
N 9 4 - 2 1 7 0 54th NASA Symposium on VLSI Design 1992 ll «f * & l I \J ** 3.3.!

Evaluation of Floating-Point Sum or
Difference of Products in Carry-Save Domain

A. Wahab, S. Erdogan and A. B. Premkumar
School of Applied Sciences

Division of Computer Technology
Nanyang Technological University

Nanyang Avenue
Singapore 2263

ASABDUL@NTUVAX.BITNET, (65) 7994948

Abstract - An architecture to evaluate a 24-bit floating-point sum or difference of
products using modified sequential carry-save multipliers with extensive pipelin-
ing is described. The basic building block of the architecture is a carry-save
multiplier with built-in mantissa alignment for the summation during the mul-
tiplication cycles. A carry-save adder, capable of mantissa alignment, correctly
positions products with the current carry-save sum. Carry propagation in in-
dividual multipliers is avoided and is only required once to produce the final
result.

1 Introduction

In evaluating sum of products, the mantissas of the current sum-of-products and the newly
examined product are compared. The mantissa of the one with the smaller exponent is
aligned first and then added to the mantissa of the other one. One alternative is to use fast
shifting units for mantissa alignment. However the cost of such units is prohibitive and may
well slow down the overall speed of the system if pipelining has to be used. The technique
used in the proposed architecture is to incorporate shifting capability into the multiply/add
unit, thus eliminating use of conventional shifters. Sequential carry-save multipliers are
used for evaluating the product of the mantissas involved in the floating-point operation
[1]. For an n by n multiplication, the result is available in carry-save form after n cycles.
Conventional result can be obtained through n additional cycles or a fast carry propagation
unit. Since the sum of products evaluation is the main concern in the proposed architecture,
carry propagation is deferred until the final stage. Thus, carry propagation is avoided in
individual product evaluations. A high throughput is achieved by incorporating the mantissa
alignment into the product evaluation cycles.

2 Floating-Point Sum-of-Products Evaluation in Carry-
Save Form

The summation of products involves the multiplication of multiplier and multiplicand pairs
and subsequent addition of these results. In the floating-point domain, the multiplication
itself involves addition of the exponents of operands and multiplication of the mantissas.



3.3.2

Carry-save techniques have been proposed to reduce the timing penalty associated with the
propagation of carry during the mantissa multiplication operation.

The multiplication of two floating-point numbers in carry-save domain is achieved by
performing a carry- save multiplication of their mantissas and adding their exponents. The
exponent part of the product is obtained by the addition of the exponents. The mantissa
of the product is the most significant half of the result in carry and sum registers. For a
conventional 16-bit mantissa carry-save multiplier, the result is obtained in 16 clock cycles.
Additional 16 clock cycles are necessary to produce a conventional result. A fast carry-
propagation circuit could also be used for this purpose. However, if the multiplier is to be
used in evaluating sum-of-products, the propagation of carry can be deferred till the final
stage. If the products in carry-save form are to be used for the evaluation of sum-of-products,
carry-save results are satisfactory and timing penalty due to propagation of carry only occurs
once as opposed to m times for a sum-of-products with m terms.

The results obtained from two multipliers can be added to produce a carry-save result
provided their results are of the same exponent (i.e., their mantissas are correctly aligned
first). Further, addition of other products to the current sum is possible provided their
mantissas are properly aligned. However, special care must be taken to ensure that the
summation result does not overflow.

Let us consider the evaluation of F=A+BW, where A, B, F and W are 24-bit floating-
point numbers (16-bit mantissa, excess 64 exponent). First the sum of the exponents of B
and W must be obtained. If the exponent of BW is smaller than the one of A, the mantissa
of the product should be adjusted prior to addition with A, otherwise the mantissa of A
should be adjusted. The mantissa associated with the lowest exponent should be shifted
right by the difference in the exponents and added to the other mantissa. In the worst case,
a shift of the mantissa by 15 bit positions may be required. The resulting exponent is the
higher of the two exponents. In carry-save representation, a correction must be applied, if a
carry-out is produced from the most significant digit [2].

One alternative to achieving mantissa alignment is to provide a fast shifting unit. The
cost of such a unit is prohibitive and may slow down the overall speed of the system if
pipelining is to be used. A 16-bit shifter would require 16 x 16 connections and sixteen
16 to 1 multiplexers. Since shifting is performed at the end of the multiplication prior
to summation a timing penalty occurs. The other alternative would be to incorporate bit
shifting capabilities into the summation and multiplier units such that no dedicated shifter
would be necessary to sum the products. Furthermore, if this could be achieved with little or
no timing penalty during the standard carry-save cycles, a number of multiplier units could
be run in parallel and very high summation rates could be obtained. To achieve massive
pipelining, multipliers operate on different sets of data and their results are added through
a dedicated carry-save adder.

