
4th NASA Symposium on VLSI Design 1992 *"" -• 3.2.1

Heuristic-Based Scheduling Algorithm
for High Level Synthesis

Gulam Mohamed, Han-Ngee Tan & Chew-Lye Chng
School of Electrical & Electronic Engineering

Nanyang Technological University
Singapore 2263

Republic of Singapore
e-mail : gmohamed@ntu.ac.sg

Abstract - A new scheduling algorithm is proposed which uses a combination of
resource utilization chart, a heuristic algorithm to estimate the minimum number
of hardware units based on operator mobilities and list-scheduling technique to
achieve fast and near optimal schedules. The schedule time of this algorithm
is almost independent of the length of mobilities of operators as can be seen
from the benchmark example (fifth order digital elliptical wave filter) presented
when the cycle time was increased from 17 to 18 and then to 21 cycles. It is
implemented in C on a SUN3/60 workstation.

1 Introduction

High level synthesis of digital system involves mapping of an abstract behavioral or al-
gorithmic level specification to a register-transfer-level structure while satisfying a set of
constraints. The system will normally output a datapath structure which implements the
specification together with a controller unit. The major tasks involved are i) extraction
of timing and data precedence relationship from the input ii) scheduling of operators into
timesteps iii) allocation of hardware resources like functional units, storage devices and in-
terconnects and iv) creation of the control unit[l]. Among these tasks, operator scheduling
in (ii) has been acknowledged to be one of the most crucial step[2]. Decisions made in
this step will have direct consequence on the performance and cost of the design in VLSI
implementation.

We consider in this paper the problem of scheduling under time constraint, i.e., finding
the cheapest schedule without exceeding the given number of time steps. A heuristic based
algorithm is proposed which tracks hardware usage, estimates the minimum number of hard-
ware units required based on operator mobilities and uses list-scheduling technique to place
operators to timeslots while minimizing the number of hardware functional units, lifetimes of
variables and additional multiplexer costs. Our proposed algorithm is able to place operators
into timeslots in almost linear time when their mobilities were increased as can be seen in
the benchmark example presented. In this paper we consider the scheduling algorithm which
minimizes the total number of hardware functional units only. The proposed algorithm in
its fullest implementation includes storage device and multiplexer costs considerations. This
is not discussed here due to space limitation but can be found in [3].

This paper is organized as follows. Section 2 describes briefly previous related works. The
scheduling problem is formulated in Section 3. Section 4 describes our Nanyang Technological
University Scheduling System (NTUSS) followed by a brief description of the basic scheduling

3.2.2

algorithm in Section 5. Section 6 gives results for a benchmark example and finally Section
7 concludes this paper.

2 Previous Works

A. C. Parker et al. introduced the notion of freedom-based scheduling in MAHA[4]. Oper-
ators with the smallest degree of freedom (bounded by ASAP and ALAP times) are given
the highest priority when considered for scheduling. In Force-Directed Scheduling[5], P. G.
Paulin and J. P. Knight use 'force' to determine the suitability of an operator to a timestep.
The 'force' value favors a balanced distribution of operators over all the control steps. On
the other hand, the suitability of placing an operator to a control step is determined by a
selection function in the system described in [6] by Park In-Cheol and Kyung Chong-Min.
Similarly, their selection function is based on balancing the distribution of operators in each
control step. Hwang C. T. et al.[7] use integer linear programming model to find the optimal
operator-timeslot combination while minimizing a cost function which includes hardware
costs. In most of these systems the time taken to schedule increases tremendously with
increasing length of mobilities of operators.

3 Problem Formulation

For a given Acyclic Directed Dataflow graph, Critical Path analysis is used to determine
the possible timesteps an operator can occupy based on their given processing times and
data precedence relation. The longest path from the input to the output represents the
critical path and the latest time the last operator can start will place an upper bound on
the maximum timesteps the dataflow graph takes to produce its outputs. Every operator
will have to be restricted to within their ASAP and ALAP times if the last operator in
the dataflow graph were to start its operation within the upper bound. Operators having
their ASAP times equal to their ALAP times are in the critical path and are scheduled to
their respective ASAP times. We use a combination of resource utilization chart, heuristic
algorithm to estimate the minimum number of hardware units required and list-scheduling
technique[8] to place the rest of the operators to one of the timepoints within their ASAP
and ALAP times such that :

(i) data precedence relationship as defined in the input dataflow graph is not violated.

