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TECHNICAL MEMORANDUM

MICROSTRUCTURAL STABILITY OF WROUGHT, LASER AND
ELECTRON-BEAM GLAZED NARLOY-Z ALLOY AT

ELEVATED TEMPERATURES

INTRODUCTION

Wrought NARloy-Z (Cu-3 wt.% Ag-0.5 wt.% Zr + traces of 02, -50 p/m) is now used to fabri-

cate the main combustion chamber (MCC) liner (figs. la and lb) for the space shuttle main engine

(SSME). MCC liner construction is shown in figure 2. It consists of (A) hot wall, (B) channel lands, and

(C) cooling channels. The hot wall thickness ranges from 0.5 to 0.75 mm (20 to 30 mils).

The present liner undergoes a heat treat cycle that includes solutionization in a vacuum furnace
for 4 h at 935 °C (1,715 °F), water quenching to room temperature, and age hardening for 4 h at 480 °C

(900 °F). This cycle produces a coarse-grained microstructure, with a Cu matrix that contains localized
nonuniform distribution of Cu-Ag-Zr intermetallic phases and Zr oxides (fig. 2, regions A and B). The

ductility of the liner is decreased by Ag- and Zr-rich phases at grain boundaries, which change fracture

morphology from transgranular to intergranular. 1 These phases do not dissolve into the matrix by solu-

tionizing heat treatment. 2

The hot wall undergoes microstructural changes that include precipitation and coarsening of

intermetallic phases in the matrix and grain boundaries (fig. 3). In wrought NARloy-Z, these inhomo-

geneities tend to lower the mechanical properties at temperatures above 315 °C (600 °F). Since the MCC

liner is exposed to temperatures ranging from -252 °C to >540 °C (-422 to >1,000 °F) during hot fire,

hot wall life is determined by the number of hot firings and the rate of microstructural degradation.

To ensure a service life of 300 cycles for the MCC liner, the chamber material must be capable

of withstanding 1,200 cycles under normal operating conditions. 3 However, service lives have been
shorter than expected for the MCC liner. Failure analysis of the hot fired liner has shown that the operat-

ing temperature of the hot wall was much higher (>760 °C (1,400 °F)) than expected (538 °C (1,000 °F)).

Failure analyses conducted by Morgan and Kobayashi 4 and Sanders 5 determined that the liner had failed

by bursting or fracturing. The hot wall mechanical properties were degraded because of nonuni-

form microstructure, grain growth, grain boundary precipitation of intermetallic phases, and high tem-

perature deformation that caused grain boundary coarsening and sliding. The hot wall bulged out

between the cooling channels in response to high pressure inside the channels, thermal expansion, and

temperatures above 538 °C (1,000 °F) outside the hot wall (referred to as "dog house"). In addition,
oxidation/reduction reaction with Cu (known as "blanching") was observed. Blanching was character-

ized by subsurface wormholing, which interconnected and formed longitudinal cracks, and increased

hot wall surface roughness. 34 In blanched areas, the surface temperature was near 1,085 °C (1,985 °F),

with substrate temperatures that exceeded 926 °C (1,700 °F).3 The local heat transfer coefficient had
increased with hot wall roughness, which caused operating temperatures to rise well above the maxi-

mum design temperature.

Three different approaches can be taken to increase the service life of the MCC liner. One

approach is to develop a new liner alloy with higher thermal stability, better mechanical properties, and



improved thermal conductivity. 3 A second approach is to apply thermal barrier coatings such as

NiCrAly, TiN, etc., to the liner to lower the operating temperatures. A third approach is to improve the

microstructure and thermal stability of the wrought NARloy-Z liner by surface glazing. This report

presents the third approach which is a relatively new technique in which the surface is rapidly melted

and resolidified with a high-energy laser or electron beam. The glazed area develops a fine-grained
microstructure with a uniform distribution of second phases in the matrix that is much more stable at
elevated temperatures.

EXPERIMENTAL PROCEDURE

Wrought NARloy-Z was selected as a starting material for laser and electron-beam (EB) glazing.

