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[57) ABSTRACT

Neural network algorithms have impressively demon-
strated the capability of modelling spatial information.
On the other hand, the application of parallel distrib-
uted models to processing of temporal data has been
severely restricted. The invention introduces a novel
technique which adds the dimension of time to the well
known back-propagation neural network algorithm. In
the space-time neural network disclosed herein, the
synaptic weights between two artificial neurons (pro-

cessing elements) are replaced with an adaptable-adjust-
able filter. Instead of a single synaptic weight, the in-
vention provides a plurality of weights representing not
only association, but also temporal dependencies. In this
case, the synaptic weights are the coefficients to the
adaptable digital filters.
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NEURAL NETWORK FOR PROCESSING BOTH
SPATIAL AND TEMPORAL DATA WITH TIME
BASED BACK-PROPAGATION

ORIGIN OF THE INVENTION

The invention described herein was made by employ-
ees of the United States Government and ma be manu-
factured and used by or for the Government of the
United States of America for governmental purposes
without payment of any royalties thereon or therefor.

BACKGROUND OF THE INVENTION

The present invention relates to a neural network for
processing both spacial and temporal data (hereinafter
“space-time neural network™) and to an artificial neu-
ron, or so-called “processing element”, for use in such a
space-time neural network.

More particularly, the invention relates to a space-
time neural network, and a processing element therefor,
which receives a temporal sequence of inputs X(n),
X(n—1), X(n—2) ..., where each input X(n) is com-
prised of N components x1(n), x2(n), . . . x{(n), . .. xnp(n),
and which maps such input representations into a single,
plural-component output representation. The network
may be a single layer network or it may comprise muiti-
ple layers of processing elements.

HISTORICAL PERSPECTIVE

Throughout history, the meaning of time has plagued
the minds of mankind. The wise Greek philosophers,
Socrates, Plato and Aristotle, pondered deeply about
the influence of time had on human knowledge. The
English poet, Ben Johnson, wrote “O for an engine to
keep back all clocks”, giving voice to our ageless la-
ment over the brevity of human life. The great scientist
Einstein, who developed the theory of relativity, be-
lieved that space and time cannot be considered sepa-
rately, but that they depend upon one another.

There is an urgent need for systems which will reli-
ably capture space-time knowledge. Human cognitive
thought processes involve the use of both space and
time. A childhood event is remembered by an occur-
rence (or space) and its associated place in time. We
speak of an event which occurred a specific time ago.
Linguistic meanings are expressed in a manner in which
proper temporal order plays a crucial role in the con-
veyance of a concept. Take, for example, the phrases
“house cat” and “cat house”. Speech production, too, is
very order dependent—subtleties in intonations may
change the whole meaning of a concept. The more
advanced engineering systems have characteristics
which vary over time. For instance, complex machines
such as the Space Shuttle Main Engine abound with
sensors, each having characteristics which vary over
the life of the machine’s operation. A system which is
capable of automatically associating spatial information
with its appropriate position in time becomes increas-
ingly significant in our age of automation.

Also, microscopic level investigations reveal a need
to incorporate time or sequence discovery and adapta-
tion into the neuron modelling framework. It is clearly
evident that information exchange at the neuronal level
occurs through a rich interchange of complex signals.
Extensive research has been done on the olfactory bulb
at anatomical, physiological, and behavioral levels. See
W. J. Freeman, “Why Neural Networks Don’t Yet Fly:
Inquiry into the Neurodynamics of Biological Intelli-
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2

gence” IEEE International Conference on Neural Net-
works, San Diego, Calif., 1988, and B. Baird, Nonlinear
Dynamics of Pattern Formation and Pattern Recognition
in the Rabbit Olfactory Bulb, Elsevier Science Publish-
ers B. V., North-Holland Physics Publishing Division,
0167-2789, 1986. These research findings have shown
that information in biological networks takes the form
of space-time neural activity patterns. The dynamic
space-time patterns encode past experience, attempt to
predict future actions, and are unique to each biological
network.

The Neuron

As seen in FIG. 1, the “classical” biological neuron
has several dendrites which receive information from
other neurons. The soma or cell body performs a wide
range of functions; it processes information from the
dendrites in a manner which is not entirely understood
and also maintains the cell’s health. The information
processed by the neuron is distributed by its axon to
other interconnected neurons by the propagation of a
spike or action potential. Along each dendrite are thou-
sands of protrusions where neurons exchange informa-
tion through a region known as the “synapse”. The
synaptic cleft releases chemicals called “neurotransmit-
ters”. Even at this microscopic level, the relevance for
time-adaptive neural networks becomes clearly evident.
Synaptic clefts take on various modifying roles such as
neurotransmitter modulators, generators, and filters
which cloud the neuron’s inner workings and render
these ever-changing dynamical properties especially
difficult to study.

Connectionist architectures have impressively dem-
onstrated several models of capturing temporal and
spatial knowledge. To accomplish this, the most popu-
lar solution has been to distribute a temporal sequence
by forcing it into a spatial representation. This method
has worked well in some instances. See, e.g., J. A. Vil-
larreal and P. Baffes, “Sunspot Prediction Using Neural
Networks”, SOAR ’89—Third Annual Workshop on
Automation and Robotics, 1987. But there are insur-
mountable problems with this approach and it has ulti-
mately proven inadequate as a general technique.

Review of Neural Networks

A neural network is comprised of numerous, indepen-
dent, highly interconnected artificial neurons, hereinaf-
ter called “processing elements”, which simulate the
functions of biological neurons. For so-called “back-
propagation networks”, each element can be character-
ized as having some input connections from other pro-
cessing elements and some output connections to other
elements. The basic operation of a processing element is
to compute its activation value based upon its inputs and
to send that value to its output. FIG. 2 is a schematic
diagram of such a processing element. Note that this
element has j input connections coming from j input
processing elements. Each connection has an associated
value called a “weight”. The output of this processing
element is a non-linear transform of its summed, con-
tinuous-valued inputs by the so-called “sigmoid trans-
formation”, as discussed in D. E. Rumelhart et al.
“Learning Internal Representations by Error Propaga-
tion”, in D. E. Rumelhart & J. L. McClelland (Eds.),
Parallel Distributed Processing: Explorations in the Micro-
structure of Cognition (Vol. 1) (pp. 318-362) MIT Press,
1986, Cambridge, Mass.
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When groups of such processing elements are ar-
ranged in sequential layers, each layer interconnected
with the subsequent layer, the result is 2 wave of activa-
tions propagated from the input processing elements,
which have no incoming connections, to the output
processing elements. The layers of elements between
the inputs and outputs take on intermediate values
which perform a mapping from the input representation
to the output representation. It is from these intermedi-
ate or “hidden” elements that the back-propagation
network draws its generalization capability. By forming
transformations through such intermediate layers, a
backpropagation network can arbitrarily categorize the
features of its inputs.
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The Weights Of A Back-propagation Network

The heart of the back-propagation algorithm lies in
how the values of its interconnections, or weights, are
updated. Initially, the weights in the network are set to
some small random number to represent no association
between processing elements. Upon being given a set of
patterns representing pairs of input/output associations,
the network enters what is called a ‘“‘training phase”.
During training, the weights are adjusted according to
a learning algorithm, such as that described by Rumel-
hart et al. The training phase is modelled after a behav-
joristic approach which operates through reinforce-
ment by negative feedback. That is, the network is
given an input from some input/output pattern for
which it generates an output by propagation. Any dis-
crepancies found when comparing the network’s output
to the desired output constitute mistakes which are then
used to alter the network characteristics. According to
the Rumelhart et al. technique, every weight in the
network is adjusted to minimize the total mean square
errors between the response of the network, Pp;, and the
desired outputs, tp;, to a given input pattern. First, the
error signal, §;, is determined for the output layer, N:

8{M=(6;—p{MP(ELN) O]

The indices p and i represent the pattern number and
the index to a node respectively. The weights are ad-
justed according to:

Aw,-,("+1)=aAw,-j"')+1;5,("+I)P}") @)
where Aw;{ is the error gradient of the weight from
the j-th processing element in layer n to the i-th unit in
the subsequent layer (n+ 1). The parameter a performs
a damping effect through the multi-dimensional error
space by relying on the most recent weight adjustment
to determine the present adjustment. The overall effect
of this weight adjustment is to perform a gradient de-
scent in the error space; however, note that true gradi-
ent descent implies infinitesimally small increments.
Since such increments would be impractical, is used to
accelerate the learning process. In general, then, the
errors are recursively back propagated through the
higher layers according to:
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where P'(E) is the first derivative of P(E).

Other Spatiotemporal Neural Network Architectures

A number of significant advances in capturing spatial-
temporal knowledge with neural network systems have
been made to date. See, e.g., M. 1. Jordan ““Serial Order:
A Parallel Distributed Processing Approach”, ICS Re-
port 8604, Institute for Cognitive Science, University of
California, San Diego, Calif., 1986, and J. L. Elman
“Finding Structure in Time”, CRL Technical Report
8801, Center for Research in Language, University of
California, San Diego, Calif., 1988. Jordan approaches
this problem by partitioning the input layer in 2 connec-
tionist network into separate plan and state layers. In
essence, Jordan’s architecture acts as a back-propaga-
tion network, except for the specialized processing ele-
ments in the state layer, which receive their inputs from
the output units, as well as from recurrent connections
which allow the state layer elements to “remember” the
network’s most recent state. In other words, the state
units behave as “pseudo inputs” to the network provid-
ing a past-state history. Here, a recurrent connection is
one in which it is possible to follow a path from a pro-
cessing element back onto itself as shown in FIG. 3.
Recurrent networks of this type allow the element’s
next state to be not only dependent on external inputs,
but also upon the state of the network at its most previ-
ous time step. In general, however, this network is
trained to reproduce a predetermined set of sequence
patterns from a static input pattern.

As an example, this network architecture has been
used by J. A. Villareal, one of the named inventors
herein, in developing a speech synthesizer. The inputs
to the speech synthesis network represented a tri-
phoneme combination and the output was partitioned to
represent the various vocal tract components necessary
to produce speech. Thus, the output layer in the speech
synthesis neural network consisted of the coefficients to
a time-varying digital filter, a gain element, and a pitch
element which excited the filter, and a set of down-
counting elements where each count represented a 100
millisecond speech segment. To train a single tri-phone
set, the network was first reset by forcing the activation
value of the processing elements in the state layer to
zero. A tri-phone pattern was then presented to the
network’s input and held there during the learning pro-
cess while the outputs changed to produce the appropri-
ate output characteristics for that particular tri-phone
combination. The outputs would represent the transi-
tion from one phoneme to another while a smooth tran-
sition in pitch, gain, and vocal tract characteristics
would take place. The process was then repeated for
other tri-phone combinations.