Although the architectural details of an implementation are given in Section 4, the con-
trol requirements associated with individual multipliers and the summation unit to allow for
massive pipelining are examined below:

1 When a new multiplier and a multiplicand are selected for multiplication, the product's
exponent is determined by adding their exponents and is compared with the exponent



4th NASA Symposium on VLSI Design 1992 3.3.3

of the current sum-of-products.

2.a One in the current sum-of-products, then the multiplication is performed and resulting
mantissa is added to the current sum-of-products after necessary mantissa alignment.

2.b If the exponent of the product is higher than the one in the current sum-of-products,
then the mantissa of the current sum-of-products is adjusted to its correct position.
Since the exponent of the product can be precomputed, the summation unit has 16
clock cycles to correctly align its mantissa with respect to the product while the mul-
tiplication is being performed.

The above requirements can be achieved by using a dedicated shifter unit and many
multipliers. Pipelining maximizes the usage of the fast shifter. Another alternative is to
incorporate mantissa alignment into the multiplication cycles. To achieve this objective,
a concept called "global exponent" that is basically the exponent of the current sum-of-
products, is proposed in this paper. Instead of recording the exponent of individual products
currently being evaluated, their relative difference to the global exponent is recorded. Every
multiplier unit and the summation unit have a counter. Since we are dealing with 16-bit
mantissas, the maximum relative difference is 15. A unit is required to align its carry-save
value one bit at a time as long as its counter is positive. The hardware realization of this
alignment for the multiplier and summation is presented in Section 3.

Initially, the global exponent is the first product's exponent and is subsequently updated.
The succeeding products are examined one by one, and the relative difference between their
exponent and the global exponent are evaluated. The shifting requirement is tagged to
the assigned multiplier unit to ensure correct mantissa alignment at the end of 16 clock
cycles. For an exponent difference of 16 or above, the multiplier can be set to zero and no
further intervention would be necessary. Some sophisticated buffering techniques can also
be developed not to schedule this product evaluation at all. The multiplier could therefore
operate on a set of operands leading to a significant result. We have considered such an
optimization, however, it has not been discussed in the current paper.

Another point of concern is the overflow out of the summation unit. When an overflow
is detected, all counters in the system and the global exponent are incremented by one to
ensure consistency of mantissa alignment and global exponent. The overflow can be detected
before it occurs by examining the most significant carry and sum bits. A correction action
is initiated by incrementing all counters in the system and the global exponent.

3 Built-in Mantissa Alignment for Floating-Point Ad-
ditions

In order to achieve the alignment requirement associated with the sum-of-products, two units
are of special interest. The first, is a floating-point multiplier that incorporates alignment
into the multiplication cycles and the second is a summation unit that allows for alignment.
We first concentrate on the design of the former. The design of the latter is fairly trivial and
is described later in this Section.



3.3.4

The conventional carry-save floating-point multiplier as described earlier generates a
product in 16 clock cycles for a 16-bit mantissa. To incorporate mantissa alignment into
the multiplication operation, this architecture is modified in order to produce a correctly
aligned carry-save result. This result is ready for subsequent addition to the current sum-of-
products without further manipulation. In the proposed sum-of-products architecture, the
alignment requirement of a multiplier unit is determined by a counter. In a 24-bit floating-
point environment (16-bit mantissa, excess 64 exponent), a 4-bit counter is necessary to
record the shifting requirement. The value of the counter is set prior to the start of a
multiplication and is subsequently modified to reflect the requirements of the system.

To achieve alignment required for subsequent summation, the multiplier could be shifted
right as many positions as required prior to the actual multiplication cycles and then the
multiplication could proceed with the remaining bits of the multiplier. Since fewer bits of
the multiplier are examined (starting with the most significant ones) reduced precision may
result. Furthermore, the sum-of-products evaluation approach as described in Section 2,
requires a multiplier to shift its current product in the middle of a multiplication. This can
not be handled simply by preshifting the multiplier prior to the start of the multiplication.

Figure 1 shows a carry-save floating-point multiplier with built-in mantissa alignment
capability. The multiplication follows the conventional carry-save algorithm. However ad-
ditional paths are created to achieve mantissa alignment while multiplication is being per-
formed. Unlike the approach proposed above, the multiplier is examined exactly as in the
conventional carry-save algorithm and the multiplication is performed accordingly. However,
when shifting is required, the partial product is added to the current product and is fed one
bit further right compared to the original implementation. This new configuration ensures
correct alignment of the mantissa as specified at the end of the multiplication cycles. Fur-
ther, to conserve the integrity of the multiplication process, the multiplicand is also shifted
by one bit right when a shift is required.