(ii) the number of hardware functional units, lifetimes of variables and additional multi-
plexer costs are minimized.

We assume that only single function modules, for example an add operator is processed by
a hardware unit which implements an add function only, are used. Under this circumstance,
if we can minimize the number of hardware functional units required to implement each
type of operator then we can eventually minimize the total number of hardware units to
implement the whole dataflow graph. Consequently, if we can assign all operators to all
the available hardware units without logical, timing and resource conflicts[9], then we have
found the cheapest feasible schedule.

4th NASA Symposium on VLSI Design 1992 3.2.3

4 Overview of NTUSS

In this paper we consider time-constrained scheduling with respect to minimizing the hard-
ware costs only. Other considerations such as minimizing lifetimes of variables and minimiz-
ing multiplexer costs are not presented here. In our model, basically the problem of assigning
off-critical path operators to any one of the timepoints within their ASAP and ALAP has
been translated to :
'Squeezing' these operators into their respective resource utilization charts occupying the
least height as possible without violating timing and data precedence constraints. We ob-
tain the minimum height through a heuristic based algorithm which estimates the minimum
number of hardware units required based on their mobilities (ALAP-ASAP times). It is not
known to the author if it is possible to determine the absolute minimum number of hardware
units based on their mobilities.

4.1 Resource Utilization Chart

Functional Units

FU2

FU1

F

A

G

B

H

C

I

D

J

E timeslots

Figure 1: Resource Utilization Chart

A resource utilization chart which is equivalent to a Gantt Chart[10] shows in detail
the usage of hardware functional units. Figure 1 shows such a chart. The vertical axis
represents the type of hardware functional unit which process the operators that are placed
in the chart. All hardware along this axis, for example FUl and FU2 are identical. The
height of the chart represents the total number of hardware units of this type required in the
final implementation. The horizontal axis represents physical time which is also the schedule
time. A timeslot occupied by an operator in this chart represents the starting time (schedule
time) and the duration in which the operator in question is assigned to the stated hardware
functional unit on the y-axis. Hence by filling operators in the chart, the algorithm does
simultaneous scheduling and allocation. Each type of operator in the dataflow graph has its
own resource utilization chart.

3.2.4

4.2 Algorithm to Determine the Minimum Number of Hardware
Units

The minimum number of hardware units required to process a particular type of operators
within their ASAP and ALAP times (mobility) is strongly dependent on their number and
concentration along the timepoints. All critical path operators should also be taken into
consideration. To estimate the minimum number, we concentrate our efforts on the timeslot
which has the highest overlap of mobilities including that of critical path operators. We
assume equal probability distribution of operators similar to the one adopted by Force-
Directed Scheduling[5]. For example an operator with ASAP=0 and ALAP=2 will contribute
a value of | (distribution density value) to each timeslot from 0 to 2. Critical path operators
contribute a value of '!' to their respective timeslots. The timeslot with the greatest sum
value (highest distribution density) is chosen. As shown in Figure 2, the sum may contain
an integer portion and a fractional portion.

Distribution Density Value

4/3

3/3

2/3

1/3

Al

fractional portion

A3

A2
.integer portion

1
timeslots

Figure 2: Distribution Density Chart

The highest distribution density value in this figure is 1|(1+|). It can be said that l|
,i.e., 2 machines can safely process all the operators whose distribution density values are
shown in Figure 2. But we can provide a better estimate by the following method.

Using the integer portion as a reference, conceptually areas Al and A2 represents the
'idle' time of the machine when it is operated from timeslot 1 to 3. Area A3 on the other
hand, represents the amount of 'excess' work that one (reference) machine is incapable of
handling at timeslot 2. If area A3 can be 'moved' to fill into areas Al and A2 without any
'excess', then there is no need to employ an extra machine. This is the criteria used to
determine whether the integer portion of the highest distribution density alone is sufficient
to be taken as the minimum number or an extra '!' is required. The lower and upper limit
of the x-axis of Figure 2 is obtained from step 3 and step 4 respectively in Figure 3. The
algorithm to estimate the minimum number of hardware functional units for one type of
operator is given in Figure 3.