As shown in FIG. 4, Elman has modified Jordan’s
approach by constructing a separate layer, called the
“context layer”, which is equal in size to the number of
units in the hidden layer. In this network the context
units receive their inputs along a one-to-one connection
from the hidden units, instead of from the output units
as described by Jordan. The network works as follows:
Suppose there is a sequential pattern to be processed.
Initially, the activation values in the context units are
reset to a value midway between the upper and lower
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bounds of a processing element’s activation value, indi-
cating ambiguous or “don’t care” states. A pattern is
presented to the network’s input, forward propagating
the pattern toward the output. At this point, the hidden
layer activation levels are transferred one-for-one to
elements in the context layer. If desired, error back-
propagation learning can now take place by adjusting
the weights between output and hidden, hidden and
input, and hidden and context layers. The recurrent
connections from the hidden to context layers are not
allowed to change. At the next time step, the network’s
previous state is encoded by the activation levels in the
context units. Thus, the context layer provides the net-
work with a continuous memory.

SUMMARY OF THE INVENTION

A principal object of the present invention is to pro-
vide a processing element for a space-time neural net-
work which is capable of processing temporal as well as
spacial data.

A further principal object of the invention is to pro-
vide a space-time neural network comprised of a plural-
ity of the aforementioned processing elements, which is
capable of processing temporal as well as spacial data.

These objects, as well as other objects which will
become apparent from the discussion that follows, are
achieved, according to the present invention, by replac-
ing the synaptic weights between two processing ele-
ments of the type shown in FIG. 2 with an adaptable-
digital filter. Instead of a single synaptic weight (which
with the standard back-propagation neural network
represents the association between two individual pro-
cessing elements), the invention provides a plurality of
weights representing not only association, but also tem-
poral dependencies. In this case, the synaptic weights
are the coefficients to adaptable digital filters.

The biological implication of this representation can
be understood by considering that synapses undergo a
refractory period—responding less readily to stimula-
tion after a response.

More particularly, the present invention is realized by
providing a processing element (i) for use in a space-
time neural network for processing both spacial and
temporal data, the processing element being adapted to
receive a sequence of inputs X(n), X(n—1), X(n—2) ..
., each input X(n) being comprised of K components
x1(n), x2(n), . . . X{(n),. . . xx(n). xx(n). The processing
element comprises the combination of:

(a) a plurality K of adaptable filters (F1; Fa2;, . . . Fj,
.. . Fg;) each filter Fj; having an input for receiving a
respective component x{n), x{n—1), x{n-2), ..., of
the sequence of inputs, where x4{n) is the most current
input component, and providing a filter output y{n) in
response to the input x{(n) which is given by:

yimy=Rampfn—m), bgx{n—Kk)),

where an;and by are coefficients of the filter Fj;and
f denotes the operation of the filter; and

(b) a junction, coupled to each of the adaptive filters,
providing a non-linear output p{S{n)) in response to the
filter outputs y{n) which is given by:

PASLn) =Lyfn)).

In this case the junction presents a sequence of output
signals, p{Sin)), pAS{n—1)), pASn—2)), . ...

At the network level, the invention is realized by
providing a neural network for processing both spacial
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6

and temporal data, the network being adapted to re-
ceive a sequence of inputs X(n), X(n—1), X(n-2)...,
each input X(n) being comprised of N components
x1(n), Xa(n), . . . x{n), . . . xg(n). The network comprises
the combination of:

(a) a plurality L of first processing elements, each first
processing element (i) comprising a plurality N of
adaptable filters (F1;, F2i, . . . Fji, . . . Fap), each filter F;
having an input for receiving a respective component
x4n), x{n—1), x{n—2), . . ., of the sequence of inputs,
where x{n) is the most current input component, and
providing a filter output y{n) in response to an input
x{n) which is given by:

Yfn)=Rampfn—m), bipx{n—K)),

where anjand bg;jare coefficients of the filter Fj;and
f denotes the action of the filter.

Each first processing element (i) further comprises a
first junction, coupled to each of the adaptive filters,
providing a non-linear output p{S{n)) in response to the
filter outputs y{n) which is given by:

PASLM)=Ryfn)).

In this case each first junction presents a sequence of
first output signals,

PASKn)), pASKn—1)), pASAn=2)), - - - -

The preferred embodiments of the present invention
will now be described with reference to the accompa-
nying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a representational diagram of a classical
biological neuron.

FIG. 2 is a block diagram of an artificial neuron or
“processing element” in a back-propagation network.

FIG. 3 is a block diagram showing the connection
scheme for Jordan’s network architecture which learns
to associate a static input with an output sequence.

FIG. 4 is a block diagram showing the connection
scheme for the Elman network wherein a history of the
network’s most previous state is stored by transferring
the activations in the hidden layer to a pseudo input,
context layer. Longer term memories are attainable by
adding recurrent connections to the context units.

FIG. 5a and FIG. 5b are representational diagrams of
an S-plane and a Z-plane, respectively, illustrating the
relationship between the continuous domain S-plane
and the discrete domain Z-plane.

FIG. 6a is a block diagram of a digital network for a
finite impulse response (FIR) filter.

FIG. 654 is a block diagram of a digital network for an
infinite impulse response (IIR) filter.

FIG. 7 is a block diagram of a space-time processing
element according to the present invention.

FIG. 8 is a block diagram of a fully connected net-
work utilizing space time processing elements accord-
ing to the present invention. In this network, a set of
input waveform sequences are mapped into an entirely
different output waveform sequence.

FIG. 9 is a graph of an error curve for the temporal
XOR problem trained in a one input element, five hid-
den element and one output element network with 5
zeros and 0 poles between the input and hidden layers
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7
and 5 zeros and 0 poles between the hidden and output
layers.

FIG. 10 is a graph of an error curve for a two input
element, eight hidden element and eight output element
network with 5 zeros and 0 poles between the input and
hidden layers and 5 zeros and 0 poles between the hid-
den and output layers.

FIG. 11 is a diagram showing the generation of a
chaotic sequence by computer.

FIG. 12 is a plot of a chaotic sequence generated by
a process described hereinbelow.

FIG. 13 is a diagram showing the space-time neural
network’s performance on a chaotic problem after 900
training passes. The ordinal numbers 525 through 625
represent the network’s prediction.

FIG. 14 is graph showing the testing performance
(both maximum and RMS errors) as function of training

passes.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Digital Filter Theory Review

Before proceeding with a detailed description of the
Space-Time Neural Network (“STNN”) system ac-
cording to the present invention, it is important to intro-
duce digital filter theory and some nomenclature.

Linear difference equations are the basis for the the-
ory of digital filters. The general difference equation
can be expressed as:

N M ©)
m= 2 bix(n-k)+ X ampn—m)
k=0 m=1
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where the x and y sequences are the input and output of 35

the filter and am’s and by's are the coefficients of the
filter. Sometimes referred to as an s-transform, the well
known continuous domain Laplace transform is an ex-
tremely powerful tool in control system design because
of its capability to model any combination of direct
current (DC) or static levels, exponential, or sinusoidal
signals and to express those functions algebraically. The
s-plane is divided into a damping component (o) and a
harmonic component (jw) and can mathematically be
expressed as

s=e—(o+jw) o
This formulation has a number of interesting character-
istics as follows:

(1) The general Laplace transfer function can be
thought of as a rubber sheet on the s-plane. A desir-
able transfer function is molded by strategetically
placing a transfer function’s roots of the numerator
and the denominator in their appropriate positions.
In this case, polynomial roots of the numerator are
referred to as zeros and “pin” the rubber sheet to
the s-plane’s ground. On the other hand, polyno-
mial roots of the denominator are referred to as
poles and their locations push the rubber sheet
upwards—much like the poles which hold up the
tarpaulin in a circus tent. Therefore, zeros null out
certain undesirable frequencies and poles can either
generate harmonic frequencies (if close enough to
the jw axis) or allow certain frequencies to pass
through the filter.

(2) Setting the damping coefficient, o, to zero is ef-
fectively similar to taking a cross sectional cut
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along the jo axis. This is the well known Fourier
transform.

(3) A pole on the jw axis, signifying no damping,
produce a pure sinusoidal signal. However, a pole
which travels onto the left half plane of the s-plane
exponentially increases, eventually sending the
system into an unstable state.

The discretized form of the Laplace transform has
been developed further and is referred to as the z-trans-
form. The notation z—1!is used to denote a delay equal
to one sampling period. In the s-domain, a delay of T
seconds corresponds to e—sT. Therefore, the two vari-
ables s and z are related by:

z=lme—sT @®
where T is the sampling period. The mapping between
the variables can be further illustrated by referring to
FIG. 5. First notice that the left half plane of the s-plane
maps to the area inside a unit circle on the z-plane. In
abiding with the Nyquist criterion, sampling at least
twice the signal bandwidth, fy note that as one traverses
from —fy/2 to +£;/2 on the s-plane, it is equivalent to
going from = radians toward O radians and back to 7
radians in a counterclockwise direction on the z-plane.
Furthermore, note that lines in the s-plane map to spi-
rals in the z-plane.

By evaluating the z-transform on both sides of the
linear difference equation, it can be shown that

Y bt ®
Ro) = Yo _ _ k=0
T X@ T M
— X apmz—™"
m=1

Digital filters are classified into recursive and non-
recursive types. Filters of the nonrecursive type have
no feedback or recurrent paths and as such all the an,
terms are zero. Furthermore, digital filters are also clas-
sified in terms of their impulse responses. Because non-
recursive filters produce a finite number of responses
from a single impulse, such filters are referred to as
“Finite Impulse Response” (“FIR”) filters. On the other
hand, the recursive filters produce an infinite number of
responses from an impulse and are therefore referred to
as “Infinite Impulse Response” (“IIR”) filters. For ex-
ample, if a unit impulse is clocked through the filter
shown in FIG. 6(a), the sequence

bo, by, b2, ... by, 0,0,0,0,0,...0,0,0
will be the output. Notice that the filter produces only
the coefficients to the filter followed by zeroes. How-
ever, if a unit impulse is presented to the filter shown in
FIG. 6(b), because of the recursive structure, the re-
sponse is infinite in duration.

FIR and IIR filters each possess unique characteris-
tics which make one more desirable than the other de-
pending upon the application. The most notable of these
characteristics include:

(1) FIR filters, because of their finite duration are not
realizable in the analog domain. IIR filters, on the
other hand, have directly corresponding compo-
nents in the analog world such as resistors, capaci-
tors, and inductive circuits.

