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Abstract - A new approach to high level synthesis with micro-rollback and self-
recovery method is presented whose objective is to generate a reliable system from
the behavioral descriptions. The approach is formulated as a rollback point insertion
problem based on the probability function of being inserted rollback points after
the given CDFG is scheduled. This function allows us not only to search the
problem space efficiently but also to avoid the exhaustive search.

1 Error Detection Scheme

When one of the components of system fails, it causes an error, i.e., it results in an erroneous
internal system state that can lead to system failure unless some special action is taken by the
system to recover or to reconstruct a valid internal state. In order to prevent system failure,
such errors must be detected soon after they occur. Thus, error detection is a vital step in
all recovery schemes and the system must include a mechanism for detecting the failure of
its components. The key to developing an effective error detection scheme is to minimize
the distance between error occurrence and detection in both space and time. Ideally, these
distance can be reduced to zero so that as soon as an error occurs, i.e., a component produces
incorrect results, the error is detected by all the other system components that are receiving
this erroneous information. This ideal can be achieved if all the components in the system
are self-checking so that in addition to their normal outputs they also indicate to the rest of
the system whether these outputs are correct.

No component can be self-checking with respect to all possible combinations of hardware
faults. Instead, for all likely faults, the component must either produce the correct output
or produce the output that contains an error indication. A component that satisfies this
requirement is said to be fault secure [1]. No component is fault secure with respect to all
possible combinations. Since the component is not guaranteed to produce a noncode output1

immediately following the occurrence of the first fault, several additional different faults may
exist in a component without any indication to the rest of the system and may cause the
destruction of the fault secure property of the component. In order to prevent this situation,
a component must be self-testing [1] such that it is guaranteed to produce a noncode output,
due to the occurrence of one or more faults, before additional faults can occur and lead to
the failure of the self-checking mechanism. Thus, self-checking must be both fault secure
and self-testing so that the reliable error detection can be provided. It is therefore assumed
that the error detection scheme must consist of such self-checking components. We further
assume that the data flowing in the data path are coded. The error detection scheme in our

1 Output that contain an error indication
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system can be achieved by applying such self-checking design and coding techniques in the
literature [17].

2 Micro-rollback Scheme

In this section we present the rollback technique for multiple retries in the high level synthesis
which is at the heart of our system. Some constraints such as the number of available
registers, the maximum allowable recovery time, and the number of retries are given by the
user. The retries of a sequence of microinstructions are performed on the basis of control
steps. Although a large number of retries may not be necessary from the point of view of
recovery time, the need for multiple retries arises due to the fact that a single retry may
not guarantee the disappearance of the error. If an error is detected while a sequence of
instructions is being processed, our rollback algorithm brings the processing back a few
control steps to the state that had existed in the past before the error first occurred, thus
returns the system to an error free state where the offending microinstructions can be retried.
We mean the state of the system is the contents of all storage information between two
consecutive control steps, such as program status word, register contents, program counter,
and the instruction register.

In order to be able to perform such an operation, the system must store all such in-
formation necessary to undo the state changes that have occurred in the last few control
steps. Thus, setting up the rollback points is necessitated at the control step boundaries.
This implies that the scheduled CDFG is partitioned into several segments and each rollback
point is introduced at the beginning of every segment. A rollback point consists of a set of
registers which store the data flowing into that particular segment. This set of registers
stores the data that is only external to that segment, and the contents of these registers
must be stored until the next rollback point is located. The registers having the contents of
the previous rollback point will be overwritten with those of the current one's after a new
rollback point is located. While the execution of the microinstructions is continued, the re-
maining registers are used to contain information for them. When backing up the processing
to the previous error free state is necessitated in response to an error signal, all the required
information which is the contents of registers at the most recently located rollback point is
readily available. Note that no memory access is required and in turn the time required to
save and load the status across the control step boundaries can be saved. To illustrate our
rollback scheme, we define the following terminologies:

• N : The minimum number of control steps required to perform a given CDFG.

• Ni : The total number of i— type operations in a given CDFG.

• NT : The number of retries which is specified by the user.

• Nrp : The number of rollback points inserted at the control step boundaries.

• rmtn : The minimum number of registers required to execute a given CDFG.

• ravaii • The maximum number of available registers specified by the user.



4th NASA Symposium on VLSI Design 1992 3.5.3

'• The maximum allowable recovery time for Nr retries given by the user.

' The maximum allowable recovery distance which is defined by [Tmax/NT\ .

• Ti :The time needed to run the set of microinstructions from the last rollback point to
Ci.

• TTi : The recovery time for NT retries at any control step C,- (i.e., Nr • T,-).

The value of Tmax is also assumed to be greater than the maximum execution time among
those of different type functional units. Furthermore, we assume the values of Tmax and TTi

are specified in terms of the number of control steps.