Coto-l)

Counter/Sequencer

Figure 1: Block diagram of a carry-save multiplier with built-in mantissa alignment capability

Figure 2 shows a carry-save adder for adding the mantissa of products with built-in man-
tissa alignment capability. N is the number to be added to the current carry-save quantity.



4th NASA Symposium on VLSI Design 1992 3.3.5

When alignment is not needed, the unit adds an ordinary number to an existing carry-save
number. When alignment is required, the carry-save result is fed one unit right compared
to the original configuration. This is similar to the approach used in the implementation of
the multiplier with built-in mantissa alignment. Two clock cycles are necessary to add the
carry and sum components of a recently evaluated product.

s(n+3)

Counter

Cany input •

c •Sum input

MUX XJ«/Ncn

Sum/Cany

Figure 2: Block diagram of a carry-save adder for summing of products with built-in mantissa
alignment capability

4 Architecture for Sum-of-Products Evaluation

The architecture presented in this paper is a novel approach to explore carry-save represen-
tation for sum- of-products evaluation as described in Section 2. The two components that
are of special concern in this architecture are: a floating-point carry-save multiplier that
can align the mantissa of a product during regular multiplication cycles (ready for subse-
quent summation) and a special floating-point adder with a mantissa alignment capability
to sustain continuous addition of products in carry-save domain.

Figure 3 shows the architecture of the sum-of-products module. The module is composed
of 8 floating-point multipliers with built-in mantissa alignment capability. The counters asso-
ciated with individual multiplier units are counter/adders to store the shifting requirements
as described in Section 3. Delta exponent is obtained by subtracting the exponents of the
product currently examined from the global exponent. When delta exponent is positive (the
exponent of a product to be evaluated is less than the global exponent), then the counter of
the multiplier is set to reflect this difference. Otherwise, all counters in the system except
the one of multiplier unit assigned to the current product evaluation are incremented by that
difference.



3.3.6

t
i

•MD exponent

•MR exponent

16

Global
Control &
Seouencer

Unit

Global
exponent

Adder/Counter

16

Register-Carry

16-bit 2-1 MUX

Coniplcinent
Add/Sub

•16

16-Ut Carry-Save Adder/Shifter

Sum Out

16

Carry Out

Figure 3: Architecture of a 24-bit floating point (16-bit mantissa, 8-bit exponent) Sum of
Products system.



4th NASA Symposium on VLSI Design 1992 3.3.7

Figure 4 shows the timing characteristics of the architecture. The multiplicand and
the multiplier pairs are fed to each multiplier with a phase difference of two clock cycles
to ensure that their results can be summed without unnecessary buffering. Depending on
the implementation platform, the exponent of the product may need to be pre computed
since only two cycles are available for implementing the counter settings in the system. A
multiplication result is output to the bus every two clock cycle. Each multiplier requires 16
clock cycles to produce a result.

Sum of Save

Sum of Carry

Multiplier 7

J0\ /1\ IZ\ I3\ /4\ /5\ /6\ h \ /<M / l \

/ n \ / T \ / 2 \ / 8 \ / 7 \ / 5 \ / f i ) / 7 \ / 0 \ / T \

16-bit (mantissa) multiplication \ (

Multiplier 6

Multiplier 5

Multiplier 4

Multiplier 3

Multiplier 2

Multiplier 1

16-bit (mantissa) multiplication \ /

\ / 16-bit (mantissa) ' multiplication

1 / 16-bit (mantissa) multiplication -

\ / 16-bit (mantissa) multiplication

JL / 16-bit (mantissa) multiplication \

\ 1 16-bit (mantissa) multiplication \ (

Multiplier 0 _J_ 16-bit (mantissa) multiplication JLJL

Dock Jo\Jl\j2\j3\j4\Js\j6\jT\j8\^^

Figure 4: Timing diagram of the pipelined Carry-save Sum of Products architecture

The results obtained through the multipliers are fed through a wide bus to a summation
circuit. The 32-bit bus allows for the transfer of a result in one clock cycle to achieve the
desired 16-cycle pipelining. The sum component is fed directly to the summation circuit
and shifted while being added as required by the counter associated with it. The carry
component of the mantissa is moved to a shift register that ensures that its alignment is
correct by following the control applied on the summation circuit. The numbers associated
with the clock cycles in the summation unit indicate which multiplier is responsible for a
particular result.