(2) IIR filters cannot be designed to have exact linear
phase, whereas FIR filters have this property.
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(3) Because of their recursive elements, IIR filters are
an order of magnitude more efficient in realizing
sharp cutoff filters than FIR filters.

(4) Because of their nonrecursiveness, FIR filters are
guaranteed to be stable. This property makes FIR
filters much easier to design than IIR filters.

These different properties between FIR and IIR fil-

ters must be carefully weighed in selecting the appropri-
ate filter for a particular application.

DESCRIPTION OF THE SPACE-TIME NEURAL
NETWORK

Having introduced digital filter theory, it is now
possible to proceed with the detailed description of the
Space-Time Neural Network (STNN) system accord-
ing to the present invention. What follows is a detailed
procedure for constructing and training the STNN. As
mentioned earlier, in the STNN system the weights in
the standard back-propagation algorithm are replaced
with adaptable digital filters. The procedure involves
the presentation of a temporal ordered set of pairs of
input and output vectors. A network must consist of at
least two layers of adaptable digital filters buffered by
summing junctions which accumulate the contributions
from the subsequent layer.

A pictorial representation of the space-time process-
ing element is illustrated in FIG. 7. In this case, a value,
say x£n), is clocked in to its associated filter, say Fj{n),
producing a response y{(n) according to the filter repre-
sentation

- ¥ Yoo O
y,(n)—mzlamjy,(n—m)+k=0 kxn — k)

All remaining inputs are also clocked in and accumu-
lated by the summing junction i:

Simy = = yfm) @b
" "anjy’("

The contributions from the signals fanning in to the
summing junction are then non-linearly transformed by
the sigmoid transfer function

—1 a2
2SO = 555

This output is then made available to all filter ele-
ments connected downstream.

As explained earlier, the space-time neural network is
comprised of at least two layers of filter elements fully
interconnected and buffered by sigmoid transfer nodes
at the intermediate and output layers. A sigmoid trans-
fer function is not used at the input. Forward propaga-
tion involves presenting a separate sequence-dependent
vector to each input, propagating those signals through-
out the intermediate layers as was described earlier until
reaching the output processing elements. In adjusting
the weighing structure to minimize the error for static
networks, such as the standard back-propagation, the
solution is straightforward. However, adjusting the
weighing structure in a recurrent network is more com-
plex because not only must present contributions be
accounted for but contributions from past history must
also be considered. Therefore, the problem is that of
specifying the appropriate error signal at each time and
thereby the appropriate weight adjustment of each co-
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efficient governing past histories to influence the pres-
ent set of responses.

The procedure for adjusting the weighing structure
for the space time network is as follows:

First compute the errors at the output layer for each
processing element, i, using the formula:

8i=(DAk)—ALK)P(ELK)) 13
where:

Dgk) is the kth desired response from a given se-

quence for neuron i at the output layer

Afk) is the network’s output response at neuron i for

the kth input sequence pattern

P'(E4K)) is the first derivative of the sigmoid function

for the ith output’s activation value or
PE(k))(1—P(EAk))

Next to compute the updates for the coefficients of
each filter element between the hidden and output layer
processing elements, a reversal procedure is imple-
mented. Whereas in the forward propagation, input
values were clocked into the filter elements, back-
propagation instead involves the injection of errors into
the filter elements according to the formula:

Abjin+ D)=a[nabj(n)+ (1 —1)B8:X;]

where:

Abjxn+1) is the update for a zero coefficient, by,
lying between processing elements i and j

a is the learning rate

Abjik(n) is the most recent update for the kth zero
element between processing elements i and j

7) damps most recent updates

5;1s described by (13)

Xji contain a history of the output of the jth neuron in
the hidden layer

The recursive components in each filter element are

treated the same way and are updated according to the
formula:

Aajr(n+)=alnAa(n)+(1—1)8;Yji) as)
where:

Aajix(n+1) is the update for a pole coefficient, az,
lying between processing elements i and j

a is the learning rate

Aajik(n) is the most recent update for the kth zero
element between processing elements i and j

7 damps most recent updates

6;is described by (13)

Y jx contain a history of the activation values for the
non-recursive filter elements between neurons i
and j, k time steps ago

For implementation purposes, the present algorithm

only considers the accumulation of errors which span
the length of the number of zeroes between the hidden
and output processing elements. Thus:

(16)
Sik = ?P(Eik)sjbijk

where:
i is the index of the hidden neuron
j ranges over the neuron idices for the output layer
8jis described by (13)
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P'(Eix) is the first derivative of the sigmoid function
for the kth history of activation levels for the ith
neuron in the hidden layer

8pbjjk sums the results of injecting the previously com-
puted errors found in equation (13) through the
FIR portion of the filter element, by, found be-
tween the ith neuron in the hidden layer and the jth
neuron in the output layer.

Simulations

The space-time neural network according to the pres-
ent invention was constructed and tested to perform a
number of simulations. Source code for a computer
program written in “C” language for simulation of the
STNN is included in the Appendix below.

The first simulation test was a variation of the classic
XOR problem. The XOR is of interest because it cannot
be computed by a simple two-layer network. Ordinar-
ily, the XOR problem is presented as a two bit input
combination of (00, 01, 10, 11) producing the output (0,
11,0).

This problem was converted into the temporal do-
main in the following way. The first bit in a sequence
was XOR’d with the second bit to produce the second
bit in an output sequence; the second bit was XOR’d
with the third bit to produce the third bit in an output
sequence, and so on, giving the following:

Input 1 0 1 0 1
OQutput o 1 1 1 1 1

(=Nl
(=]
(=R =]

In the simulation, the training data consisted of 100
randomly generated inputs and the outputs were con-
structed in the manner described above. A network was
implemented which had 1 input element, 5 hidden ele-
ments and 1 output element and had 5 zero coefficients
and 0 pole coefficients between the input and hidden
layers and 5 zero coefficients and 0 pole coefficients
between the hidden and output layers. The task of the
network was to determine the appropriate output based
on the input stream. The error curve for the network
showing the RMS error in dependence upon the num-
ber of training passes is shown in FIG. 9.

For a second simulation, a network was implemented
with 2 input elements, 8 hidden elements and 8 output
elements having 5 zeros and 0 poles between input and
hidden, and 5 zeros and O poles between hidden and
output layers. A problem, called the Time Dependent
Associative Memory Test, was constructed which
would test the network’s ability to remember the num-
ber of events since the last trigger pattern was pres-
ented. The data consisted of 1000 input/output pairs
where the input bits were randomly constructed and the
output appropriately constructed. As an example, con-
sider the first 7 sets of data in the following list. Note
that a “1” bit sequentially gets added to the output for
the input patterns 00,10, 10,00, 1 0, and 0 1 until the
1 1 pattern is presented which resets the output back to

the 100000 0 O state.
Input Output
0 0 1 1 0 0 0 0 0 0
1 0 1 1~ 1 0 [4] 0 0 0
1 0 1 1 1 1 0 0 0 0
] 0 1 1 1 1 0 0 0 0
1 4} 1 1 1 i 1 1 0 0
0 1 1 1 1 1 1 1 1 0

10

15

20

25

30

35

40

45

50

55

65

12
-continued
Input Output
1 1 1 0 0 0 0 0 0 0
1 0 1 H 0 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0 0 i}

The error curve for this Time Dependent Associative
Memory Test is shown in FIG. 10. As will be seen from
FIGS. 9 and 10, the RMS error converged rapidly
toward zero.

The final simulation illustrates that the space-time
neural network according to the present invention is
able to learn the dynamics and model the behavior of a
chaotic system. The graph shown in FIG. 11 is a plot of
a sine function extending from 0 to 7 with amplitude 7.
A “chaotic sequence” can be generated by randomly
selecting a value between 0 and 7, say xp, determining
the value of 7-sine(xg) to produce x;, and repeating this
iterative process into a general form represented by
Xp+1=msine (x,). FIG. 12 shows a collection of x’s
generated by this process.

The goal of the STNN system in this simulation was
to predict a future point, given a history of past points.
To keep within the linear bounds of the sigmoid, the
sequences collected above were normalized such that
the range from O to 7 mapped into the range from 0.2 to
0.8. An STNN system was constructed with 1 input
element, 6 hidden elements and 1 output element, with
10 zeros and O poles between the input and hidden lay-
ers, and 10 zeros and O poles between hidden and output
layers. The system was trained with 525 data points.
Training was periodically suspended to test the system
by stimulating it with the sequence of the last 50 samples
of the training set—the ordinal values 475 to 525. At this
point, the system was prepared to make its first predic-
tion. The predicted value could have been fed back into
the input to generate a new predicted value. Instead, the
system was fed with actual values generated by the
chaos algorithm—that is, ordinal numbers 526 through
625. FIG. 13 illustrates the system’s performance at
various stages during the training process. FIG. 14
shows the average error of the network’s performance
during the training process. .

0.31
0.51

0.51
0.80 021

080 021 022 025 037

Output .
022 025 037 067 059

Input

Conclusion

The space time neural network (STNN) is a general-
ization of the back-error propagation network to the
time domain. By adopting concepts from digital filter-
ing theory, the network is afforded a distributed tem-
poral memory which permits modeling complex dy-
namic systems and recognition of temporal sequences as
shown in the simulations. The STNN architecture dif-
fers from previous work of Jordan and Elman in that
the network’s memory is distributed over the connec-
tions rather than being implemented as a special layer of
nodes. This distinction allows the STNN to possess an
adaptive temporal memory without introducing addi-
tional nonlinearities into the learning law; i.e., the action
which occurs on connections between nodes is still
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linear, while the nonlinear actions occur within the
nodes.

There has thus been shown and described a novel
space-time neural network for processing both spacial
and temporal data which fulfills all the objects and
advantages sought therefor. Many changes, modifica-
tions, variations and other uses and applications of the

14

subjéct invention will, however, become apparent to
those skilled in the art after considering this specifica-
tion and the accompanying drawings which disclose the
preferred embodiments thereof. All such changes, mod-
ifications, variations and other uses and applications
which do not depart from the spirit and scope of the
invention are deemed to be covered by the invention,

which is to be limited only by the claims which follow.

¢ U.S.Gov't
- MSC-21874-1

- . Patent Application -

.