The samples of wrought NARloy-Z were solutionized at 935 °C (1,715 °F) before studying the precipi-

tation kinetics. Specimens of wrought, laser, and EB glazed NARloy-Z were exposed to elevated tem-

peratures ranging from 593 to 760 °C (1,100 to 1,400 °F) for up to 84 h in a drop-through furnace
(fig. 4) to effect microstructural changes and then rapidly quenched with helium gas. MetaUographic

samples were then prepared and etched with an ammonium persulphate solution ((NH4)2S208 per

100 mL H20). Vicker hardness measurements were made with a 200-g weight for the purpose of

comparison of microstructure with hardness. The samples were examined with an optical microscope,

a Hitachi S-4000 field emission scanning electron microscope (SEM), and a Cameca SX-50 electron

microprobe. Elemental analyses of different phases were performed using qualitative energy dispersive
spectroscopy rEDS) and electron probe microanalysis (EPMA).

RESULTS AND DISCUSSION

Hardness

The hardness change in wrought and laser-glazed NARloy-Z, as a function of exposure time up
to 84 h at 593 °C (1,100 °F), is shown in figure 5 and at 649 °C (1,200 °F) in figure 6. There was some

drop in the hardness of the laser-glazed NARIoy-Z as compared to the wrought alloy after exposing at

593 °C (1,100 °F) for up to 84 h. At 649 °C (1,200 °F), hardness values remained constant for up to 24 h

and then dropped slowly by -7 percent as a function of time (fig. 6). Figure 7 shows hardness changes as
a function of temperature from 593 to 760 °C (1,100 to 1,400 °F) for a constant exposure time (24 h).

The hardness of EB-glazed NARloy-Z was measured before and after exposure at 705 °C (1,300
°F) for 24 h. The hardness values were similar to the laser-glazed alloy. Andrus and Boedean 3 also

obtained comparable values when they measured the hardness of wrought and EB-processed NARloy-Z.

The average hardness of laser-glazed NARloy-Z was approximately 15 percent higher than the

wrought alloy and remained so even after exposing to elevated temperatures ranging from 593 to

760 °C (1,100 to 1,400 °F), as shown in figures 5 to 7. Increased hardness was probably due to the fine-

grained microstructure and uniform distribution of the second phase in the Cu matrix. This subject will
be discussed further in the next section.
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Microstructural Evolution

Wrought NARloy-Z. In general, the wrought NARloy-Z starting material had a coarse-grained

microstructure (fig. 8a) with an uneven distribution of secondary precipitates. Microprobe analyses

showed that Zr was present, probably as Zr oxide Zr203 (fig. 8b). Ag- and Zr-rich intermetallic phases

were present in the Cu matrix (figs. 8c and 8d). In addition, oxides of Ag and Cu were present in the

matrix. The secondary phases varied in size from 1 to 10 lam. The average grain size was approximately

150 l.tm. Figure 9 shows precipitation and coarsening in the Cu matrix and at the grain boundaries after

exposure to 593 °C (1,100 °F) for up to 94 h. Figure 10 shows the microstructural changes in NARloy-Z

after exposure to 649 °C (1,200 °F) up to 48 h. Precipitate-free zones (PFZ's) were observed near the

grain boundaries and large intermetallic phases as shown by arrows in figure 10. The size of precipitates

and PFZ width increased at 649 °C (1,200 °F) as exposure time increased from 24 to 48 h. After 24 h

exposure at 649 °C (1,200 °F), the volume fraction and size of precipitates in the Cu matrix (fig. 10b)

were noticeably larger than those in the starting material. The same was true for NARloy-Z exposed to

594 °C (1,100 °F) for ~94 h (fig. 9).

After 24 h exposure at 705 °C (1,300 °F), the wrought NARloy-Z showed relatively large inter-

metallic precipitates in the Cu matrix and grain boundaries (fig. 11). The PFZ width was also larger than

that exposed to 649 °C (1,200 °F) for 48 h (compare figs. 10 and 11). EDS analysis was used to identify

the matrix and grain-boundary precipitates as Ag- and Zr-rich intermetallic phases (fig. 12), and an

EPMA was carried out across the grain boundary (line AB as shown in fig. 1 la) to conf'u'm the analysis.

No concentration gradient of Zr and Ag solute atoms was observed across the PFZ and grain boundary

(fig. 13), indicating that the precipitation reaction was essentially complete.

