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Abstract - This paper describes a new VLSI-based controller for the implementa-
tion of a Linear-Quadratic-Gaussian (LQG) theory-based control system. Use of
the controller is demonstrated by design of a controller for a magnetic bearing
and its performance is evaluated by computer simulation.

1 Introduction

Magnetic levitation is being used in an increasing number of applications to support rotating
or reciprocating shafts. In this setting, the assemblage of power supplies, control circuits,
actuator coils, pole-pieces, amplifiers, and position sensors is termed a magnetic bearing. The
control of magnetic bearings is discussed in [1] and the references cited therein. Traditional
control system design studies require, first of all, a simple and accurate model of the system
to be controlled. The lack of such a model for magnetic actuators containing significant eddy
currents has hampered recent control system design efforts [1, 2]. The purpose of this paper
is to introduce a new mathematical model of eddy currents in a magnetic actuator. The
model is relatively simple, appears reasonably accurate, and is convenient to use in control
system design. The model is based on Maxwell's electromagnetic equations and is simplified
using reasonable, ad hoc assumptions consistent with a magnetic bearing application.

A complete set of equations for the mathematical model of a magnetic bearing is presented
in Section 2, and conclusions and directions of future work are discussed in Section 3.

2 Mathematical Model

For convenience in developing the mathematical model, the magnetic bearing system is sep-
arated into three subsystems: a) the magnetic actuator, b) the magnetic force production
mechanism, and c) the shaft. Each of these subsystems is treated separately in the following
subsections. For the sake of specificity, the model development is applied to specific mag-
netic bearing of interest to NASA. Figure 1 is a schematic cross-sectional view of a magnetic
bearing used in a cryogenic refrigerator developed by NASA for certain space applications.
The refrigerator, magnetic bearings, and associated control systems were designed and con-
structed by Phillips Laboratories [2].

1This research was supported in part by NASA under Space Engineering Research Grant NAGW-1406
and by the NSF under Research Initiation Grant MIP-9109618.
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Figure 1: Cross-sectional view of magnetic bearing.

Figure 1 shows one end of a shaft centered between two diametrically opposed magnetic
actuators. The actuators are activated by separate control circuits energized by voltage
sources ua and v^. The voltage sources are controlled in a coordinated way by a feedback
controller to produce the forces required to maintain the shaft in the desired position in spite
of disturbance forces. Another pair of actuators and control circuits are used to control the
position of the shaft in the orthogonal plane containing the axis of the shaft. No coupling
of forces between the two planes is considered and the two actuator pairs are controlled
independently.

2.1 Magnetic Actuator
The purpose of this section is to develop a mathematical model relating the voltage applied
to the actuator circuit to the current developed in that circuit. Applying Kirchoff's voltage
law to the circuit on the left in Fig. 1 gives

= R^ + N-
dt (1)

where R is the resistance of the actuator circuit, i'i is the coil current, N is the number
of turns in the actuator coil, and $1 is the flux in the magnetic circuit. The flux is related
to the current by the magneto motive force (2) relationship

(2)
/v

where 72. is the reluctance of the magnetic circuit. Assuming the reluctance of the two
air gaps is much larger than that of the magnetic material in the pole-piece, 72. can be
approximated by

/.. • ~\
(3)

where ZQ + z is the length of one air gap, HQ is the permeability of free space, and A is the
area of pole-piece normal to the flux direction. Substituting (3) and (2) in (1) and carrying
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out the indicated differentiation gives

> A I 1 y/7, 1-, fly

(4)vl =
1 di\ ii dz

2

Similar analysis of the circuit on the right leads to the following expression for v2

1 dii i-2 dz]
2 t \ 7_i ' / \fJ Jj I \ /

(ZQ - Z) dt (ZQ- Z)2 dt \ '

Equations (4) and (5) are the desired expressions showing the relationships among control
voltage, actuator current, shaft position, and shaft velocity.

2.2 Magnetic Force Production Mechanism

The purpose of this section is to develop an expression relating the current in the actuator
coil to the electromagnetic force exerted on the shaft. The differential electromagnetic energy
stored in an air gap as depicted in Fig. 1 is given as [3]

1£M,aw = dz (6)
2 /J-o

where B = $/A is the flux density. From Newton's second law the differential energy
can also be expressed as a force acting through a differential distance

dw = Fmdz (7)

Combining (6) and (7) and accounting for the presence of two air gaps, the attractive
forces shown in Fig. 1 are

F =
/*o

and

(9)
o

If the current in the actuator coil is constant, the flux it produces is constant, in both
space and time, and no eddy currents are induced in the pole-piece. Further, if the majority
of the mmf drop occurs in the air gaps, the mmf relationship can be used to express the flux
density in terms of the coil current. The flux densities in the two magnetic circuits can then
be written as

and
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Substituting (10) and (11) in (8) and (9) yields the usual [2] expressions for electromag-
netic force in terms of the coil current and the length of the air gap