/* File: stnn_com,h~= portabllity and coomon declarations for the Space °/

/°* Time Neural Network code. ¢/

/* by R, O, Shelton and J. A. Villarreal */

/° A product of the Software Technology Branch of NASA/JSC */

/* Any duplication or distribution of this code without the express consent */
/* of NASA i3 a viclation of Federal Law. ¢/

finclude <stdic.h>
fincluce <stzing.h>
finclude <math.h>
fdefine TBC O
fdefine true °\01°
tdefine false ’\O’
#define Stability_Threshold 1000.0
fdefine machine_zero 0.00001
fdefine min(a,b) ({{a)<(D})? (a): (D))
tdefine square(x) ((x)}*{x))
fdefine sigmoid(x) (1.0/(1.0+exp(=(x))})
tdefine d_sigmoid(y) ((y)*(1.0-(y)))
1L I8C
tincluce <allec.h>
fdefine r b 19
. tdefine GIGANTIC huge
° felse
tinclude <mallcc.h>
$define r b 15
fdefine GIGANTIC
tendif
fdefine getch(} (gets(strl) (0])
ftdefine frand(x,y) ((x)+((y}=(x))®((rand()é ((llccr b)=1)}/\
{floac) (11<<r _b)}))

typede! char string (256);

FILE *HidFile;

int n0 =1, nl =6 n2 =1, nz0 =5,

np0 = 0, NumSamples, NumTestSamples, NumSats, NumTestSets, npl = 0, nzl = §;
long total_cycles = 0;

fleoat alpha = 0.2, delta = 0.9, epsilon;

float **iv0, ***ov0l, **"{c0, °***ocl, ***dich ,***dochd, ***micO, °***mocO,
"viho' ""Oha,

seivl, °**vovl, °*°*icl,
*av0, *nvi,
*Outtrror,

*erocl, *vedicl, **°docl, **e°micl, ***mocl,

*Hi{dErgsor, **Waveln, °*°WaveOut, °**TestWaveln, °**TestWaveOut;

string strl, str2;

- tinclude <stdio.h>
dinclude <strings.h> —-

typedef char string(256);
extern string strl, str2;

extern int n0, nl, n2, ——
n0, apd, nzl, apl;

extern float *°**icQ, **vocO,
seeicl, **cocl;

/* qet coefficients frox file name s */
vold get_coefficients (s)
char °s;
{
Lint 4, 32
FILE *¢;
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while ({f=fopen(s, “rb")} == NULL)

for (1 = O;
fer

for (1 = 0;
for

}

/* end while */

1 <€ nl; (+4)
{3 = 0; 3 < n0; J+¢)

{
1f (n20 > 0)
fread ((char*)icO0{3)(1},

{
printf (* file 83 not found\n filename> °*, s5);
gets(s);

(unsigned)sizeof(float), nz0, £)

if (npS > 0)
fread ((char*)ocO(3) (4],

(unsigned)sizeaf (flcat), npo, f)

} /7° end for § § ¢/

L € n2; i+e)
(3 = 0; 3 <nl; d¢¢)

{
it (n2l > O)
fread ((chare)icl(31(i],

(unsigned)sizeof (float), nzl, f)

1 (npl > O)
fread {(char*)eci(J3i{i),

(unsigned)sizeof (flcat), npl, )

} /* end for §{ § */

fclose (f):
} /* end get_coefficients */

/* save coefficlients in file name s */
void save_coeflicients (s)

char *s;
{

int {, 3, ret;
FILE *f,

*$1;

A 4 (fopen (s, *r*) != NULL)

{
printf (® file Vs exists\n nev name or carriage return to overwrite> *, s)

gor (L = O:

1f (strien(gets(atr2)))
strepy (s, str2);
fclose (£);

end {f */

£ = fopen (s, "wd®);

|

1 < nl; ee)

for (3 = 0; 3 < n0; 3e+¢)

for (1 = 0;
for (3 = 0; 3 < nl; 3++)

fclose

£

i«

{

if (nz0 > 0)

fwrite ({char*)icO(3) (1],
(uisigned) sizeof {float), ni0,

if (np0 > 0)

fwrite ((char*)ocO[3i(i],
(unsiqgned) sizeof (float}, npd,

} /* end for & § */

n2; i+s)

{

if (nzl > 0}

fwrite ((char*)iel(3I{L],
{unsiqgned)sizeof (float), n1l,

if (npl > Q)

fwrite ((char*)ecl{3i(t],
{unsigned)sizeof (float), npl,

} /* end for § 3 °/

} /° end save_coefficients */

finclude "stnn_com.h"
/* genezal memory allocation routine */

char *mem_allec (n)

int n;
{

char *r;

L (n>0)

{

r = (char*) malloc (n);
{f (r = NULL}
{

printf (" mem_alloc: We are out of memory!\n“};

exit {0);
) /¢ end Lif */
return r;

} /* end i */
else

n;

0n;

£

16
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return NULL;
} /* end mem_alloc ¢/

/* Declares a three dimensional array of size L X M X N. Returns the
address tc the three dimensional array */

float**" DeclareTripleArray (L, M, N}
int L, M, N;
{

int {, %

flcat ***Triple;

Triple = (float***)mea_alloc(l * sizeof (float®*)};
for (4 = 0; 4 € L; ie¢)
{
Triple{i] = (flcat**)mem_alloc(M * sizeof(float®));
for (3 = 0; 3 < M; 3+¢)
Triplelil[)) = (float*)men_aslloc(N ® sizeof(float));
} /7° end L ¢/
return(Triple);
} /° end DeclareTripleArray ¢/

,'
/t

Declares a two dizensicnal array of size L X M . Ratuzns the
address to the two dimensional array

./
float** DeclareDoubleArray (L, M)
int L, M; .
{

int §;

float *°Double;
Double = (flcat**)mem_alloc(lL * sizeof(float*));
for (4 = 0; § < L; i+9)
Double{i] = (float*)mam_allec(M * sizeof(float));
recurn{Double);
} /* end DeclareDoubleArray °*/

void zeset_network()

{
int L, 3, k7

for (1 = 0; 1 < O} Le4)
{ L
for (k = 0; Kk € n20; k+e+)
{
ivOolil{x} = 0.0;
for (3 = 0; 3 < nl; 3+4)
dicO(L1(31(k] = micO(i1(J} (k] = 0.0;
) /* end for k */
for {3 = 07 3 < al; 3++)
{
for (k = 0; k < np0; ke+)
ovO(L1(3] (k] = docO(L][3) (k] = mocO(L}{3](k] = 0.0;
ovO(L]1 (3] (np0] = 0.0;
] /* end for 3 */
] /* end for § */
for (4 = 0; L < nlj 144}
{
for (k = 07 k € nzl; kee)
{
ivi{il(k] = 0.0;
for () = 0; 3 < n2: j+¢)
dicl(il {3} {x} = mici(4)(§) (k] = 0.0;
| /* end for k */
for (3 = 0; 3 € n2; 3+¢)
{
for (X = 0; k < npl; kee¢)
ovi{i](3]) (k] = docl (4} (I] (k] = mocl(Li}{J) (k] = 0.0;
ovi(i) (3l {npl] = 0.0;
{ /* end for § */
} /* end for { ¢/

} /* end resat_network */

void allocate_network ()

int &, 3 ks

float welimQ, welmi;

printf (* enter sizes of input hidden and output layers <td 8d %d> °,n0,nl,n2);

sscanf{ (gets(strl),"vdsdsd®,inl,énl,sn2);

printf (* enter numbers of zercs and poles from input to hidden <td t@>=,
nzQ,npd};
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sscanf (gets(strl),"sdsd”,snz0,&npd);
printf (* enter nuaders of zeros and poles from hidden to ovtput <id $d> °,
ntl, npl):
sscanf (gets (strl),"vdsd”, énzl,énpl};
/* {increment ng’s becauss must have at least 1 input coefficient ¢/
ng0e+e;
ngles;
av0 = (float®)imen_allec(nle*sizeof(float)};
nvl o (float®)mes_slloc(n2*sizecf{flcat));
KidError = (flcac®}mem_alloc(nl*sizec{{float));
Outfrror = (float*)mem_alloc(nl*sizecf{float));
1v0 = DeclareDoubleArray(nd,nz0);
ivl = DeclareDoubleArray(nl,nzl);
ovl » DeclareTripleArray(n0,nl,np0el);
1c0 = DeclaroTripleArzay(nd,nl, nz0);
dicO = DeclareTriploArray(n0,nl,nz0);
ocl = DeclareTripleArray(nd,nl, npl);
docO = DaclareTriplaArray(n0,nl,npl);
aicl « DaclareTripleArray (nC,nl, ne0);
mocl = DeclareTripleArray(nd,nl,npl);
ovl = DeclarelripleAzray(nl,nl, anplel);
icl = DeclarelripleArray{nl,n2, n1l);
dicl = DeclareTripleArray(nl,nl, nizl);
ocl = DeclareTzipleArray(ni,ni,npl);
docl = DeclareTripleArray(nl,n2,npl);
micl = DeclareTripleArray(nl,n2,nzl);
mocl = DeclareTripleArray(nl,n2,npl);
1h0 = (float**)mem_alloc(nzl*sizec! (floate*));
oh0 = (float****)mem_alloc(nzlesizecf{float***});
for (L = 0; § < n1y; t1os)
{
{hO(1] = DeclareDoubleArray(n0, nz0);
ohQ{{] = DeclarelripleArray(n0, al, npO+l);:
} /% end for L */
pints (* seed> *);
1f (strlen(gets{strl)})
srand (atoi (strl)};
else
srand(clock());
wtimo = min (0.5, 2.0/sqrt{(float)nd));
welml = min(0.5, 2.0/sqrt((floatinl));
for (L = 0; §{ < n0; L++)
for (3 = 0; J < nl; 3++}
{
for (k = 1; k < n2d; kée)
1c0(L) (31 (k) = 0.0;
1e0(1)1[3) (0] = frand (-wtlm0, wtlim0);
for (k = 0; k < ap0; k++4)
ocO{i](J](k} = 0.,0;
} /* end for 3 ¢/
for (4 = 0; { < nl; f++)
for (3 = 0; 3§ < n2; jee)
{
for (k = 1; k < nzl; ké+)
felfi) (3} (k] = 0.0;
1e1{1]1{31(0] = frand (-wtlml, wtlel);
for (k » 0; k < npl; kt+)
ocl{i] {3l (k] = 0.C;
}] /* end for 3 */
} /* end allocate_network °/

/° This routine gets the I/0 training data. “WavelIn® and “WaveOut*
are two dimensional arrays. "Waveln® has the dimensions

nd X NumSamples and °"WaveOut® has the cimensions

n2 X NumSamples. n0 and n2 should alresdy be

declared on {nput.