After exposure at 760 °C (1,400 °F) up to 48 h, the wrought NARloy-Z showed even coarser

precipitation of intermetallic phases (fig. 14). The PFZ width was also larger than the NARloy-Z

exposed to 649 to 705 °C (1,200 to 1,300 °F).

Two significant features are noteworthy in the wrought NARloy-Z exposed from 593 to 760 °C

(1,100 to 1,400 °F): (a) precipitation and coarsening of Ag- and Zr-rich intermetallic phases in the

matrix and at grain boundaries and (b) PFZ's near large intermetallic phases and at grain boundaries

(figs. 10 to 14).

At temperatures above 649 °C (1,200 °F), PFZ formation probably occurred in response to grain

boundary precipitation, migration, and long-range solute atom diffusion. The PFZ width increased as a

function of temperature (fig. 15). Extrapolation of the PFZ size to zero in figure 15 indicates that PFZ
occurs only above 605 0(2 (1,120 °F). The prior investigation 6 was conducted below 538 °(2 (1,000 °F),

which may be why the investigators did not report PFZ formation in wrought NARloy-Z.

When microstructure and hardness measurements were compared, good correlation was obtained

between the two. Hardness decreased as the exposure temperatures increased from 649 to 760 °I2 (1,200

to 1,400 °F), probably due to rapid depletion of Ag and Zr solute atoms from the matrix and coarsening

of intermetallic phases in the Cu matrix (figs. 5 to 7).

Laser and Electron-Beam Glazed NARIoy-Z. Metallographic examination of laser-glazed

NARIoy-Z revealed uniform distribution of second phases in the Cu matrix (fig. 16). No grain boundary

segregation was observed. In the rapidly solidified region, the average grain size was 100 l.tm, which is

about half the wrought NARloy-Z grain size (150 to 300 _tm). No significant change in the micro-

structure was observed on exposure at 593 °C (1,100 °F) for up to 84 h (fig. 17). A small amount of
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coarseningof the second phase was observed as a function of time. Further coarsening of second phases

was observed after exposing at 649 °C (1,200 °F) for up to 48 h (figs. 18a and 18b). These precipitates

were aligned and had a faceted morphology (fig. 18b). However, the second phase sizes were still small

and averaged less than 0.5 Inn, smaller than those observed in wrought NARloy-Z (10 Ima, fig. 8).

The EPMA technique was used to determine the concentration profile across the aligned precipi-

tate (figs. 18 and 19). Faceted precipitates were mostly Ag, whereas most of the Zr was found in the

matrix (fig. 19). The second phases coarsened further on exposures to higher temperatures, 705 to

760 °C (1,300 to 1,400 °F), but the average size was still small and remained at less than 0.5 lam (figs.
20 and 22). Unlike the wrought NARloy-Z, grain boundary precipitation and PFZ's were not observed in

the Cu matrix in any of the experiments.

EB-glazed NARloy-Z showed a f'me-grained microstructure (fig. 23) that is comparable to laser-

glazed NARloy-Z (fig. 16). The melt pool ranged in depth from 0.6 to 2 mm (25 to 80 mils), depending

upon processing conditions such as traverse speed and beam current (fig. 24).

Faceted and aligned precipitates were observed in the Cu matrix of EB-glazed samples exposed

to 704 to 760 °C (1,300 to 1,400 °F) for up to 48 h (fig. 25). The second phase averaged less than 0.5 _tm

in size. No significant differences were seen in the microstructure of EB-processed and laser-glazed
samples exposed to temperatures from 649 to 769 °C (1,200 to 1,400 °F).

Laser-glazed NARloy-Z was always harder than the wrought alloy by 15 percent or more (fig. 5).
The higher hardness of the laser-glazed alloy was probably due to small-grained microstructure, fine and

uniform distribution of the second phase in the Cu matrix, and the absence of PFZ and/or grain boundary

precipitations. Its overall microstructure remained the same even after exposure to high temperature,

with the exception of slight coarsening of the second phase. The wrought alloy, on the other hand, was

constituted of a microstmcture that was significantly changed by exposure to high temperatures (figs. 10

to 14). The high thermal stability of laser-glazed NARloy-Z is due to the short diffusion distance of

solute atoms (i.e., separation between precipitates is small). This feature also prevents precipitation at

the grain boundaries. The laser-glazed and EB-glazed alloys also underwent rapid melting and solid-
ification, resulting in an extended solid solubility of Zr solute atoms into the Cu matrix.

