
».« „,«„.. ̂ ^.r— . ,~.~ —6- ,— ** 2.2.1

Design of a New Squaring Function
for the Viterbi Algorithm

Aria Eshraghi, Terri Fiez and Thomas Fischer
Washington State University

Pullman WA

Kel Winters
Advanced Hardware Architectures

Moscow ID 83843

Abstract- A new algorithm and hardware implementation of the Viterbi squar-
ing function has been developed. The use of an approximation squaring tech-
nique preserves the Viterbi performance as is demonstrated by Monte-Carlo
simulations. Additionally, the 16-bit approximate squaring implementation is
expected to require one-fourth the area and operate at three times the speed of
the conventional squaring implementation.

1 Introduction

The Viterbi algorithm [1] is used to encode and decode data in communication systems.
This algorithm has been utilized in trellis coded modulation (TCM), trellis shaping (TS),
and trellis coded quantization (TCQ). Use of the Viterbi algorithm at the TCM receiver
results in 3-6 dB improvement in signal-to-noise ratio (SNR) for a given error rate [2].
In TS, the use of the Viterbi algorithm at the transmitter results in a reduction of 0.9
dB in the transmitted energy [3]. In TCQ, the Viterbi algorithm is used as a means of
data compression, showing better performance than realizable vector quantizers [4] for the
encoding of a memoryless source. The recent use of the Viterbi algorithm in communication
products such as disk drives, tape drives, and modems has triggered the development of a
single chip Viterbi processor [5].

This paper focuses on an efficient algorithm for performing the squaring function in the
Viterbi processor. The new squaring function uses significantly less area than the conven-
tional squaring techniques'and, at the same time, boosts the speed of the processor without
reducing its accuracy. In the first portion of this paper, the algorithm for the approximated
squaring (APSQR) function is presented. Through Monte-Carlo simulations, it is shown in
section two that this new squaring function results in accurate performance of the Viterbi
algorithm. Section three covers the hardware implementation of the APSQR and compares
the APSQR with a conventional squaring scheme.

2 Approximated Squaring Function

The Viterbi algorithm also known as forward dynamic programming [6], is an efficient search
technique for determining the minimum cost sequence of states in a finite state machine. The

2.2,2

state transitional behavior of the finite state machine in time is mapped into a digraph known
as the trellis diagram. As a result, only the path in the trellis diagram that agrees most
closely with the received sequence is retained. The optimum path is determined by the path
with the minimum mean square distance in the trellis diagram. Thus, the core computation
in the Viterbi algorithm is:

Xt,ki or a^,j + A t i fc2). (1)

Where A is the path length, a is the path metric, and At+lj- is the optimum path terminated
at state j. Computing the path metric requires a dedicated squaring function (ctk,j = Pl,j)
which occupies approximately 30% of the total Viterbi processor chip area using conventional
circuit techniques.

The conventional squaring technique relies on decomposing a number into the sum of
the least significant bit and the remaining bits. The square is calculated using (x + y)2 =
x2 + 2 • x • y + y2 and applying it recursively to a shifted version of the remaining bits. By
decomposing the number into the sum of the most significant bit and the remaining bits,
it is possible to approximate the square of the number without degrading the accuracy of a
Viterbi algorithm.

We will now describe the approximated squaring algorithm. Let A = onon_ion_2.. 04030^1
be the number to be squared. Next, decompose A into the sum of the most significant bit
and the remaining bits:

A = onO 0..0 0 0 0 + on_ion_2.. 04030^1. (2)

We expand A2, or rather A10 in binary, into:

A10 = (onO 0 ..0 0 0 0 + an_ian_2..a4a3a2a1)
10. (3)

Now applying (x + y)2 = x2 + 2 • x • y + y2, A10 becomes:

A10 = onO 0..0 0 0 010+(10)(an_1an_2..o4a302a1)(anO 0..0 0 0 0)+(an_1an_2..a4a3a2a1)
10. (4)

Neglecting the last term, A10 is approximated as:

A10 ~ onO 0..0 0 0 O10 + (10)(an_1an_2..a4a302a1)(anO 0..0 000) . (5)

This can be rewritten as:

A10 ~ (onO 0..0 000-1- an_1an_2..a4a3a2aiO)(anO 0..0 0 0 0). (6)

The approximate squaring of A requires summing the two most significant bits (first term)
and a left shift of (onO 0..0 0 0 0 + an_ian_2..a4a3a2aiO) by n-1 bits.

