloy-Z liner by surface glazing. This report
presents the third approach which is a relatively new technique in which the surface is rapidly melted
and resolidified with a high-energy laser or electron beam. The glazed area develops a fine-grained
microstructure with a uniform distribution of second phases in the matrix that is much more stable at
elevated temperatures.

EXPERIMENTAL PROCEDURE

Wrought NARIoy-Z was selected as a starting material for laser and electron-beam (EB) glazing,
The samples of wrought NARloy-Z were solutionized at 935 °C (1,715 °F) before studying the precipi-
tation kinetics. Specimens of wrought, laser, and EB glazed NARloy-Z were exposed to elevated tem-
peratures ranging from 593 to 760 °C (1,100 to 1,400 °F) for up to 84 h in a drop-through furnace
(fig. 4) to effect microstructural changes and then rapidly quenched with helium gas. Metallographic
samples were then prepared and etched with an ammonium persulphate solution (NH,),S,03 per
100 mL H20). Vicker hardness measurements were made with a 200-g weight for the purpose of
comparison of microstructure with hardness. The samples were examined with an optical microscope,
a Hitachi S-4000 field emission scanning electron microscope (SEM), and a Cameca SX-50 electron
microprobe. Elemental analyses of different phases were performed using qualitative energy dispersive
spectroscopy (EDS) and electron probe microanalysis (EPMA).

RESULTS AND DISCUSSION

Hardness

The hardness change in wrought and laser-glazed NARloy-Z, as a function of exposure time up
to 84 h at 593 °C (1,100 °F), is shown in figure 5 and at 649 °C (1,200 °F) in figure 6. There was some
drop in the hardness of the laser-glazed NARloy-Z as compared to the wrought alloy after exposing at
593 °C (1,100 °F) for up to 84 h. At 649 °C (1,200 °F), hardness values remained constant for up to 24 h
and then dropped slowly by ~7 percent as a function of time (fig. 6). Figure 7 shows hardness changes as
a function of temperature from 593 to 760 °C (1,100 to 1,400 °F) for a constant exposure time (24 h).

The hardness of EB-glazed NARloy-Z was measured before and after exposure at 705 °C (1,300
°F) for 24 h. The hardness values were similar to the laser-glazed alloy. Andrus and Boedean3 also
obtained comparable values when they measured the hardness of wrought and EB-processed NARIloy-Z.

The average hardness of laser-glazed NARloy-Z was approximately 15 percent higher than the
wrought alloy and remained so even after exposing to elevated temperatures ranging from 593 to
760 °C (1,100 to 1,400 °F), as shown in figures 5 to 7. Increased hardness was probably due to the fine-
grained microstructure and uniform distribution of the second phase in the Cu matrix. This subject will
be discussed further in the next section.



Microstructural Evolution

Wrought NARIoy-Z. In general, the wrought NARloy-Z starting material had a coarse-grained
microstructure (fig. 8a) with an uneven distribution of secondary precipitates. Microprobe analyses
showed that Zr was present, probably as Zr oxide Zr,O3 (fig. 8b). Ag- and Zr-rich intermetallic phases
were present in the Cu matrix (figs. 8¢ and 8d). In addition, oxides of Ag and Cu were present in the
matrix. The secondary phases varied in size from 1 to 10 um. The average grain size was approximately
150 pm. Figure 9 shows precipitation and coarsening in the Cu matrix and at the grain boundaries after
exposure to 593 °C (1,100 °F) for up to 94 h. Figure 10 shows the microstructural changes in NARloy-Z
after exposure to 649 °C (1,200 °F) up to 48 h. Precipitate-free zones (PFZ’s) were observed near the
grain boundaries and large intermetallic phases as shown by arrows in figure 10. The size of precipitates
and PFZ width increased at 649 °C (1,200 °F) as exposure time increased from 24 to 48 h. After 24 h
exposure at 649 °C (1,200 °F), the volume fraction and size of precipitates in the Cu matrix (fig. 10b)
were noticeably larger than those in the starting material. The same was true for NARloy-Z exposed to
594 °C (1,100 °F) for ~94 h (fig. 9).

After 24 h exposure at 705 °C (1,300 °F), the wrought NARloy-Z showed relatively large inter-
metallic precipitates in the Cu matrix and grain boundaries (fig. 11). The PFZ width was also larger than
that exposed to 649 °C (1,200 °F) for 48 h (compare figs. 10 and 11). EDS analysis was used to identify
the matrix and grain-boundary precipitates as Ag- and Zr-rich intermetallic phases (fig. 12), and an
EPMA was carried out across the grain boundary (line AB as shown in fig. 11a) to confirm the analysis.
No concentration gradient of Zr and Ag solute atoms was observed across the PFZ and grain boundary
(fig. 13), indicating that the precipitation reaction was essentially complete.