2.1 Insertion Function

In selecting a good candidate location where the rollback point can be set up, the most im-
portant factor to be considered is the probability of being inserted a rollback point at each
control step boundary. Let n denotes the number of control steps required to perform the
remaining part of a scheduled CDFG. Since Tmax and Nr are given by the user, the maxi-
mum allowable recovery distance can be computed by [Tmax/Nr\. Let the insertion function
P1

£>ma;c(n, i) be the probability that a rollback point is inserted between two successive control
steps d and C,-+i, 1 < i < n, in the CDFG. The subscript 1 indicates the fact that the
rollback point can be inserted. In order to be able to compute this probability, we must find
all possible patterns of rollback points being set up at every control step boundary. These
patterns can be illustrated by the binary number sequences of length n. For example, a
sequence 101... indicates the following facts:

• The rollback point was set up at the point before Ci, i.e., the initial state of the system
is saved, and

• The rollback point was not inserted between C\ and C%, and so on.

Note that the probability of being inserted a rollback point depends on the maximum allow-
able recovery time Tmax, number of retries Nr , recovery time Tri,, and the location of the
previous rollback point. The initial state of the system must be stored before the processing
begins to start. Thus, inserting an element into i -th position in the sequence must be
satisfied the following conditions:

• 1 must be inserted if either i = 0 or there is 1 in (i — Dmax) -th position and there is
no 1 in the range [i — Ana*,«' — !], where Dmax <i <n.

• 0 can not be inserted if either i = 0 or there is 1 in (i — Dmax) -th position and there
is no 1 in the range [i — Dmax,i — 1], where Dmax < i < n .

• Otherwise, either an 1 or a 0 can be inserted
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All possible patterns can be generated on the basis of these features. For example, we may
generate all possible sequences for Dmax = 2 and n = 4 as follows:

sequence;
sequencei
sequence^
sequence^
sequence^
sequence^

rpo
1
1
1
1
1

rpi
0
0
1
1
1

rp2

1
1
0
1
1

rp
0
1
1
0
1

During the generation of such sequences, it can be easily seen that these sequences have
the same characteristics as the Fibonacci sequence. Figure 5 illustrates how such sequences
can be generated. In the following context, the first position (i.e., 0-th position) in the
sequence is not considered due to the fact that it is always set to one. Thus, we can derive
the following formula to compute Pfm"(n, i) . Given Dmax and n , let fDmax(n] denotes the
number of all possible sequences. Then, fDmax(n) are the Dmax-th order Fibonacci numbers
and defined by the rules

/*— (n) = JT* /Dm«(n - *), if n > Dmax ;

fD"»*(n) = 2n, if 1 < n < Dmax - 1 .

That is, they are started with 21, 22, • • • , 2D"""~l's, then 2Dma* — 1, and then each number is
the sum of the previous Dmax values. When Dma.x = 2 , this is the usual Fibonacci sequence;
for larger values of Dmax the equation can be solved by using the generating function[7] .

Let the functions f<?max(n,k) and f^max(n^k) denotes the number of O's and 1's on the
k -th position respectively for some given integers n and Dmax •> where 1 < k < n . Then, the
function fDmax(n) can be redefined in terms of two functions /iPm"*(n, fc) and /f mo*(n, k) by

/"—(n) = /0
Dm"(n, k) + /f— (n, k) .

These numbers also have the characteristics of the Fibonacci number. Thus, these functions
can be defined by the similar way described previously. Due to the limited space, we will
not describe the detailed derivations for these functions.

Note that the initial conditions of these recurrence functions are depending on the func-
tion fDma*(n) . This provides an important fact that the number of 1's occurrences on z-th
position in all possible patterns can be represented in term of the number of all possible
sequences. Consequently, the probability P^mai(n, i) can be computed by the following rule:

T.D , -^ f?max(n-l,i-l)pJJmax(n ,"\ — J 1 V _ I _ l_^i ln,tj- fDmai(n_ l}

This is the definition of the insertion function used in our rollback scheme. The function
Po>ma'(n,i) denotes the probability that a rollback point is not inserted at the location
between two successive control steps d and d+i, 1 < i < n, in the CDFG. It can be
defined in a similar fashion. However, since we only have interests in finding the location
that the rollback point can be inserted among control steps, it is not further considered.
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2.2 Rollback Point Insertion Algorithm

It is necessary to find the appropriate points in between every two consecutive control steps
and set up the rollback points on those locations in order to support the rollback scheme.
The following procedure processes a such task and is iterated until all necessary rollback
points are inserted. A rollback point consists of a set of registers, i.e., rollback registers,
that store the values received from previous segment and these registers can not be shared
with others. The remaining registers can be used for storing the intermediate results of
computations.

STEP 1 Construct the live- variable graph from the scheduled CDFG. The initial state of
the system is stored before the first control step. That is, the external input values of CDFG
are stored into rollback registers. Compute the maximum allowable recovery distance Dmax
for Tmax and Nr. Set current.check.point to zero. This variable specifies the current possible
rollback point between two consecutive control steps.

STEP 2 If the length of critical path minus current.check-point is less than or equal to one,
the process of inserting the rollback points is terminated. Otherwise, the following STEP 3
- 6 are repeated. That is, these steps are iterated until all the necessary rollback points are
set up in a given scheduled CDFG.

