
4th NASA Symposium on VLSI Design 1992 N 9 4 " 2 1 7 0 6 3.4.1

A Statistical-based Scheduling Algorithm
in Automated Data Path Synthesis

Byung Wook Jeon and Chidchanok Lursinsap
The Center for Advanced Computer Studies of

The University of Southwestern Louisiana
Lafayette, LA 70504

Email: bwj@cacs.usl.edu and lur@cacs.usl.ed

Abstract - In this paper, we propose a new heuristic scheduling algorithm based
on the statistical analysis of the cumulative frequency distribution of operations among
control steps. It has a tendency of escaping from local minima and therefore
reaching a globally optimal solution. The presented algorithm considers the
real world constraints such as chained operations, multicycle operations, and
pipelined data paths. The result of the experiment shows that it gives optimal
solutions, even though it is greedy in nature.

1 Introduction

The high level synthesis task is to transform an abstract behavioral specification of a digital
system into a register transfer level (RTL) structure that realizes the given behavior. This
task can be decomposed into a number of distinct but not independent subtasks [?]. The
first one is to specify the behavior of a digital system using a programming language or a
hardware description language (HDL), and then to translate the description into a graph-
based representation which is said to be control and data flow graph (CDFG). This subtask
is followed by operation scheduling process that assigns each operation to a control step.
The third phase is the resource allocation process that assigns the operations and values
to hardware. Among these subtasks, operation scheduling and resource allocation stages
are the main processes which are closely interrelated. The operation scheduling usually
determines the major design decisions such as the number and types of functional units,
clock cycle time, lifetimes of variables, and implementation styles (pipeline, chained and
multicycle operations, etc.). Therefore, a good scheduler is critical to an automated data
path synthesis system [?, ?, ?, ?].

The simplest scheduling scheme is to schedule operations "as soon as possible" (ASAP)
or "as late as possible" (ALAP) which is done in Emerald system [?]. This scheme may
produce an unrealizable scheduling if there is resource limitation. To manage this problem,
ASAP scheduling with postponement of operations is proposed in MIMOLA msystem [?] and
Flamel system [?]. Another approach to scheduling is the list scheduling technique in which
operations are sorted in topological order using the precedences specified in CDFG, and
these operations are then scheduled into control steps using some heuristic priority function
such as operation mobility used in SLICER [?]. Freedom-based scheduling used in MAHA
[?] determines the critical path. The operations on the critical path are scheduled first and
assigned to functional units. Then the other operations are scheduled and assigned one at a
time. In force-directed scheduling [?], the operations are iteratively scheduled into control



3.4.2

steps based on the evaluation using distribution graph, which illustrates the distribution of
fixed operations and unscheduled operations in each control steps.

All these schemes which are the constructive algorithms build up a schedule by adding
operations one at a time until all operations have been scheduled. None of these constructive
algorithms is guaranteed to find the best possible schedule. In ALPS [1], the scheduling
problem is formulated as an integer linear programming (ILP) which gives a globally optimal
solution. Since ILP is an exponential algorithm in nature, it is not acceptable for some large
example even if an optimal solution can be generated. Practically, it is not always desirable
to produce an optimal solution in the scheduling problem space because the problem itself is
NP-complete. ^From this observation, Park and Kyung [8] proposed an efficient algorithm
based on the multiple exchange pair selection algorithm with cumulative gain which was
proposed by Kernighan and Lin in their min-cut graph partitioning problem [2]. They
devised the selection function used in their algorithm [2] by taking into account the fact that
the density of functional units was the important factor for determining an operation to be
moved, but no theoretical justification for it was provided. They also intentionally gave the
preference to a certain operation in a particular control step.

The number of times that an operation occurs in each control step shows how the op-
erations in the control and data flow graph (CDFG) are distributed among control steps.
It also determines the frequency distribution of the operations and thus characterizes the
feature of CDFG. From the basis of this statistical property, some measures can be derived
which may be used for selecting a good candidate operation to be moved. The theoretical
justification for these is quite simple but strong enough to devise a new selection function.
Based on this observation, we propose a new scheduling algorithm using statistical analysis
of the cumulative frequency distribution of operations among control steps. The presented
algorithm considers the real world constraints such as chained and multicycle operations,
and pipelined data paths. The essential method being used in our algorithm is also based
on the multiple exchange pair selection algorithm [2].