Fig.l shows a plot of the output versus the input for both the approximated and the
actual squaring functions. The maximum error is 25% and corresponds to input amplitudes
of 2" — 1 where n is an integer. Using the approximated squaring function, the average error
is approximately 10%.

4th NASA Symposium on VLSI Design 1992 2.2.3

3 Simulation Results

Although the average error due to the APSQR function is relatively high, the Viterbi algo-
rithm inherently compensates for noise (or errors) in the data. To illustrate this property,
Monte-Carlo simulations have been used to demonstrate the effect of approximating the
squaring function on the TCQ.

The performance of the TCQ was measured for a Memoryless uniform source with a uni-
formly distributed codebook. The simulation results were based on encoding 1,000 different
blocks of length 10,000 random data samples. The resolution for the source was selected to
be 15 bits. This reduces the effect of finite resolution used in TCQ which results in better
measurement of the APSQR function performance. The simulation results are shown in
Table 1.

Table 1
The performance versus the bit rate

for the conventional and the approximated
squaring function.

Rate
(Bits)
3
4
5
6

Conventional
SNRd5
18.776
24.940
31.029
37.085

Approximated
SNRdfi
18.748
24.912
31.002
37.058

The bit rate is the number of bits per sampled input data. SNR is the expected signal
to noise ratio, and it is given in dB. The variance was less than 0.006 dB in each case. As
one can see, the degradation in performance of the TCQ due to utilization of APSQR is less
than 0.03 dB for the expected value of the SNR. Thus, approximating the squared numbers
produces a negligible error in the output. In the next section, it is shown that there is a
significant saving in circuit area and increased speed with this implementation.

4 Hardware Implementation

To illustrate the efficiency of the APSQR function, the conventional squaring function is
first described. The conventional implementation of the squaring function has a cellular
architecture such that a single block is repetitively used in the design[7, 8]. Fig. 2 shows a
cellular implementation of a 7-bit squaring function of [7]. Each cell contains a full adder
and a multiplexer with connections shown. The input signals, aj. .ar, enter at the top of
Fig. 2 and propagate vertically through the cells. Simultaneously, the carry bits, (7, and (70,
propagate from right to left. This implementation uses ££=3 * fuU adders and multiplexers
for an n-bit squaring function. For example, a 7-bit squaring function requires:

i = 3 + 4 + 5 + 6 + 7 = 25
i=3

(7)

2.2.4

or 25 adders and 25 multiplexers. The number of adders and multiplexers increases quadrat-
ically with the number of input bits, i.e. £"_3 i = (n2 + n -f 6)/2. The increased hardware
resulting from the increased number of input bits consumes excessive area and dynamic
power, and significantly reduces the speed compared to the APSQR function.

The speed of the cellular squaring function is limited by the propagation of the carry
bit through the last chain of adders. In Fig. 2 the worst case delay occurs as the carry bit
propagates from cell 1 through cell 7. Note that the delay increases linearly as the number
of input bits increases. Additionally, this design is not suitable for pipelining because of the
two dimensional signal flow.

The proposed hardware implementation for a 7-bit APSQR is shown in Fig. 3. The
controller circuit is responsible for detecting the most significant bit, and controlling the
multiplexers for the proper number of left-shift operations. Three layers of multiplexers pass
or shift their input by one, two, and three bits to the left. The final layer consists of modifier
cells which sum the two most significant bits. The modifier cell becomes active if its input
corresponds to the most significant bit. The detection of the most significant bits by the
modifier cell is accomplished through observing the output of the controller.

The number of multiplexers used in this architecture with n input bits is upper bound
by:

Number of Multiplexers = (n — 1) Iog2(4 • n) (8)

As an example, a 7-bit input requires 35 multiplexers. Based on this equation, the number
of transistors used by an n-bit APSQR function is:

Number of Transistors = 4 • (n - 1) Iog2(4 • n) + 28 • n -f S (9)

The first term corresponds to the number of transistors in each multiplexer and in this
implementation, the multiplexers are composed of two bilateral switches (4 transistors). The
term 28 • n represents the number of transistors used in the design of modifier cells, and 6
represents the number of transistors used in the controller design.

The number of transistors used in the cellular design is estimated as 4 transistors per
multiplexer and 26 transistors per adder [9]. Thus, the number of transistors used in each
cell of the conventional squaring function is 30, and the number of transistors used in an
n-bit cellular squaring function is approximated as:

Number of transistors = (n2 + n + 6)15 (10)

Figure 4 shows the comparison between the two designs. A worst case number of transis-
tors is estimated for the APSQR controller, 8 = 200. The dashed line represents the number
of transistors used in the cellular design of the squaring function, and the solid line represents
the number of transistors used in the APSQR function. With a 7-bit input, the APSQR is
approximately 50% more area efficient than the cellular squaring function. As the number
of input bits increases, the APSQR function becomes significantly more efficient. With a
16-bit input, the APSQR requires less than one-fourth the area of the conventional design.