After exposure at 760 °C (1,400 °F) up to 48 h, the wrought NARloy-Z showed even coarser
precipitation of intermetallic phases (fig. 14). The PFZ width was also larger than the NARloy-Z
exposed to 649 to 705 °C (1,200 to 1,300 °F).

Two significant features are noteworthy in the wrought NARloy-Z exposed from 593 to 760 °C
(1,100 to 1,400 °F): (a) precipitation and coarsening of Ag- and Zr-rich intermetallic phases in the
matrix and at grain boundaries and (b) PFZ’s near large intermetallic phases and at grain boundaries
(figs. 10 to 14).

At temperatures above 649 °C (1,200 °F), PFZ formation probably occurred in response to grain
boundary precipitation, migration, and long-range solute atom diffusion. The PFZ width increased as a
function of temperature (fig. 15). Extrapolation of the PFZ size to zero in figure 15 indicates that PFZ
occurs only above 605 °C (1,120 °F). The prior investigation® was conducted below 538 °C (1,000 °F),
which may be why the investigators did not report PFZ formation in wrought NARloy-Z.

When microstructure and hardness measurements were compared, good correlation was obtained
between the two. Hardness decreased as the exposure temperatures increased from 649 to 760 °C (1,200
to 1,400 °F), probably due to rapid depletion of Ag and Zr solute atoms from the matrix and coarsening
of intermetallic phases in the Cu matrix (figs. 5to 7).

Laser and Electron-Beam Glazed NARloy-Z. Metallographic examination of laser-glazed
NARIoy-Z revealed uniform distribution of second phases in the Cu matrix (fig. 16). No grain boundary

segregation was observed. In the rapidly solidified region, the average grain size was 100 um, which is
about half the wrought NARIloy-Z grain size (150 to 300 um). No significant change in the micro-
structure was observed on exposure at 593 °C (1,100 °F) for up to 84 h (fig. 17). A small amount of



coarsening of the second phase was observed as a function of time. Further coarsening of second phases
was observed after exposing at 649 °C (1,200 °F) for up to 48 h (figs. 18a and 18b). These precipitates
were aligned and had a faceted morphology (fig. 18b). However, the second phase sizes were still small
and averaged less than 0.5 um, smaller than those observed in wrought NARloy-Z (10 um, fig. 8).

The EPMA technique was used to determine the concentration profile across the aligned precipi-
tate (figs. 18 and 19). Faceted precipitates were mostly Ag, whereas most of the Zr was found in the
matrix (fig. 19). The second phases coarsened further on exposures to higher temperatures, 705 to
760 °C (1,300 to 1,400 °F), but the average size was still small and remained at less than 0.5 pum (figs.
20 and 22). Unlike the wrought NARloy-Z, grain boundary precipitation and PFZ’s were not observed in
the Cu matrix in any of the experiments.

EB-glazed NARloy-Z showed a fine-grained microstructure (fig. 23) that is comparable to laser-
glazed NARIloy-Z (fig. 16). The melt pool ranged in depth from 0.6 to 2 mm (25 to 80 mils), depending
upon processing conditions such as traverse speed and beam current (fig. 24).

Faceted and aligned precipitates were observed in the Cu matrix of EB-glazed samples exposed
to 704 to 760 °C (1,300 to 1,400 °F) for up to 48 h (fig. 25). The second phase averaged less than 0.5 um
in size. No significant differences were seen in the microstructure of EB-processed and laser-glazed
samples exposed to temperatures from 649 to 769 °C (1,200 to 1,400 °F).

Laser-glazed NARloy-Z was always harder than the wrought alloy by 15 percent or more (fig. 5).
The higher hardness of the laser-glazed alloy was probably due to small-grained microstructure, fine and
uniform distribution of the second phase in the Cu matrix, and the absence of PFZ and/or grain boundary
precipitations. Its overall microstructure remained the same even after exposure to high temperature,
with the exception of slight coarsening of the second phase. The wrought alloy, on the other hand, was
constituted of a microstructure that was significantly changed by exposure to high temperatures (figs. 10
to 14). The high thermal stability of laser-glazed NARloy-Z is due to the short diffusion distance of
solute atoms (i.e., separation between precipitates is small). This feature also prevents precipitation at
the grain boundaries. The laser-glazed and EB-glazed alloys also underwent rapid melting and solid-
ification, resulting in an extended solid solubility of Zr solute atoms into the Cu matrix.