4th NASA Symposium on VLSI Design 1992 3.2.5

1. Calculate Distribution Density value for each timeslot in the resource utilization chart.

2. Get timeslot with the highest distribution density value.

3. Get minimum ASAP time among all operators whose mobilities coincide with the
timeslot obtained in step 2 (=mintime).

4. Get maximum ALAP time among all operators whose mobilities coincide with the
timeslot obtained in step 2 (=maxtime).

5. maxvalue= greatest integer < highest distribution density value.
sum= 0;
for (i= mintime; i < maxtime; i+-f)
{
for (all operators whose mobilities lie within mintime and maxtime)
/* this also includes operators in the critical path */
{
calculate sum(i)= distribution density value for timeslot(i) - maxvalue;
sum= sum + sum(i);
}
}
if (sum > 1)
minimum number of hardware units required= maxvalue + 1;
else
minimum number of hardware units required= maxvalue;

Figure 3: Algorithm to calculate the minimum number of hardware units.

The concepts presented so far can be integrated into a scheduling system whose algorithm
is described in Figure 4.

1. Read in the records.

2. Create successor and predecessor list for each operator in the list.

3. Determine the maximum ALAP among operators in each group.

4. Calculate the minimum number of hardware units required for each group.

5. Create resource utilization chart for each group.

6. 'Enter' operators that are in the critical path into their respective resource utilization
chart.

7. Sort the rest of the operators in order of decreasing processing times. If adjacent
operators in the sorted list have equal processing times, then they are sorted again in
order of ascending ALAP times.

3.2.6

8. Select the top (of the sorted list) operator's resource utilization chart.

9. Get the earliest available timeslot from the selected chart.

10. Go back to the sorted list and find the first operator which can legally be placed in the
chosen timeslot. Steps 9 and 10 are repeated until an assignment is found.

11. Update mobilities of its predecessors and successors. Also mobilities of its predecessor's
predecessors and successor's successors.

12. Update the resource utilization chart of those operators that has fallen into the critical
path.

13. Go back to step 7 if there are some more unscheduled operators.

Figure 4 : The basic scheduling algorithm

5 Description of the Basic Algorithm

The basic technique used to 'fill' up the resource utilization chart is similar to the list-
scheduling[8]. In list-scheduling used in Deterministic Scheduling Theory, tasks are ordered
into a list based on some priority. When the processor becomes available, this list is scanned
and the first unexecuted task which can be processed by this processor is then scheduled
at that time and allocated to that processor. In our system, the list comprises of all the
non-critical path operators. They are sorted in order of decreasing processing times. If
adjacent operators in the list have equal processing times, they are then sorted in order
of increasing ALAP times. The resource utilization chart of the top operator's type (in the
main list) is chosen. The earliest available timeslot is selected (which means the earliest time
the machine is free) and the main list of unscheduled operators is scanned for an operator
that can be scheduled in that timeslot. If found, the operator is assigned to that timeslot and
its predecessor's and successor's mobilities are adjusted to preserve data precedence relation.
If not found, then the resource utilization chart is referred to again and the next earliest
available timeslot is chosen. The main list is scanned again for a suitable operator. This
process is repeated until a selection is made.

The resource utilization chart has to be 'filled' carefully in order to optimize hardware
usage. For example in Figure 1, if only two hardware units are required, the sequence A,
F, B, G, C, H, D, I, E and J (double-layered selection method) is found to be suitable for
single-cycle operators. For two-cycle operators, the most suitable sequence is A, B, C, D,
E, F, G, H, I and J (single-layered selection method). Since there could be more than one
resource utilization chart to fill and only one chart is updated at any one time, there is a need
for co-ordination among them. This is taken care of by ordering all the unassigned operators
in the entire dataflow graph into one main list. The next resource utilization chart to be
updated is chosen from this list. In this sense it is global in nature. Only when the chart
has been chosen then only will the operators within the group of similar type be considered.
Scheduling is complete when all the unassigned operators are 'entered' into their respective
resource utilization charts.

4th NASA Symposium on VLSI Design 1992 3.2.7

The approximate worst case time complexity of the algorithm can be shown to be in the
order of 4n3 + 2n2 — 2n where n is the total number of operators in the dataflow graph[3].

6 Experimental Results

Table 1 shows results of the benchmark example of fifth-order digital elliptical wave filter
from Kung et al.[ll]. In this example, 17 is the least cycle time that can be obtained from
Critical Path Analysis at the expense of 3 adders and 3 multipliers. ALPS is able to obtain
optimal results from their Linear Programming model. In order to reduce the hardware
costs, cycle time is relaxed to 18 and then 21 cycles. NTUSS shows the least increase in the
scheduling time taken.