We will start by describing the scheduling process in the next section. The scheduling
process consists of two phase: one is the prephase for the scheduling phase and the other is
the scheduling phase. The prephase transforms a given CDFG into the intermediate form
containing information necessary for the scheduling phase. The scheduling phase selects
a set of trials, and accepts even locally undesirable movements if they belong to a set of
movements which maximizes the object function as a whole. This will be followed by the
extention of algorithm to the real world constraints such as chained operations, multicycle
operations, and pipelined data paths. Then, the experimental results for the examples used
in several other systems will be given. Finally, concluding remarks will be made in the last
section.

2 Scheduling Process

The presented scheduling algorithm takes into account the frequency distribution of opera-
tions occurred in each control step. The essential method being used is a modified version
of the algorithm in [2]. This algorithm selects a set of trials, and accepts even locally unde-
sirable movements if they belong to a set of movements which maximize the object function



4th NASA Symposium on VLSI Design 1992 3.4.3

as a whole. Even though this algorithm may prone to get stuck in a local minimum rather
than finding the global optimum, it has a hill climbing property that can escape from local
minima and therefore reach a globally optimal solution. In the practical point of view, it is
not always necessary to produce an optimal solution as long as a near optimal one can be
obtained.

The scheduling process consists of two phases; one is a prephase for the scheduling phase
and the other a scheduling phase. We will now describe the prephase that transforms a given
CDFG into the intermediate form containing information necessary for the scheduling phase.
Then, the selection function which is the kernel of our scheduling phase is derived. This will
be followed by description of the scheduling algorithm which improves the solution iteratively.
To illustrate our scheme, we will use the example given in [11]. Figure 1 illustrates the CDFG
of this example.

r
3 z 3 J /

V V/
x dx

Figure 1: The data flow graph for the example

2.1 Prephase for Scheduling

This phase transforms a given CDFG into a constraint graph (CG) to identify the precedence
relationships that are due to both data flow and control flow dependencies, and the timing
behavior of each operation. Each node corresponds to an operation and has weight which
specifies the minimal number of cycles required to execute the corresponding operation. Two
nodes in CG are connected by a directed edge if and only if there is a precedence relation
between two operations. The weight of an edge indicates the number of control steps between
two operations. This transformed graph will be the input to the scheduling phase. Similar
descriptions of CG used in our system can be found in the literature [3, 8].

2.2 Selection Function

The number of times that an i -type operation occurs in each control step illustrates how the
operations are distributed among control steps in a given CDFG and therefore characterizes
the feature of that CDFG . This implies that if one operation in control step j is moved



3.4.4

to another step k , the CDFG may have different properties after this movement. That is,
the distribution of operations in a given CDFG can be changed after the movement, which
implies that the concurrency of operations may be affected. We may also compute measures
such as the average number of operations for each control step and the spread of operations
among control steps. For the purpose of our scheduling process, we primarily consider the
two most important of such quantities, which are the mean and the variance of the number
of operations, to describe the balanced distribution of operations. Based on these measures,
we will explore how to balance the concurrency of the operations among control steps in a
given CDFG .

Roughly speaking, the average number is a measure of the minimum number of opera-
tions needed to uniformly distribute them among control steps and the variance measures
the spread or dispersion of operations in the corresponding control step. We first want to
introduce a measure for the average number of operations. The most common such measure
is the arithmetic mean. The mean of the number of operations of i -type operation is denoted
by M{ and defined by the formula

where JV,- denotes the total number of i -type operations and N the minimum number of
control steps required to perform a given CDFG.