./

void get_lo ()

{

int 4, NI, NO;
float ul;
FILE *¢, *£1;

printf (" Network Generalization Test file name> *);
while ((flefopen(strcat (gets(strl),”.tst"),"r"))e=NULL)
printf (* .tst file ¥s not found\n file name> *, strl);
1f (fscanf(fl, “vdsd",¢NumTestSamples, &NuaTestSets) != 2)
{

printf (° no header line file found in Test File!\n");
exit (0); -
}
printf (= 1/0 file name> ");
while {((fefopen(strcat (gets{stri),".iop*),"r"))==NULL)
printf (* .i{ep file \s not found\n file name> *, strl};
{f (fscanf(f, “"sdvdhvdvd®, &NI,4NO,sNumSamples, éNumSaets) != 4)
{
printf (" no header line in i/c file!\n®);
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exit (0);
] /° end {f ¢/
1L ((NItenQ) (| (NOl=n2)}
{
printf (* 1/c file does not match network spescification!\n®);
exit (0);
} /¢ end if ¢/
Waveln > DeclazeDoubleArray (n0, (NumSets ° NumSamples));
WaveOut e DeclareDoubleArzay (n2, (NumSets °® NumSamples)):
TestWaveln o DeclareDoubleArray (n0, (NumTestSets ° NumTestSamples));
TestWaveQut = DeclareDoubleArray (n2, (NumTestSets ® NumTestSamples));
for (4 = 0; { < (NumTestSets °® NumTestSamples); ie¢)
t
for (NI = 0; NI < n0; NI++)
{
if (fscanf(fl, *sg", sul) == Q)
{
princf (" incomplete Test file!\n®);
exit (0);
} /7% and it */
TestWavelIn{NI] {i] = ul;
} /* end NI */
for (NO « 0; NO < n2; NO+«¢)
{
if (fscanf(fl, "vf®. &ul) == Q)
{
printf (" incomplets Test f{ile!\n"};
exit (0):
} /7° end L ¢/
TestWavaOut (NO] [i] = ul;
} /* end NO =/
}

for (4 = 0; { < (NumSamples °® NumSets); 1++)
|
for (NI « 0; NI < nC; Nl+e)
{
if (fscanf(f, "\", &ul) == 0)
i
printf (™ {ncomplete §{/0 file!\n"};
exit {0);
} /* end {f */
WaveIn(NI} (L] = ul;
} /* end NI */
for (NO = 0; NO < n2; NO++)
{ .
1L (fscanf(f, "sL™, &ul) == Q)
{
printf (* incomplete {/0 fille!\n");
exit (0);
} /* end {f */
WaveOut (NO] [4] = ul;
) /* end RO ¢/
)} /* end for L */
fclose (£);
} /* end qet_to ¢/

void print_err {)

i
int §, *size;
float *t;

printf (* hidden or output errer <h/o> *);
if (geteh() == *h*}

{
size = ¢nl;
t = HidError;
} /* engd 8£f ¢/
else
{
size = n2;
t = QutErroz:;
} /* and else °/ .
for (L = 0; § < *size; 1+4+)
{
prince (* s6.2f*, t{il):
1L ({186) == §)
putchar {(*\n’};
) /* end for L */
L2 (1 (486))
putchar ('\n‘});
} /¢ end print_err */

22
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veld print_correction ()

{

start:

int ¢ = 0, §, 3, k, *size_i, *size_j, °*size_k;
float *°°x;

print{ (* press return for help\n®);

princl (* choice> *);
switch (atoi(qets(strl)))
{
case (1)
{
size_1 = 4n0;
gize_3 = &nl;
site_k = ¢nz0;
t = dicO;
break;
} /* end 1 ¢/
case (2}:
{
size_i{ = &n0;
size_3 = &nl;
size_k = 4npo;
t = docO;
break;
} /* end 2 */
case (3):
{
size_{ = ¢nl;
size_3j = 4n2;
size_k e gnrl;
t = dicl;
break;
} /¢ end 3 */
case (4):
{
size_i = ¢pl;
size_j ® §n2;
size_k » &npl;
t = docl;
break;
} /° and 4 ¢/
dafaulc:
{
printf ("choices:\n*};
printf (*1: display input to hidden D_Input_Coefficlent\n®);
printf ("2: display input to hidden D_Output_Coefficient\n®);
priatf ("3: display hidden to output D_Input_Coefflicient\n®);
printf ("4: display hidden to output D_Output_Coefficlent\n®);
goto start;
} /* end default ¢/
} /¢ end switch */
for (1 = 0; 4 < *size_{; L+4)
{
printf (* from node td\n*,i);
for (3 = 0; 3 < *size_j; 3++)
{
printf (* to node Md\n®, 3);
for (k = 0; k < *size_k; ki+)
{
printf (* $6.2f%, t(L1{9)1(kD):
1£ ((ce+d6) == §)
putchar (‘\n‘);
} /* end for k */
} /* end for 3 %/
} /* end for 4 ¢/
1L (! (c¥6))
putchar (‘\n*);

} /¢ end print_corresction */

vold print_weights ()

{

int e=0, §, 3, k, size_i, size_ 3, size_kl, sire_x2;
float **°tl, *vvtl;

printf {(* hidden or output waights <h/o> *);

if (getch() == 'h’}

{
size_{ = n0;
size_3 = nl;
size_kl = n20;
size_k2 = npd;
tl =« {¢0;
t2 = ocl;

} /* end (£ ¢/

alse

{
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size_{ = nl;
size_j = n2;
size_kl = nzl;
size_k2 = npl;
tl = jcl; i
t2 e ocl;
} /¢ end alse */
for (1 = 0; 1 < size_i; f4+4)
{

26

printf (* from node Sd\n*, 1):
for (§ = 0; 3 < size_3; J++)
{
printf (* to node \d\n*, J);
printl (® input coefficlents:\n");
for (k = 0; k < size_kl; kes)
{
printf (* %7.4f£¢, cX(L1(310k1):
12 ({ces46) =a$)
putchar (‘\n’);
} /* end for k */
$L (2 (che))
putchar (‘\n’);

printf (* output coefficients:\n");
for (k = 0; k < size_k2; kee¢)
{
printg (* &7.42", t2[51(3)(x]);
1L ((ceer6) ==f)
putchar {'\n’);
} /* end for k */
1L (ttexd))
: putchar(‘\n’};
} /* end for 3§ */
} /* end for L */
} /°* end print_weights */

/* compute output of filter in response to input x */

/* maintain input_value and cutput_value arrays which contain */
/* respectively historlies of inputs and outputs */

/* starting with the most recent. */

/* compute and accumulate gradient descent vectors d_input_cosfficients */
/¢ and d_output_coefficients for the coefficient arrays */
/* the input parameter is the amount of error to te fed back °*/
void gradient (d_input_coefficient, {nput_value,
d_output_ccefficlient, output value, Numlercs, Numfoles, dy)
float *d_input_coefficient, *input_value,
*d_output _coefficient, *output_value, dy;
int Numlercs, NumPoles;
{
int 1;

for (§ = 0; 1 < NumZeros; i++)
d_input_coefficient(i] +=
(dy*input_value(i});
for ({ = 0; 1 < NumPoles; 1++)
d_output_coefficient(i] ¢=
{(dy*output_value{i+l]);
} /* end gradient */

/* correct coefficlent vectors from the */
/* descent vectors */
vold apply_correction (InputCoefficient, D_lInputCoefficient,
OutputCoefficient, D_OutputCoefficient, m_{, m_o, FromNode, ToNode,
NunZeros, NumPoles)
float ***InputCoefficient, ***D_InputCoafficient,
eesCutputCoefficient, ***D_OutputCoefficient, *vem_{, ***0_0;
int FromNode, ToNode, Numlercs, NumPoles;
{

int §;

for (4 = 0; §{ < NumZaros; i++)
{
InputCoefficient (FromNode] {ToNode) [i] +=
(alpha® (epsilon*D_InputCoafficient [FromNode] [ToNode] {i{]+deita'm_i
{FromNode] [ToNode ] (1]));
a_i(FromNode] (ToNcde) (1] = D_InputCoefficient [FromNode] (ToNode]{Li];
D_InputCoafficient [FromNode) [ToNode}(!) = 0.0;
} /¢ end for { ¢/
for (L = 0; L < NumPoles; i++)
{
OutputCoefficient [FroaNode! [ToNode] (1] ¢=
(alpha* {(epsilon®D_OutputCoefficient (FromNode] (ToNode] (l}e+delta*m_
o [FromNode} {ToNode] [£}));
m_o(FromNode! (ToNode] {{]| = D_OutputCoefficient [FromNode]{ToNode|(i];
D:Ouzpu:Cootricicnt(rrenNodcl(ToNodcl[L] = 0.0;
) /° end for L */
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) /* and apply_correction */

veid fropagataforvard (Sample, low, high, NetInput)
float lowv, high, °**Netlnput;
int Sample;

i)

int {, In, Rid, Out;
float t;
float °**iptr, *veoptr;