SYSTEM
FDS[5] Xerox 1108 Lisp Machine

ALPS [7] Vax- 11/8800

[6] SUN4/280

NTUSS SUN3/60

CYCLES
17
18
19
21
17
18
21
17
18
21
17
18
21

(+)
3
3
2
2
3
2
2
3
2
2
3
2
2

(*)
3
2
2
1
3
2
1
3
2
1
3
2
1

TIME
1 min
3 min
7 min

13 min
0.26 sees
3.1 sees
34.5 sees
0.067 sees
0.101 sec
0.783 sec
1.25 sees
1.30 sees
1.42 sees

% CHANGE IN TIME
100%
300%
700%
1300 %
100%
1192 %
13269 %
100%
150 %
1169 %
100%
104 %
114%

Table 1: Fifth Order Digital Elliptical Wave Filter[ll]

7 Conclusions

A heuristic based scheduling algorithm is presented. Our algorithm differs from others. For
example in MAHA[4], an operator is chosen based on its degree of freedom and then only a
timeslot is chosen for this operator based on some other criteria. Our algorithm on the other
hand, chooses a timeslot (which minimizes the idle time of the machine) first and then picks
the most suitable operator from a sorted list. Some other heuristics like Force -Directed
Scheduling[5] and the one described in [6], the most suitable (operator,c-step) pair is chosen
based on some figure of merit. The decision making process is based on selecting the best
figure among a group of computed values. Our algorithm minimizes numerical computation
by making decisions based on direct usage of hardware resources in the resource utilization
chart and storage device/multiplexer cost considerations (although storage device/ multi-
plexer costs considerations are described here). Using the scheme just described, NTUSS is
capable of scheduling operators in almost linear time when their mobilities are increased.

3.2.8

There are also some limitations of the algorithm. For example it can handle static
scheduling problems only. Currently, we are also not able to handle loops and allocation to
pipelined datapaths. For the example presented we were able to obtain optimal results but
like all heuristics, the same cannot be guaranteed for all cases.

We are able to incorporate storage device and multiplexer costs considerations into
the model presented. Other real-world extensions like operator-chaining, multi-cycle and
mutually-exclusive operations can also be handled.

Reference

1. M. C. McFarland, A. C. Parker and R. Camposano 'High Level Synthesis Of Digital
Systems', Proc. of IEEE, vol 78, no.2 , February 1990.

2. B. M. Pangrle and D. D. Gajski 'Design Tools For Intelligent Silicon Compilation',
IEEE Trans. Computer Aided Design pages 1098-1112, November 1987.

3. Gulam Mohamed 'A Heuristic-Based Scheduling Algorithm For High Level Synthesis
Of Digital Systems', Master's Thesis, Nanyang Technological University (in prepara-
tion).

4. A. C. Parker, Jorge "T" Pizarro and Mitch Mlinar 'MAHA : A Program For Datapath
Synthesis', Proc. 23rd Design Automation Conference, pages 461-466, July 1986.

5. P. G. Paulin and J. P. Knight 'Force-Directed Scheduling For Behavioral Synthesis Of
Asics', IEEE Trans. Computer Aided Design, vol 8 pages 661-679, June 1989.

6. P. In-Cheol and K. Chong-Min 'Fast And Near Optimal Scheduling in Automatic Data
Path Synthesis', Proc. 28th Design Automation Conference pages 680-685, June 1991.

7. Hwang C. T., Lee J. H. and Hsu Y. C. 'A Formal Approach To Scheduling Problem
In High Level Synthesis', IEEE Trans. Computer Aided Design, pages 464-475, April
1991.

8. E. G. Coffman Jr. et al., Computer And Job-Shop Scheduling Theory, John
Wiley & Sons, New York, 1976.

9. D. E. Thomas et al. , Algorithmic And Register-Transfer Level Synthesis: The
System Architect's Workbench, Kluwer Academic Publishers, 1990.

10. K. G. Lockyer, An Introduction To Critical Path Analysis, The Pitman Press,
Bath, 1969.

11. S. Y. Rung, H. J. Whitehouse and T. Kailath, VLSI And Modern Signal Process-
ing, Englewood Cliffs, NJ, Prentice-Hall, pages 258-264, 1985.