Now we want to introduce a measure for the spread or variation of the number of opera-
tions to distinguish between two CDFGs. We choose a quantity that measures the deviation
from the mean M; in each control step and then take square of such quantity to derive
another measurement. This quantity of i -type operation in control step j can be defined by

where rii(j) is the number of i-type operations in control step j. By using this quantity,
another measurement which is said to be the variance of the distribution of operations
between two control steps can be introduced by

= (n,-(j) - M,-)2 + M*) - MO2

where Vt(j, k) denotes the variance of i-type operation at control steps j and k.
It can be seen that as the value of Vi(j, k) approaches to zero, the number of operations at

both control steps i and j tends to be balanced uniformly. That is, it measures the degree of
the balance of operations between two control steps. Then, the variance of the distribution
after the movement of an operation Oif from step j to k can be also defined by

W,*) = K-'CO + K-
= (n,-(j) - 1 - M,-)2 + («,-(*) + 1 - M,-)2

where Vt'(j, k) denotes the variance of i -type operation at control steps j and k after the
movement.

From the above results, we can derive another measurement, the Change of Variance
(CV), which is the difference between variances before and after the movement. The CV of



4th JVASA Symposium on VLSI Design 1992 3.4.5

an operation is defined by the formula

where C{p(j, k) denotes the value of the CV when p -operation of i-type operations is moved
from control step j to k.

We can observe that if the value of this function is greater than zero, it is preferable to
move Oip from step j to k. The negative value indicates that the movement is not desirable.
Clearly, from the values of this function, we can make a decision whether or not the movement
of an operation is preferable. That is, the balance of the concurrency of operations can be
achieved by decreasing the number of operations in the control step where the value of CV
is maximal. This provides the selection function used in our scheduling algorithm to choose
a good candidate operation to be moved.

2.3 Scheduling Algorithm
The goal of our scheduling algorithm is to reduce the number of functional units required but
not to lengthen the total execution time. This can be achieved by balancing the concurrency
of the operations assigned to the functional units, which implies the high utilization of the
units and in turn minimizes the number of units required. The balance of concurrency can
be specified by the degree of the distribution of operations appeared in each control step.
Therefore, we can accomplish this by distributing those as uniformly as possible without
violating any constraints.

We now describe our scheduling algorithm on the basis of this observation. For the
simplicity, we temporarily assume that each operation executes in one control step and all
operations are either arithmetic or logic operations only. The objective function is the cost
function whose arguments are each type of functional units and the number of those in
each control step. The ASAP and ALAP schedules are shown in Figure 2 and Figure 3,
respectively. Figure 4 depicts the final scheduled graph for the example given in Figure 1.

<"pl «© *0 «© *© >»(D —pi i/7i i<Ci ioPiQ JQ «Q 10 toQ —PI iQ IQ

"2 » (•) '© »© "© —«•! j\/ «Q
\ / < T /

Q / ~ ^ > « b ~ M D •©

sg " ^ V4

Figure 2: The ASAP schedule Figure 3: The ALAP schedule
for the example for the example



3.4.6

1 IQ ZQ

. ' •?
O

Figure 4: The scheduled data flow graph for the example

STEP 1 Determine the critical path and compute the mobility of each operation using both
ASAP and ALAP schedules. In the following steps, the operations in the critical path are
not considered because each of them can not be moved to the other control step. We consider
either an ASAP or an ALAP schedule as an initial feasible solution.

STEP 2 Set counter to zero. Find the movable operations from the feasible solution de-
termined in the previous iteration. If there is no movable operation, then go to STEPS.
Otherwise, the following steps are performed.

STEP 3 Select the control step k for an operation Ofp such that the selection function
Cip(j,k) has the maximum value and then move Oip to control step fc. Oip denotes an
i-type operation which is numbered as p in CDFG. Then, that operation is locked at the
control step k temporarily.

STEP 4 Compute the gain which is the change of the value of the objective cost function
when the operation Oip is moved from control step j to k. Each of these gains computed in
this step is stored somewhere for the later use. Increment counter and go to STEPS.

STEP 5 Find a sequence of operations such that its cumulative gain is maximum among
those sequences generated up to now. If there is no improvement for the objective cost
function, the scheduling process is terminated. Otherwise, the current feasible solution
determined during the previous iteration is modified and go to STEP2.