/* clear the hidden layer and output neurons */
for (Hid = 0; Hid < nl; Hid++) -
nvo(Mid] = 0.0;
for (Out = 0; Out < n2; Outes)
avl {Out] = 0,0;
/* propagate input to hidden for input sample *"Sample® ¢/
for (In « 0; In < nO; Ine+)
{
for (i = n10-1; 4 > 0; t==)
IvO(In] (4] = {vO(In}({i~1});
fvO{In} (0] = Netlnput{In)(Sample)+frand(low, high);
for (Nid « 0; Hid < nl; Hid++)
{
t = 0.0;
for (L = 0; L < nz0; fe4)
tee (AvO(In) (Lo scO{In] (Hid]) [L1]);
for ({ = np0; & > 0; f==)
tee(0cO{In) (Kid]{i=1])* (ovO(In](Hid] [1}=ovO{In](Nid][L~1])

nvQ[Hid)+et;
ovO{In] (Hid)(0) = ¢;
} /* end for Hid ¢/
} /° end for In ¢/
for (Hid = 0; MHid < nl; Hide+)
nvO(Hid] = sigmoid(nvO{Hid]);
$f ( HidFile !e NULL)
{for (Hid = 0; Hid < rl; Hidee)
fprintf (MidFile, ® 88.4f\t", nvO({Hid]):
fprint! (Hidfile, *\n=); ~
}
/* propagate hidden te output */
for (Hid = 0; Hid < nl; Hides)
i )
for ({ = n2l-1; 1 > 0; i~=)
ivi{Hid] (1) = ivl(Hid){i-1];
vl (Kid]} (0] = nvO([Hid];
for (Out = 0; Out < n2; Out++)
{
teQ;
for {1 = 0; § < nzl; {+4)
tem(ic) [Hid][Out][1]*4vi(RiG] [L1}),
for (L = nply L > 0; =)
tem (0Cl (Hid] [Qut) (S~1)" (ovl[Kid] [Out] [{])=ovl[Kid] [Out] {4~

avl (Out]+=t;
ovl(Hid) (Out] (O] = ¢;
} /° end for Out */
} /* end for Rid ¢/
/* compute sigmoid for output layer neurons */
for (Out = 0; Out € n2; Out++)
avl(Out] = sigmoid{nvi(Out]);
/* Maintalin the last Azl {nputs and outputs for {nput filters °*/
iptr =« {n0{nsl-1};
optr = ohO{nsl-1];
for (L = azl=l; { > 0; f=-)
{
ino{4] = in0{1-1);
oh0(4) = on0[i-1]);
} /* end for { */
1ho(0] = {ptr;
oh0 (0] = eptr;
for (In = 0; In < n0; Ine¢)
{
for (L = 0; { < n20; 1l+4)
1ho(0) (In) (L} = LvO(In]{L]);
for (Hid = 0; Hid < nl; Kides)
for (L = 0; { <= npl; i++)
oh0 (0] {In] {Kid]j[1] = ovO[In]} (Kid)(L]);
} /* end for In */

j /¢ end Propagateforward */

void ComputeError (Sample, dymax, esum)
int sample;
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float *gymax, *esum;
{
{nt Oue;
static float dyabs;
for (Out = 0; Out < n2; Out+s)
{
OutError(Out] = TestWaveOut{Out] (Sample] - nvi{Out};
Tesum +o (dyabs={abs (QutError(Qut])):
if (dyabs > *dymax)
*dymax = dyabs;
} /* end Qut ¢/
} /° end Cozputafrror */

void Propagatedackward (Saaple, dymax, ssum)
int Sample;
float *dymax, *esum;
t
{nt §, In, Hid, Out;
static float dyabs;

/% first compute the srrer at the output layer */
for (Out = 0; Out < n2; Outeer)
{
OutError({Que} =
WaveOut (Out]! (Saaple] <« avl([Out] ;
sqsum += (dyabssfabs(CutError(Out})):
1f (dyabs > *dymax)
*dymax = dyabs;
OutError{Out)*=d_sigmoid(nvl{Outl):
} /° end for Out ¢/

/* now compute weight change for neurons in the hidden te output layer

and make the corrections®/
for (Out = 0; Out < n2; Out+e+)
for {(Rid = 0; Kid < nl; Hides)
gradient (dicl(Mid}[Out], ivi{Hid],
docl{Kid] (Que}, ovl(Hidl{outl,
. - nzl, npl, Outfrror{Outl]);
for (Ouz = 0; Out < n2; Out++)
for (Hid e 0; Hid < nl; Hide+)
apply_correction (icl,
dicl,ocl,
docl,micl, mecl, Hid, Out, nzl,
npl)?
for (L = 0; § < n2l; Le¢)

{
for (Mid = 0; Hid < nl; Hide+)
{

HidEzrror(Hid) = 0.0;
for (Out = 0; Out < n2; Qutees)

HidError (Hid]+=(icl(Hid) (Qut]{i]*OutError(Out});

HidError{Hid]*=d_sigmoid (ivl([Hid])({Li]);
for (In = 0; In < n0; In+s)

Ggradient (dicO(In}([HSd), LhO[L)(In],
docO(In) [Hid], oh0[1]{In](Hidg]},
nz0, np0, HidError(Hid]};

} /* eng for Hid °*/
} /* end for § °/
for (In = 0; In < n0; In¢e)
for (Hid o 0; Hid < nl; Hides)
apply_cerrection (icO,
diec0,0c0,
docO,nicld, mocO, In, Hid,
nz0, npo);
} /* end PropagateBackward */

void learn ()
(
int Qut, 4, 3, n = 50, TestNetwork = £0, TestErrNetwork = 10,
SaveWts = $0;
float dymax, esum, TestMax, TestSum, high » 0,0, low = 0,0;
FILE *ErrorFile, *TestFile, *QuikTestrile;
string Wesfile;

printf (* Fllenams to smore quick test performance results> *};
{f (strlen(gets(strl))}
QuikTestFile « fopen(strl, “w®);
alse
QuikTestFile = NULL;
cprintf (* Filename to stores detalled test perfermance results> *);
if (strlen(qets(strl)))
TestFile = fopen(strl, *w"};
else
Testfile = NULL;
printf (= Flle to store error function> “};

30
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1f (strlen(qgets(strl)))
Ezrorfile = fopen(strl, "w*});

else
Errorfile = NULL;

printf (* flle to save weights to> *);

if (strien(gets(WtsFile)})

{
printf (“"Periodically save weights every 4d passes >", SavewWts);
sscanf (gets({strl), “"%d", sSaveW:s);
) /* eand Wtsrile */

qet_lo 0);

printf (* get weights from file> *);

L€ (stolen{gets{stzl)))
qet_coefficients(strl);

printf (“Perform quick network performance test every Vd passes> *
 TestLrrNetworzk); -

sscanf (gets(strl), *"sd®, §TestErrNatwork):

printf ("Perform detailed network perf{ormance tast every %d passes (must be multi

ple of quick network test)> * ,TastNetwork);

sscanf {gets(strl), "vd“, sTestNetwork);

printf (" range for {nput nolse <%6.2f V6.20> =, low, high);

sscanf (gecs(strl), *\(ef", ¢slow, &high):

printf (" cycles to process, learning rate and momentum cOnstant <id V6.4f V6.20>

n, alpha, delta);
e while {(getch{) = ¢q’)
{

sscan{ (strl, *SdVIsf®, ¢n, talpha, &delta);
epsilon « 1.0-dalta;
for {1 = 0; 1 < By fe4)
{
1 ( ((1 ¢ SaveWts) == 0) &6 (strlen(WtsFile)))
save_coeff{icients (WtsFile);
esum = dymax = 0.0;
for (3 = 0; 3§ < (NumSamples * NumSets); J+¢)
{

{2 ({3 & NunSamples) == {)
reset_network ();
PropagatefForward (3, low, high, Waveln);
PropagateBackward (3, ¢dymax, &esum);
Lflush(ErrerFile);
total_cycles++;
} /% and for 3§ v/
1L ((TestErzNetwork != 0) && (({ & TastErrNetwork) e= 0))
{
TestMax = TestSum « 0.0;
reset_network ();
1£ ((TestFile !~ NULL) && (({{ & TestNetwork} == 0))
fprintf (TestFile, “%d \n*,i);
for (J = 0; J < (NumTestSets * NumTestSamples); J+¢)
{
12 ({3 ¢ NumTestSamples) == 0)
resst_network (};
Propagatefervard(j, low, high, TsstWaveln);
ComputeError(j, &TestMax, &TestSum);
12 ((TestFile (= NULL) && {((L & TestNetwork) == Q})
{
for (Out = 0; Out < n2; Out++)
fprintf(TestFile, “%6.2f \t*, avl{Out]};
fprint{ (TestFile, *\n");
}
} /* end § */
1€ (QuikTestfile {= NULL){
fprintf (QuikTestFile, "8d \t V6.2f \t %6.2f \n*,
{, TestMax,
TestSum/ (float) (n2*NumTestSamples)};
fflush (QuikTestFile);
} /* end Testfile ¢/
{ /* end TestNetwork ¢/
1f (ErrorFile !e NULL){
fprint! {(Errorfile, * §6.2f \t t6.2f\n",
dymax, esum/(float) (n2*NumSamples ¢ NumSets));
fflush(trrozfile);
}
} /¢ end for { o/
printf ("max error = 46.2f average error = A6.2f\n",
dymax, esum/{float) (n2*NumSamples°NumSets));
printf (® cycles to process, learning rats and momentum constant <¥d 6.
42 36.20> or <g> to quit >*, : .
n, alpha, delta);
} /* end while */
TAd printf (" save coefficients to file> *);
1€ (scrlean(gets(strl))) -
save_cosfficients (strl); */
1 (Ercozrfile !'= NULL)
fclose (Errorfile);
1{ (TestFile != NULL)
fclose (Testfile);
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} /* end learn ¢/

void PropOnly ()

3n;:

tat i, 3, k=0, n = $0;

float max_error_value, ave_error_value, ¢
float high = 0.0, low = 0,0; .
FILE *Resuitsfile, *error_record_file;

printf (* File to store propagation results> *);
if (strlen{getsistzl)))
ResultsFile = fopen(strl, "w*);
alse
ResultsFile = NULL;
printf (* File to record hidden activations? > *);
1f (strlen(qecs(strill) .
HidFile = fopen(strl, “w°);
else
HidFile « NULL;
printf (* file to store record of network errors> °®);
if (strlen(gets(strl)))
ezror_record_file = fopen(strl, *w=);
else
error_record_file = NULL;
get_lo ();
printf (* get weights from file> *);
if (strlen(gets(strl)}l
qet_cosfficients(strl);
printf (* range for input nolise <V6.2f $6.2£> *, low, high);
sscanf (gets(strl), "SLaf®, &low, &high):
1f (Resultsfile)
{
for (L = 0; 1 < n0; 1++)
fprintf (ResultsFile, "\tWavelIn(ad]", {);
for (L = 0; 4 < n2; L++)
fprintf (ResultsFile, ®\tWaveOut(d&)", §);
fprintf (ResultsfFile,*\n\n");
} /* end if */
printf (® cycles to process <%d > °,n);
while (getch() != °q‘)
{
sscanf (strl, *%d*, &n);
for (4L = 0; 1 < n; de¢)
{
for (3 = 0; § < (NumSamples °* NumSats); je¢e)
{
1f ((3 & NumSamples) == 0)
{
1{ (RegultsFile)
putc(’\n’, Resultsfile);
reset_network ():
) /* end {f */
propagateforvard (3, low, high, Waveln);
1f {(ResultsFile !=<NULL)

{
for (k = 0; kX <€ n0; kes)

fprintf (RecultsFilo, "\t \8.4[°, Waveln(k]

for (k = 0; k € n2; Kkee)

tprine{ (ResultsFile, =\t t8.4f=", avi(k})

4
putc{’\n’, ResultsFile);
} /* end 1f */
if (error_reccrd_file)
{
sax_error_value = ave_error_value = 0.0;
for (k = 0; k € n2; ket
{ .
if ((defabs (WaveOut (k) ({3]-nvi(k])) > max
scror_value)

max_error_value = d;