(12)

and

*2 y
z0 — z) (13)

If, however, the current in the actuator coil changes with time, eddy currents are induced
in the pole-piece. The eddy currents, in turn, produce a reactive flux in opposition to the
original flux. The result of the superposition of the two effects is a reduced net flux in the
pole-piece. The resultant spatial flux distribution in the pole-piece in a plane orthogonal to
the flux direction is governed by the diffusion-type equation [4]

*
dB(x,y,t)

dt
(14)

where a and fi are the conductivity and permeability of the pole-piece material.
Equation (14) can be solved analytically for a bar whose length is long relative to its

cross-sectional dimensions, 2a and 26. When excited by a sinusoidally varying actuator coil
current

cos azii(t) =

(10) and (15) can be used to develop the boundary conditions

(15)

(16)

Subject to this boundary condition, the sinusoidal steady state solution of (14) is [4]

cosh(ay)
2(z0 + z) cosh(ab) +

( kiry\ ( /— \
Pkcos — - \cosh(x<Jpk}

\2b J \ V ) (17)

where:

s n
(18)

(19)
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and

A-«•+ (20)

-Bi(z,y,2,cj) is a complex number representing the magnitude and phase of the flux
density in the pole-piece. The normalized magnitude of f?i(z,y,z,u>) is plotted in Fig. 2
with z — 0 and w = 10 rad/sec. The figure clearly shows the effect of eddy currents in
depressing the magnitude of the flux in the central regions of the pole-piece.

0.013

O.OOS

—O.OOS

—O.O2

Figure 2: Contour plot of normalized magnitude of flux density.

In order to develop a simple, frequency dependent model of the force produced by .the
actuator current, the flux density as given by (17) is averaged over pole-piece face area
yielding

(21)
fc=l,3,5

The frequency response of BI(Z,U) is dominated by the tanMgi) term in (21), and log-
magnitude and phase plots would reveal the familiar [2] high frequency roll-off of approx-
imately 10 db/decade and 46deg phase lag at high frequencies due to the ^/Ju factor in
the a term. Substituting the spatially averaged flux density, as given by (21), for the con-
stant flux density,5i, in the force equation, (8), yields the following frequency dependent
approximation for the magnetic force produced by a time- varying current

Similar analysis yields a similar expression for the force produced by the other actuator
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Figure 3: Normalized magnitude and phase of average electromagnetic force

(23)

The normalized magnitude and phase of (22) are plotted in Fig. 3 and clearly
show a first-order type response with a high frequency roll-off of approximately 20

db/decade and a phase lag at high frequencies of about 90deg. The response of a first-
order system of the form

(24)

is also plotted in Fig. 3. Comparison of the responses of the two functions indicates
that, at least with respect to sinusoidal steady state conditions, the exact expression of
(22) can be conveniently and accurately represented by the approximate expression of (24).
While the break frequency u>j is closely related to the <r/x product, an optimal value in a
particular application is easily found numerically. The final forms of the frequency domain
approximations for the magnetic forces are then

FF (25)

and
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(26)
A

While (25) and (26) are convenient frequency domain models of the response of magnetic
force to sinusoidal steady state actuator current, it is also useful, for many design and
analysis tools, to have equivalent time domain expressions. This can be accomplished with
little justification, other than it produces an expression that appears to have the right form,
by replacing ju with s, holding i and z constant, and taking inverse Laplace transforms.
The results are the first order differential equations

and

,o7A
m (27)

at

(28)

2.3 The Shaft

The objective of this section is to develop the equations of motion describing the dynamic
response of the shaft to the forces imposed upon it. Referring to Fig. 1, application of
Newton's second law gives rise to the following equations of motion

* = " <29>

~ = jj [Fmz - Fml - K fv\v + Fd] (30)

where v is the velocity of the shaft, M is its mass, K/ is a coefficient of viscous friction,
and Fd is a disturbance force.

3 Conclusions and Recommendations

A new nonlinear dynamic model for use in the design and analysis of control systems for
magnetic bearings has been presented. The time domain representation of the model is given
by Equations (4), (5), (27), (28), (29), and (30). These equations are summarized below as
a set of first order, nonlinear differential equations in state- variable form.

<&i _ 2(2:0 4- z}Rii i:v 2(z0 + 2>i
dt * 2 ( '

(&2 _ 2(z0 - z)Ri2 i2v 2(z0 - z)v2

* ( 'dt
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dFml

dt
(27)

I- <29>

+ Fd] (30)

These six equations, and their linearized counterparts, form a convenient basis form mag-
netic bearing control system analysis and design. Research continues in two areas. First,
to validate the proposed model with experimental data and second, to develop alternative
control system designs compatible with VLSI implementation. Control system designs cur-
rently under investigation are based on the following approaches: a) classical frequency
domain methods, b) modern HZ and #<» methods, and c) neural network/fuzzy control
methods. Results of these efforts will be published in future papers.
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