In wrought NARloy-Z, Zr is introduced to suppress discontinuous precipitation and to absorb
oxygen by forming Zr,Os. At high temperatures, Zr,0; is believed to improve mechanical properties by
preventing grain growth.5 The wrought alloy contained Zr,Oj3 as well as Ag- and Zr-rich intermetallic
phases. The actual microstructure consisted of relatively large grains with nonuniform distribution of
intermetallic Zr- and Ag-rich phases (fig. 9). These microstructural features contribute to lower mechan-
ical properties at elevated temperatures >538 °C (1,000 °F). In particular, the large grain size lowers
ductility.1

Under equilibrium conditions, the maximum solid solubility of Zr is about 0.15 wt.% in the Cu
matrix at ~822 °C (1,512 °F), decreasing as temperature decreases. NARloy-Z contains about 0.5 wt.%
Zr and the excess Zr precipitates either as Zr-rich an intermetallic phase or as Zr oxide. Inherent rapid
melting and solidification, which occurred in the laser- and EB-glazing processes, created a nonequilib-
rium condition, thereby extending the solid solubility of Zr in the copper matrix. The atomic size of Zr
(0.162 nm) is larger (~30 percent) than the Cu matrix (0.1278 nm). Due to the extended solid solubility
of Zr atoms, the lattice strain was developed in the Cu matrix, which probably changed the kinetics of
Ag precipitation (compare figs. 10b and 18b). Ag precipitated as elemental Ag in laser-glazed NARIoy-
Z, whereas Ag- and Zr-rich intermetallic precipitates were observed in the wrought alloy (figs. 13 and



19). The Ag and Zr alloying additions appear to play different roles in the wrought NARIloy-Z versus the
laser-glazed or EB-processed alloys, although all three forms retained the overall Cu-3 percent Ag-0.5
percent Zr composition.

In the laser- and EB-glazed alloys, Zr is present in the Cu matrix as solid solution and appears 1o
stay in the matrix up to 760 °C (1,400 °F) and does not precipitate out. These factors probably contribute
to their higher microstructural stability, higher hardness, and enhanced thermal stability (figs. 5to 7).
Therefore, the EB- or laser-grazing approach can be used to enhance the life of the SSME-MCC or
another advanced MCC which uses NARIoy-Z as liner material.

SUMMARY

Microstructural evolution and precipitation morphology were investigated in wrought, laser-, and
EB-glazed NARloy-Z samples by exposing them to temperatures from 593 to 760 °C (1,100 to 1,400
°F). The results are summarized below and are applicable to a NARloy-Z MCC liner.

Wrought Alloy
1. Large-grained microstructure (150 to 300 pm) has 15-percent lower hardness than the laser-
glazed alloy.

2. Zr- and Ag-rich intermetallic phases were observed at grain boundaries and in the Cu matrix
after exposure to temperatures above 593 °C (1,100 °F).

3. Nonuniform microstructure and PFZ’s were formed after exposure to temperatures above
605 °C (1,120 °F).

Laser- EB-Glaz ARIloy-

1. The hardness of laser- or EB-glazed NARIloy-Z was approximately 15-percent higher than
the wrought alloy and remained higher even after long exposures to elevated temperatures up
to 760 °C (1,400 °F). The higher hardness was due to fine-grained microstructure (50 to 100
pm) with uniform distribution of the second phase in the matrix.

2. Grain-boundary precipitation and PFZ were not observed.

3. Extended solid solubility of Zr in the Cu matrix probably contributed to solid solution
strengthening, which changed the Ag precipitation and coarsening kinetics to an aligned
faceted morphology.

4. The microstructure was thermally stable up to 760 °C (1,400 °F).

Recommendation

Future MCC design should be cognizant of the thermal effects on NARloy-Z as discussed in this
report. Further, beam glazing of the MCC liner should be pursued to enhance its service life.
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Figure 1b. Schematic of MCC cooling channels and hot wall.
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Figure 2. Uniform microstructure in wrought NARIloy-Z hot wall.
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Figure 3. Optical micrographs of microstructural changes in the hot wall (region A) after hot firing.
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Figure 4. Schematic line diagram of drop-through furnace.
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Figure 5. Hardness change in wrought and laser-glazed NARloy-Z as a function of

time at 593 °C (1,100 °F).
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Figure 6. Hardness change in wrought and laser-glazed NARIoy-Z as a function of
time at 649 °C (1,200 °F).
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Figure 7. Hardness change in wrought and laser-glazed NARIoy-Z as a function of temperatures
ranging from 593 to 760 °C (1,100 to 1,400 °F) for 24 h.
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Figure 8c. EPMA across the second phase in wrought NARloy-Z, showing Ag-rich intermetallic
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Figure 84. EPMA across the second phase in wrought NARloy-Z, showing Zr-rich intermetallic

phases present into Cu matrix.
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Figure 15. Plot of PFZ width as a function of exposure to temperatures ranging from
649 to 760 °C (1,200 to 1,400 °F).

Figure 16. Laser-glazed NARloy-Z showing uniform distribution of second phases in Cu matrix.
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