The carry-save adder shown in Figure 2 is used to accumulate the sum-of-products in
carry-save form as required. A radix-2 carry-save configuration is sufficient since a new
product is generated every two cycle. When an overflow out of the summation unit is
detected, all counters and the global exponent are incremented by one to conserve floating-
point representation. Summation of negative products is also supported. Since products are
evaluated using positive mantissas, negative products are summed by using one's complement
of their mantissas to avoid carry propagation associated with two's complement. Two's
complement is later achieved in the summation unit by forcing a "one" to the least significant



3.3.8

carry-in bit of the carry-save adder.
The final result in conventional form is obtained when there are no more products to be

summed by propagating the carry. This is achieved by feeding the carry and sum components
of the summation through an additional fast carry propagate circuit. The same result can
be obtained by allowing the carry to propagate through the summation unit. The 16-bit
sum component becomes the conventional result when carry is allowed to propagate for an
additional 16 clock cycles. The global exponent is the exponent of the final result and is
directly available from the circuit.

The architecture presented in Figure 3 uses 8 multipliers to achieve a throughput of one
product summation every two clock cycle. A doubling of this performance is possible by using
a radix-4 carry-save adder to accumulate summation results. Sixteen carry- save multipliers
or 8 radix-4 multipliers could be used to sum a product every clock cycle in conjunction
with this wide adder [3]. Dual prefetching of operands may be necessary to allow for the
examination of exponent of a product to meet the timing requirements. Time/hardware
tradeoff should be considered for a given implementation environment for maximum efficiency
[4]-

5 Conclusions

The proposed architecture achieves effective evaluation of floating-point sum-of-products in
carry-save domain. A product summation every two clock cycle is performed at steady state
at moderate cost by pipelining 8 floating-point carry-save multipliers. Better performance
can be achieved by performing 2 bit decode of the multiplier but at the cost of increased
complexity of the control. The performance of the proposed architecture may be further
increased by detecting and aborting multipliers that will produce insignificant results with
respect to the current summation value. Further performance increase is also possible by
detecting and not scheduling those products with very low exponents with respect to the
global exponent at a very early phase. The merits of such a system will depend on data and
should be considered in applications such as artificial neural network simulation hardware
[5]-

The multiplier with built-in mantissa alignment capability and the special carry-save
adder described in this paper can also be used in other environment that requires high per-
formance computing [6]. The carry-save result of the multiplier is useful for applications such
as Fast Fourier Transform and complex function evaluations where further computations are
necessary prior to the output [7,8]. This concept is similar to the residue-number-system
concept where an intermediate form of a number is generated to perform arithmetic opera-
tions more effectively [9]. However, we believe that carry-save representation offers a better
alternative in sum-of-products evaluation, since the carry-save form is obtained as an inter-
mediate form in the carry-save multiplication and does not require a costly initial conversion
[10]. The final conventional result can also be obtained without additional hardware.



4th NASA Symposium on VLSI Design 1992 3.3.9

References

[1] J. J. F. Cavanagh, Digital Computer Arithmetic, Design and Implementation. McGraw-
Hill, 1984.

[2] M. R. Santoro, G. Bewick, M. A. Horowitz, "Rounding Algorithms for IEEE Multipli-
ers", in Proc. IEEE 9th Symp. on Computer Arith., pp. 176-183, 1989.

[3] S. S. Erdogan and Abdul Wahab, "Design and Implementation of a Radix-4 Carry-save
Multiplier", submitted to IEEE Trans, on Comp. (December 1991).

[4] A. G. Ferreira, "A Parallel Time/Hardware Tradeoff for the Knapsack Problem", IEEE
Trans. Comput., Vol. 40, No. 2, pp. 221-225, February 1991.

[5] "Design of RM-nc: A Reconngurable Neurocomputer for Massively Parallel-Pipelined
Computations", Proc. of the IEEE International Joint Conference on Neural Networks
'92 Baltimore, U.S.A., Vol. 2, pp. 33-38, 7 - 11 June, 1992.

[6] "Floating-point Fast Fourier Transform Evaluation in a Parallel-Pipelined Carry-Save
Architecture", accepted for publication in the proceedings of the 1C ARC V '92, Singa-
pore, 15-18 September, 1992.

[7] P. Kornerup, D. W. Matula, "Exploiting Redundancy in Bit-Pipelined Rational Arith-
metic", in Proc. IEEE 9th Symp. on Computer Arith., pp. 119-126, 1989.

[8] R. H. Brackert, M. D. Ercegovac, and A N Wilson, "Design of an On-line Multiply-Add
Module for Recursive Digital Filters", in Proc. IEEE 9th Symp. on Computer Arith.,
pp. 34-41, 1989.

[9] F. J. Taylor. "Residue Arithmetic: A tutorial with Examples", IEEE Comp. Magazine,
pp. 50-62, May 1984.

[10] K. M. Ibrahim and S. N. Saloum, "An efficient Residue to Binary Converter Design",
IEEE Trans. Circuits Syst., Vol. 35, pp. 1441-1444, November 1988.