: ave_error_valuered;
} /* end for k */
ave_error_value/en2;

fprint? (c::o:_rcco:d_!llc,'\!\cit\n',lax_orzo:_

value, ave_error_value);

} /% end 1f */
} /7* end for j */

{f (ResultsFile)
putc(’\n‘, ResultsFile};
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} /* end for L */
printf (* cycles to process<¥d> or <q> to quit> *, n);
} /* end while */
4f (Hic¢Flle)
fclose (MidFile);
12 (ResultsFile)
fclose {(ResultsFile);
if (error_record_file)
fclose (error_record_file);
} /¢ end ProplOnly */

/* void impulse ()

{

int 4, n; .

fleat *temp, *FFTReal, °*FFTImaginary, result;
FILE *¢;

init_triq (Fresize);

FrTReal = (float*)mem_allec(FFTSizesizecf(float));
FFTImaginary = (float*)mar_alloc(FFTSizersizecf (float));
printf ("Inter layer designation < 0- Hidden layer, 1-Qutput layem®);
printf (* value of initial impulse> “);

input_value (0] = atof(getsistrl));

printf ("Spectral Impulss Response file name> *);

if (strlenigets(strl)))

f = fopen(strl, "w");

printf (" periods to propagate inpulse>» *);

n = atol (Qets(stzl));

ResetNetvork ();

while (geteh(} != ’q’}

{

1L (strl(0] ee *0°)

{

fprintf (£, "Input Te Nidden Spectral Impulse Response®);
for (Nid = O; Nid < nl; Kid++)

( N

fprincf (*Spectral Impulse response for hidden node %d®, Hid);
for (4 = 0; {4 < FriSize; i+¢) °

FrIfsal (4] « FrTImaginacy(i] = 0.0:

for (In = 0; In < n0; Ine+)

for (pulse = 0; pulse < n; pulsge+s)

FrTReal [(FFTSize/2) +pulse] +=

nev_output (icO, ivO,

000, ev0,

In, Wid, n30, npo,

input_value (pulse]);

for ({ = FFTSize/2, n o (FFTSize/2)-1; | < FFTSize; i++, n=-)
TrIReai(n] = FFTReai({];

LIl (FFTReal, FFTImaginary, FFTSize, 7);

for ({ = 0; L < FITSiza; {++})

fprintf(f, = $10.2f \n*,

Sqre (FFTReal[1)*FFTReal[i] + FFTImaginary[i)*FFTImaginazy(i])):
1

}

alse

1 (strl{0) == r1’)

HldToOutlmp ():

alse

12 (stz1{0) == *2%)

AllNetImp ();

MainMenu():

temp = (flcat*)mem_alloc{(num_inp_coeff+num_pcles+l)*sizecf (float));
for (L = 0; { < FFTSlze; i++

FFTRaal(i} = FrTImaginary(i) = 0.0;

for (L = 0; { < num_inp_coeff; {¢+]

{

temp({i] = {nput_value{i);

input_value(y]) = 0.0;

)

for (i = 0; { <= num_poles; i¢+)

{

temp(ienum inp coelf] = output value{l];
output_valueii] = 0.0;

}

printf ("Spectral Iapulse Response file name> *};
if (strlen{gets{strl)})

{

£ = fopen{strl, "“w"j;
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printf (" periods to propagate inpulse> *);

h = atol (gets(strl));

fprintf (f, "Impulse response\n®):;

for (L » 0; L ¢ n; §++)

{ )
fprintf (£, = %10.2f\n", resultenew_output(0.0));
FFTReal{(FFTSize/2)+1] = rasult;

| .

}

for (L = FFTSi2e/2, n = (FFTSize/2)-1; { < FFISize; i¢+, n==)
. FFTReal(n} = FFTReal(il;
£It1(FTTReal, FITImaginary, FFTSize, T):
fprintf (£, “"Fourlier Transform of Impulse Response\n®);
for (L = 0; L& < PFTSize; i+¢)
fprintf(f, *810.2f \t %10,.2f \t §10.2f \n*, FFTReal{l], FFTImaginaryfi},
sqrt (FFTReal{{]*FFTReal(i] + FFTIzaginary{i) "FFTImaginaczyii})):

for (L « 0; { < num_inp_coef?;
input_value(i} = tempiil;

for (1 = 0; { <= nua _polas; fe+)
output_value(i} =« t.ﬂp(l'hul inp_coeffl;
free (Temp);

free (FFTReal);

f+e)

free (FrTimaginacy);
fclose (2);

printf (° option> ®);
y v/

void Hainnonu O
-1
printf (“\nMENU®);
printf ("\nlearn from training file <l>=);
printf (“"\npropagate froa file <p>®);

/* printf ("\nspectral  impulse response<i{>®); */

printf ("\ndo nething - quit<g>*);
printf ("\naction? >*);

main ()

allocate_network ();
MainMenu (};
vhile (getch()
{

te 7q")

{2 (stzl[0] ew ‘1)
learn 0;
else
12 (strl{0}] == ’p’})
PropOnly ():
else

/* L (stzl[0) == *4’)

impulse (}; °*/

MainMenu(};
}/* end while ¢/
) /* end main */

What is claimed is:

1. A processing element (i) for use in a space-time
neural network for processing both spacial and tem-
poral data, wherein the neural network comprises a
plurality of layers of said processing elements, the plu-
rality of layers comprising a first layer and at least one
additional layer, the network further comprising con-
nections between processing elements of the first layer

65

and processing elements of an additional layer: each
said processing element adapted to receive a sequence
of signal inputs X(n), X(n—1), X(n—2) ..., each input
X(n) comprising K signal components xj(n), x2(n), . . .
x{n), . . . xi(n), each said processing element compris-
ing, in combination:
(a) a plurality K of adaptable filters (Fy;, Fa, . . . Fj,
. Fi;) each filter Fj;having an input for receiving
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a respective component x{n), x{n—1), x{n—2), . .
., of said sequence of inputs, where x4{n) is the most
current input component, and providing a filter
output y{(n) in response to the input x{n) which is
given by:

YAm)=Ram;Yfn—m), byXfn— k),

where a,;j and by; are coefficients of the filter Fj;and f
denotes the operation of the filter;
(b) a junction, coupled to each of said adaptive filters,
providing a non-linear output p{S4{n)) in response
to the filter outputs y(n) which is given by:

PASKR)=Lyfn)),

where Si(n) is the sum of the filter outputs, .
whereby said junction presents a sequence of out-
put signals, p{S{n)), p{S{n—1)), p{S{n—2)).

2. The processing element defined in claim 1, wherein
said non-linear output provided by said junction is the
sum Sgn) of the filter outputs modified by a non-linear
transformation p{S{n)) to the sum S{n), where S{n) is
given by:

S{my=Z%;y; (n).

3. The processing element defined in claim 2, wherein
the non-linear transformation is a sigmoid transfer func-
tion given by:

PASAM)=1/(1+e—SKn)).

4. The processing element defined in clairh 1, wherein
said filters are non-linear filters.

5. The processing element defined in claim 4, wherein
said non-linear filters are exponential auto-regressive
filters.

6. The processing element defined in claim 1, wherein
the coefficients amj and by; of each filter Fj; are adjust-
able.

7. The processing element defined in claim 1, wherein
said adaptable filters are digital filters.

8. The processing element defined in claim 7, wherein
said filters are linear filters.

9. The processing element defined in claim 8, wherein
said filters are recursive, infinite impulse response filters
and wherein the response of each filter is given by:

- ¥
yAn) = ey ampfn — m).

10. The processing element defined in claim 8,
wherein said filters are nonrecursive finite impulse re-
sponse filters and wherein the response of each filter is
given by:

)—¥b~ k
) = 2 b — ).

11. The processing element defined in claim 8,
wherein the response of each filter is given by:

¥ Y b k
ym = 2 ampfn —m)+ 2 pxn — k).

12. The processing element defined in claim 11, fur-
ther comprising means for adjusting the coefficients am;

10

15

20

25

30

35

45

50

55

65

5,253,329

40

and by;of each filter F;in dependence upon the junction
output p{SA{n)). .

13. The processing element defined in claim 12,
wherein said adjusting means includes means for deter-
mining an error in the output p{S{(n)) between the ac-
tual and desired response of the processing element (i)
and adjusting the filter coefficients a,; and by; of each
filter Fj;in dependence upon said error.

14. The processing element defined in claim 13,
wherein the non-linear transformation is a sigmoid

transfer function with output p{S{n)) given by:
PASKn))=1/(1+e~SKn)).

15. The processing element defined in claim 14,
wherein said error A{n) is given by:

Afn)=(DAn)—ALn)) p'(S(n))

where:

D4n) is the nth desired response from a given se-
quence for neuron i at the output layer

Ag(n) is the network’s output response i for the nth
input sequence pattern

p'(S{n)) is the first derivative of p{S«n)), the non-lin-
ear transfer function for the ith output’s activation
value or in the case of said sigmoid non-linear
transfer function, p'(S«{n)) is given by:

P'(SKn)y=pASKm)X1—pASLn))).

16. The processing element defined in claim 15,
wherein said filter coefficient by is adjusted in accor-
dance with the formula:

Abj=alnAbjold-+(1—m)ALn) x; (n—K)

where:
Ab is the update for a zero coefficient, bjj, lying
between processing elements i and j
a is the learning rate of the neural network
Ab;04 is the most recent update for the kth zero
element between processing elements i and j
7 damps the most recent update
X{n—k) is the output of the jth neuron in the hidden
layer.
17. The processing element defined in claim 15,
wherein said filter coefficient a;j is adjusted in accor-
dance with the formula:

Aajk=a[nAay®ld+1—m)ALn) yifn—K)

where:
Aajj is the update for a pole coefficient, aji, lying
between processing elements i and j
a is the learning rate of the neural network
AaoM is the most recent update for the kth pole
coefficient between processing elements i and j
7 damps the most recent update
yi{n—k) is the activation value for the filter elements
between neurons i and j, k time steps ago.
18. The processing element defined in claim 15,
wherein said filter coefficients a;x and bk are adjusted
in accordance with the formula:

Abjik=a[nAby® + (1 —m)ALn) x; (n—k)]
Aagk=a[nAa o +(1—mALn) yj (n— k)]

where:
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Aaj is the update for a pole coefficient ajix lying
between processing elements i and j

Abj is the update for a zero coefficient by lying
between processing elements i and j

a is the learning rate of the neural network

Ab;;0ld is the most recent update for the kth zero
element between processing elements i and j

7 damps the most recent update

Aajold is the most recent update for the kth pole
element between processing elements i and j

x{n—k) is the output of the jth neuron k time steps
ago

yi{n—Kk) is the activation value for the filter element
between neurons i and j, k time steps ago.