In wrought NARIoy-Z, Zr is introduced to suppress discontinuous precipitation and to absorb

oxygen by forming Zr203. At high temperatures, Zr203 is believed to improve mechanical properties by

preventing grain growth. 5 The wrought alloy contained Zr203 as well as Ag- and Zr-rich intermetallic

phases. The actual microstructure consisted of relatively large grains with nonuniform distribution of
intermetallic Zr- and Ag-rich phases (fig. 9). These microstructural features contribute to lower mechan-

ical properties at elevated temperatures >538 °C (1,000 °F). In particular, the large grain size lowers
ductility)

Under equilibrium conditions, the maximum solid solubility of Zr is about 0.15 wt.% in the Cu
matrix at -822 °C (1,512 °F), decreasing as temperature decreases. NARloy-Z contains about 0.5 wt.%

Zr and the excess Zr precipitates either as Zr-rich an intermetallic phase or as Zr oxide. Inherent rapid

melting and solidification, which occurred in the laser- and EB-glazing processes, created a nonequilib-
rium condition, thereby extending the solid solubility of Zr in the copper matrix. The atomic size of Zr

(0.162 nm) is larger (-30 percent) than the Cu matrix (0.1278 nm). Due to the extended solid solubility

of Zr atoms, the lattice strain was developed in the Cu matrix, which probably changed the kinetics of

Ag precipitation (compare figs. 10b and 18b). Ag precipitated as elemental Ag in laser-glazed NARloy-

Z, whereas Ag- and Zr-rich intermetallic precipitates were observed in the wrought alloy (figs. 13 and

4



19).TheAg andZr alloyingadditionsappearto playdifferentrolesin thewroughtNARloy-Z versusthe
laser-glazedor EB-processed alloys, although all three forms retained the overall Cu-3 percent Ag-0.5

percent Zr composition.

In the laser- and EB-glazed alloys, Zr is present in the Cu matrix as solid solution and appears to

stay in the matrix up to 760 °C (1,400 °F) and does not precipitate out. These factors probably contribute
to their higher microstructural stability, higher hardness, and enhanced thermal stability (figs. 5 to 7).

Therefore, the EB- or laser-grazing approach can be used to enhance the life of the SSME-MCC or

another advanced MCC which uses NARloy-Z as liner material.

SUMMARY

Microstructural evolution and precipitation morphology were investigated in wrought, laser-, and

EB-glazed NARloy-Z samples by exposing them to temperatures from 593 to 760 °C (1,100 to 1,400
°F). The results are summarized below and are applicable to a NARloy-Z MCC liner.

Wrought Alloy

1. Large-grained microstructure (150 to 300 lam) has 15-percent lower hardness than the laser-

glazed alloy.

2. Zr- and Ag-rich intermetallic phases were observed at grain boundaries and in the Cu matrix

after exposure to temperatures above 593 °C (1,100 °F).

3. Nonuniform microstructure and PFZ's were formed after exposure to temperatures above

605 °C (1,120 °F).

Laser- and EB-Glazed NARloy-Z

° The hardness of laser- or EB-glazed NARloy-Z was approximately 15-percent higher than

the wrought alloy and remained higher even after long exposures to elevated temperatures up
to 760 °C (1,400 °F). The higher hardness was due to fine-grained microstructure (50 to 100

l.tm) with uniform distribution of the second phase in the matrix.

2. Grain-boundary precipitation and PFZ were not observed.

. Extended solid solubility of Zr in the Cu matrix probably contributed to solid solution

strengthening, which changed the Ag precipitation and coarsening kinetics to an aligned

faceted morphology.

4. The microstructure was thermally stable up to 760 °C (1,400 °F).

Recommendation

Future MCC design should be cognizant of the thermal effects on NARloy-Z as discussed in this

report. Further, beam glazing of the MCC liner should be pursued to enhance its service life.

5
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Figure 15. Plot of PFZ width as a function of exposure to temperatures ranging from
649 to 760 °C (1,200 to 1,400 °F).

Figure 16.
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Laser-glazed NARloy-Z showing uniform distribution of second phases in Cu matrix.
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