We will now illustrate how the algorithm works using the example shown in Figure 1.
For the simplicity, it will be temporarily assumed that the available functional units are
multipliers and ALUs, and that multiplier cost is four and ALU cost is one. We also assume
that ALU is capable of performing addition, subtraction, and comparison. Let us consider
the ASAP schedule depicted in Figure 2 which is chosen to be an initial feasible solution. It
shows that the movable operations are Omu/Tj Oaiv9, and 0a/Ull. We then compute Cip(j, k)
for each of these operations as described before. For example, if the operation Omu/7 is moved
from control step 2 to 3 in Figure 2, then we can compute the selection function as follows:

= ni
= 2

,3) = {(2 - 2)2 + (0 - 2)2} - {(1 - 2)2 + (1 - 2)2}
= 2



4th NASA Symposium on VLSI Design 1992
PREGH>fN€ PAGE-4teftWK NOT FK.MED

3.4.11

X// //

Figure 5: Fifth-order wave digital eliptical filter example

5 Conclusion

We have presented a new heuristic scheduling algorithm based on multiple exchange pair
selection algorithm using the statistical analysis on the cumulative frequency distribution of
the number of operation among control steps. The presented algorithm considers the real
world constraints such as chained and multicycle operations, and pipelined data paths. The
theoretical justification of this statistical method used in our selection function is simple but
is strong enough to choose a good candidate operation to be moved. The proposed algorithm
has a hill climbing property that can escape from local minima and reach a globally optimal
solution, even though it is greedy in nature and therefore may prone to get stuck in a local
minimum rather than finding the global optimum.

The experimental result shows that this algorithm can generate the optimal solutions for
the examples used in the literatures [4, 10, 11].

References

[1] Cheng-Tsung Hwang, Jiah-Hurng Lee, and Yu-Chin Hsu. A Formal Approach to the
Scheduling Problem in High Level Synthesis. IEEE Tran. Computer-Aided Design,
10(4):464^75, April 1991.

[2] B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning Graphs.
Bell Syst.Tech. J., 49(2):291-308, 1970.

[3] David C. Ku and Giovanni De Micheli. Constrained Resouce Sharing and Conflict
Resolution in Hebe. In Integration, volume 12, pages 131-165. Elsevier, December
1991.



3.4.12

[4] S. Y. Kung, H. J. Whitehouse, and T. Kailath. VLSI Modern Signal Processing. Pren-
tice Hall, 1985.

[5] P. Marwedel. A New Synthesis Algorithm for MIMOLA Software System. In Pro-
ceedings of the 23th IEEE/ACM Design Automaton Conference, pages 271-277, July
1986.

[6] M. C. McFarland, S. J. Parker, and Raul Camposano. The High-Lvel Synthesis of
Digital System. Proceeding of IEEE, 78(2):301-318, February 1990.

[7] B. M. Pangrle and D. D. Gajski. Slicer: A state synthesis for intelligent silicon compila-
tion. In Proceedings of the IEEE International Conference on Computer Design, pages
42-5, October 1987.

[8] In-Cheol Park and Chong-Min Kyung. Fast and Near Optimal Scheduling in Auto-
matic Data Path Synthesis. In Proceedings of the 28th IEEE/'ACM Design Automaton
Conference, pages 680-685, July 1991.

[9] N. Park and A. C. Parker. Sehwa: A Software Package for Synthesis of Pipelines from
Behavioral Specifications. IEEE Transactions on Computer-Aided Design of Integrated
Circuits, CAD-7(3), March 1988.

[10] A. C. Parker, G. T. Pizarro, and M. Mlinar. MAHA: A Program for Datapath Synthesis.
In Proceedings of the 23th IEEE/ACM Design Automaton Conference, pages 461-66,
July 1986.

[11] P. G, Paulin and J. P. Knight. Force-directed Scheduling in Automatic Data Path
Synthesis. In Proceedings of the 24th IEEE/ACM Design Automaton Conference, pages
195-202, July 1987.

[12] P. G. Paulin and J. P. Knight. Force-Directed Scheduling for the Behavioral Synthesis
of ASIC's. IEEE Transactions on Computer-Aided Design of Integrated Circuits, CAD-
8(6):661-79, June 1989.

[13] H. Trickey. Flamel: A high-level hardware compiler. IEEE Transactions on Computer-
Aided Design of Integrated Circuits, CAD-6(2):259-69, March 1987.

[14] C. J. Tseng and D. P. Siewiorek. Automated Synthesis of Data Paths in Digital Systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits, CAD-5(3):379-
95, July 1986.