19. A neural network for processing both spacial and
temporal data, wherein said neural network comprises a
plurality of layers of processing elements, the plurality
of layers comprising a first layer and a second layer, the
network further comprising connections between pro-
cessing elements of the first layer and processing ele-
ments of the second layer; said first layer of said net-
work adapted to receive a sequence of signal inputs
X(), X(n—1), X(n—2). .., each input X(n) comprising
N signal components x1(n), x2(n), . . . x{n), . . . XxMn),
said first layer of said network comprising, in combina-
tion: :

(a) a plurality L of first processing elements, each first
processing element (i) comprising a plurality N of
adaptable filters (F1;, Fa;, . . . Fji, . . . Fay), each
filter Fj; having an input for receiving a respective
component x{n), x{n—1), x{n—2), . . ., of said
sequence of inputs, where x4{n) is the current input
component, and providing a filter output yn) in
response to an input x{n) which is given by:

YAnYy=RampLn~m), bgx{n—k)),

where amjand by; are coefficients of the filter Fj;and f
denotes the action of the filter;
each first processing element (i) further comprising a
first junction, coupled to each of said adaptive
filters, providing a non-linear output p{S{n)) in
response to the filter outputs yi{n) which is given
by:

PAS(M)=Rpfn)),

where S{n) is the sum of the filter outputs,

each first junction presenting a sequence of first out-
put signals, p{Si{n)), p{n—1)), p{S{n~2)),....

20. The neural network defined in claim 19, wherein

said second layer comprises:

a plurality of M of second processing elements (k)
each coupled to a plurality of said first junctions,
each second processing element comprising a plu-
rality O of adaptable filters (Fix, Fak, - . . Fax, . . .
Fox), each connected to one of said first junctions,
each filter Fax having an input for receiving a re-
spective first junction output signal Si(n), Se(n—1),
Si(n—2), . . ., of said sequence of first junction
output signals, where Si(n) is the most current
output signal, and providing a filter output, yx(n),
in response to an input Si(n) which is given by:

Ykm=RCqi Yn(n—1)), drpi{Si(n—r)),

where Cyx and d.x are coefficients of the filter Fpx and f
denotes the action of the filter;
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each second processing element (k) further compris-
ing a second junction, coupled to each of said sec-
ond adaptive filters of the respective second pro-
cessing element and providing a non-linear output
Pg(Sg(n)) in response to the filter outputs ya(n)
which is given by:

PASm)=Fi(n)),
where Sg(n) is the sum of said second filter outputs,
each second junction presenting a sequence of second

output signals p(Sg(n)), pg(Sg(n—1), pe(Sg(n—2)), .

21. The network defined in claim 20, wherein said
non-linear outputs provided by said junctions are a sum
Sg(n) of the filter outputs modified by an arbitrary non-
linear transformation pg(Sg(n)) to the sum Sg(n), where
Sg(n) is given by:

$gn) = 3 yilo.

22. The network defined in claim 21, wherein the
non-linear transformation is a sigmoid transfer function
given by:

PAS{n)=1/(1+e—SLn)).

23. The network defined in claim 20, wherein said
filters are non-linear filters.

24. The network defined in claim 23, wherein said
non-linear filters are exponential auto-regressive filters.

25. The network defined in claim 20, wherein said
adaptable filters are digital filters.

26. The network defined in claim 25, wherein said
filters are linear filters.

27. The network defined in claim 26, wherein said
filters are recursive, infinite impulse response filters and
wherein the response of each filter is given by:

- ¥
yfn) = el c,.,,_y,(n — m).

28. The network defined in claim 26, wherein said
filters are non-recursive finite impulse response filters
and wherein the response of each filter is given by:

- ¥ a4 13
yny = T digsfn — K).

29. The network defined in claim 26, wherein the
response of each filter is given by:

1}‘:! JEV dii k
yin) = el cmpfn — m) + o0 kxAn — k).

30. The network defined in claim 29, wherein the
coefficients ¢njand dg;of each filter Fj; are adjustable.

31. The network defined in claim 29, further compris-
ing means for adjusting the coefficients cmj and dy; of
each filter Fj; in dependence upon the plurality N of
junction outputs pg(Sg(n)).

32. The network defined in claim 31, wherein said
adjusting means includes means for determining and
error in said outputs pg(Sg(n)) between the actual and
desired response of the network and adjusting the filter
coefficients c,;j and dyj of each filter Fj;in dependence
upon said error.
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33. The network defined in claim 32, wherein the
non-linear transformation is a sigmoid transfer function
given by:

PeSg(m)=1/(1+e—Sgn)).

34. The network defined in claim 33, wherein said
error is given by:

Sg=(Dyln)—Ag(m)) p'(Se(n))

where:

Dyg(n) is the nth desired response from a given se-
quence for neuron g at the output layer

Ag(n) is the network’s output response at neuron g for
the nth input sequence pattern

p'(Sg(n)) is the first derivative of the non-linear trans-
fer function for the gth output’s activation value or
in the case of said sigmoid non-linear transfer func-
tion, p’(Sg(n)) is given by

P'(Sgm)=p(Sg(n)) (1—p)Sg(m)))-

3S. The network defined in claim 34, wherein the kth
zero coefficient djjx of the filter between first processing
element j and second processing element i is adjusted in
accordance with the formula:

Adjjk=afnAd oM + (1) Apfn— k)]

where:

Ad;jx is the update for a zero coefficient, djk, lying
between first processing element j and second pro-
cessing element i

a is the learning rate of the neural network

Ad;ix° is the most recent update for the kth zero
coefficient between first processing element j and
second processing element i

7 damps the most recent update

x{n—k) is the output of the jth first processing ele-
ment k time steps in the past.

36. The network defined in claim 34, wherein the kth
pole coefficient for said filter between first processing
element j and second processing element i, cj, is ad-
justed in accordance with the formula:

Acjx=a[nAcyioM+(1—1) Apifn—Kk))

where -
Acyj is the update for the kth pole coefficient, cjj,
lying between first processing element j and second
processing element i
a is the learning rate of the neural network
Acji°/d is the most recent update for the kth pole
coefficient between first processing element j and
second processing element i
7 damps the most recent update
yi{n—k) is the activation value for the filter element
between first processing element j and second pro-
cessing element i, k time steps in the past.
37. The network defined in claim 34 wherein said
filter coefficients ;% and dj are adjusted in accordance
with the formulae:

Adjk=a[nAdoM 4+ (1—n) Apfn—i)]
Acjr=afnAci®+(1-n) Aykn—k))

where:
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Acjjk is the update for the kth pole coefficient cjk
lying between first processing element j and second
processing element i

Adj is the update for the kth pole coefficient djx
lying between first processing element j and second
processing element i

a is the learning rate of the neural network

Adj© is the most recent update for the kth zero
element between first processing element j and
second processing element i

71 damps the most recent update

Acj is the most recent update for the kth zero
element between first processing element j and
second processing element i

x{n—k) is the output of the jth first processing ele-
ment k time steps in the past '

yi{n—K) is the activation value for the filter element
between first processing element j and second pro-
cessing element i, k time steps in the past.

38. The network defined in claim 34, wherein the kth
pole coefficient for said filter between network input
element j and first processing element i, a;i, is adjusted
in accordance with the formula:

Aajr=aln8a5°"+(1—n)eyin—Kk)]

where
Aaj is the update for the kth pole coefficient, aj,
lying between network input element j and first
processing element i
a is the learning rate of the neural network
Aao4 is the most recent update for the kth pole
coefficient between network input element j and
first processing element i
€;is the backpropagated network error at the ith first
processing element
7 damps the most recent update
yi{n—Kk) is the activation value for the filter element
between network input element j and first process-
ing element i, k time steps in the past.
39. The network defined in claim 34 wherein said
filter coefficients a;x and by are adjusted in accordance

with the formulae:
Abjr=afmAbyM +(1 —nex n—k)]

Agjit=a[nAajir?+(1 ~n)eygn—Fk)]

where: »

Aajjis the update for the kth pole coefficient a;x lying
between network input element j and first process-
ing element i

Abjy is the update for the kth zero coefficient by
lying between network input element j and first
processing element i

€;is the backpropagated network error at the ith first
processing element ‘

a is the learning rate of the neural network

Ab,;ix°M is the most recent update for the kth zero
element between network input element j and first
processing element i

7 damps the most recent update

Aayxo% is the most recent update for the kth pole
coefficient of the filter between network input
element j and first processing element i

xAn—k) is the jth network input k time steps in the
past
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yi{n—K) is the activation value for the filter element
between network input element j and first process-
ing element i, k time steps in the past.

40. The network defined in claim 34, wherein the kth
zero coefficient bjj of the filter between network input
element j and first processing element i is adjusted in
accordance with the formula:

Abjik=anAbol+(1 —nexfn— k)]

where:
Abjj is the update for a zero coefficient, by, lying
between network input element j and first process-
ing element i

€; is the backpropagated network error at the ith first

processing element

a is the learning rate of the neural network

Abgod is the most recent update for the kth zero

coefficient between network input element j and
first processing element i

7 damps the most recent update

x{n—k) is the jth network input k time steps in the

past.

41. The network described in claim 33, further com-
prising a means for propagating the error Ag(n) mea-
sured at the outputs of the gth second processing ele-
ment backward through the intervening filter connec-
tions between first and second processing elements
thereby to provide a means for adjusting the coeffici-
ents of the filters which connect the inputs of the net-
work to the first processing elements.
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42. The network defined in claim 38, wherein said
means for backward propagation of error is described
by the formula:

T U
efn) = p'{S{n)) [3: kio diikbfn + k) + § k}=:1 Cjik}’ij(" - k)]

where

€4n) is the result of backward propagation of network
error from the outputs of all second processing
element through the filters between first processing
element i and the plurality N of second processing
elements

cjikis the kth pole coefficient of the filter between first
processing element i and second processing ele-
ment j

djjk is the kth zero coefficient of the filter between
first processing element i and second processing
element j

T and U are respectively the non-recursive and recur-
sive orders of the filter through which back-propa-
gation occurs

Af£n+Xk) is the error computed at the output of the jth
second processing element k time steps in the fu-
ture

vi{n—Kk) is the output from k time steps in the past of
the filter operating on the inverted sequence of

network errors.
* * * * 3