The delay through the APSQR function is the sum of the delay through the controller,
the delay through the multiplexers, and the delay through the modifier cell. Assuming the

4th NASA Symposium on VLSI Design 1992 2.2.5

controller is designed in two layers of logic, and the modifier cells are designed in three
layers of logic, then the speed of the APSQR function can be approximated as 5-gate delays
(plus a small delay through the tapered buffer at the output stage of the controller). This
delay remains nearly constant despite the size of the input. For this reason, the speed of
the APSQR is almost independent of the number of input bits. This is not the case with
the conventional squaring scheme. The worst case delay is the propagation of the carry bit
through the last chain of adders. Each adder introduces 2 gate delays. Thus for the number
of input bits greater than 3, the APSQR function is faster than the conventional scheme.
Additionally the APSQR architecture is inherently pipelinable.

5 Conclusion

The APSQR function is an appropriate squaring function for the Viterbi algorithm. The
APSQR requires less hardware, and at same time, due to low input capacitance, its dynamic
power consumption is less than the conventional squaring scheme. In addition, the APSQR
function provides an improvement in the speed due to the shorter critical paths. Monte-Carlo
simulations have shown negligible degradation in the performance of a Viterbi processor
which utilizes the APSQR function.

References

[1] G.D. Forney,"The Viterbi algorithm,"Proc. of the IEEE, vol. 61, pp. 268-276, March
1973.

[2] G. Ungerboeck,"Trellis-Coded modulation with redundant signal sets; part i: introduc-
tion," IEEE Communications Magazine, vol. 25, no.2, pp. 5-21, February 1987.

[3] G.D. Forney,"Trellis shaping,"IEEE Trans, on Information Theory, vol.38, no.2, pp.
281-300, March 1992.

[4] M.W. Marcellin and T.R. Fisher,"Trellis coded quantization of memoryless and gauss-
Markov source,1"IEEE Trans, on Communication, vol.38, no.l, pp. 82-93, January 1990.

[5] G. Fettweis and H. Meyr,"High-speed parallel decoding: algorithm and VLSI-
architecture," IEEE Communications Magazine, pp.46-55, May 199.

[6] Bellman, R.E., and Dreyfus, S.E., "Applied dynamic programming," Princeton Univer-
sity Press, 1962.

[7] M. Shammanna, S. Whitaker and J. Canaris,"Cellular logic array for computation of
squares," 3rd NASA Symposium on VLSI Design 1991, pp. 2.4.1-2.4.7.

[8] K. Hwang, Computer Arithmetic: Principle, Architecture and Design, John Wiley and
Sons, 1979.

2.2.6

[9] N. Zhuang and H. Wu,"A new design of the CMOS full adder," IEEE J. Solid-State
Circuits, vol. 27, no.5, pp. 840-844, May 1992.

4th NASA Symposium on VLSI Design 1992 2.2.7

xlO*

u
•8

I
o

1 -

50 100 150 200

Input Amplitude(decimal)

300

Figure 1: Simulation of approximated squaring function (solid) versus the actual squaring
function (dashed).

Input

«7 a6 «5 a4 i3 «2 al

DU D10 D9 D« OT D6 DS D4 D3 W. DlDW

Figure 2: The block diagram of the conventional 7-bit squaring function.

2.2.8

» b
_L I I

MOD
I I
A B

A = s* a + a b

B = s* a + s a*

s = f(sl,s2,s3)

Input

a? a6 a5 a4 a3 a2 al

0 MUX MUM MUM MUM M

— MUX|—|MUX|—|MUX|—|MUX|—| MUX[-=. MUX|- -

MUXI—I MUXI MUXI Mtm— MUXI MUM—I MUX MUXM -̂I MUX

D14 D13 D12 Dll DIG D9 D8 D7 D6 D5 D4 D3 D2 Dl

Output

Figure 3: The block diagram of 7-bit approximated squaring function.

16000

14000

12000

g
| 10000

§ 8000

I
§ 6000

"7

10 15 20 25

Number of Input Bits

30 35

Figure 4: The numbers of transistors used in conventional technique (dashed line) and
APSQR (solid line).