STEP 3 Compute the insertion function for the remaining control steps in order to decide
the possible rollback point. Select the earlier one of either the control step number whose
insertion function has the largest value among those or the value of current-check.point plus
maximum allowable recovery distance Dmax. If there is a tie among the computed values of
insertion functions for the corresponding control steps, the earliest point will be chosen.

STEP 4 Increase the value of current-check-point by the value selected in STEP 3. This
value of current-check-point specifies the most probable point between two consecutive control
steps where the rollback point can be inserted after the most recently located rollback point.
Compute the number of registers required for each control step from the previous rollback
point to current-check-point .

STEP 5 If the largest number of registers computed in STEP 3 is greater than the given
number of available registers rava,-/, the value of current-check-point is subtracted by the
control step number which has the largest number of registers and then repeat this step.
Otherwise, go to STEP 6.

STEP 6 If the recovery time Tr, is greater than Tmax (i.e., T, > Dmax), decrement cur-
rent.check.point by one and repeat this process. Otherwise, the rollback point is set up at
current-check-point. Then, the live-variable graph is modified such that the life regions of
variables received values from the previous segment are extended to the rollback point set
up in this step and go to STEP 2.

The algorithm is illustrated for the scheduled CDFG shown in Figure 4 where Tmax = 2,
Nr = 1, rmin = 4, and rat,a,-/ = 6. Let us consider the initial live-variable graph for this
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CDFG which is given in Figure 6. Let rp^ denotes the current-check-point variable in the
algorithm. Since Nr = 1, Dmax = Tmax = 2 and TTi = T,. The contents of variables y, u,
x , which are the initial status of CDFG are saved on the point rp0 . We then compute the
insertion function for each control step in the range [ rpi ,rpo + Tmax ] as follows:

For control step 1, Pa
2(4,1) =

/2(3)

For control step 2, P2(4,2) =

Thus, rp2 is chosen to be the most probable point. From the live- variable graph shown in
Figure 5, the number of registers required to execute the operations in the range [ Ci, C%
} is 6 and TT2 = TI = 1 < Dmax = 2. Therefore, a rollback point is inserted in rp2 without
examining another possible location rpi . The live- variable graph is then modified to reflect
the fact that the saved variables can not be shared with the others in the range [Ci, ^2]-
Similarly, next rollback point is inserted on rp3 and the final live-variable graph is given in
Figure 7.

3 Further Considerations

In this section, the basic rollback algorithm is extended to handle real world constraints such
as mutually exclusive operations, chained operations, and multicycle operations.

3.1 Mutually Exclusive Operations

When two operations can never be both executed at the same time, they are said to be mutu-
ally exclusive and therefore can share hardware. The existence of the conditional statements
such as if-then-else and case statements causes some operations to be mutually exclusive,
since only one branch in a conditional block occurs at a time. Such operations can be sched-
uled into the same control step without increasing the number of functional units if they are
performed on the same unit. In other words, they can be simply treated by taking them as
a single operation. Similarly, two variables are mutually exclusive if they can never be both
alive at the same time. They can also share a register for storage, even though their life times
are overlapping. In order to handle such variables for the mutually exclusive operations, we
must color the edges in the initial live- variable graph. Thus, the basic algorithm described in
the last section can be used to handle mutually exclusive operations with coloring algorithm.
The algorithm used for the coloring is a modified version of the node coloring algorithm in
[10].

3.2 Chained Operations

As the duration of one control step is increased, more operations can be performed during
one control step if there are enough components available to perform the operations. When
more than one operation is performed sequentially within one state, the operations are said
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to be chained together. Chaining allows higher utilization of functional units, but not the
hardware sharing, by assigning them within the same control step. It can be also eliminated
the need for registers to save data between two successive chained operations, because the
data produced by the first one is consumed in the same state by the second. Thus, for the
case of the chained operations, it is not necessary to modify the proposed rollback schemes.

3.3 Multicycle Operations

The possibility of scheduling operations that require more than one control step to execute
has been also incorporated into the system. This feature can be implemented by taking into
account the fact that multicycle operation can not be preempted to the completion of its
execution. That is, once the multicycle operation is assigned, the functional unit cannot be
shared by other operations until the operation is completed. In order to reflect this fact,
we simply use the following strategy in the course of examining the possible location that a
rollback point can be inserted;

• After the most probable location is decided, check the location if there is a multicycle
operation.

• If so, current-check-point is decreased to the control step at which that multicycle
operation begin to start.

• Otherwise, proceed the basic algorithm as usual. In other words, there is no effect on
this scheme due to the above fact.

4 Experiment

We have implemented the proposed algorithm in C on a SUN SPARK station 2 system.
The proposed system has been tested on several examples which were used in some systems
described in the literature [9, 11,12]. However, direct comparisons are not possible to make
due to the following facts:

• There has been no published report for rollback and recovery system from the behav-
ioral synthesis point of view which considers the real environment such as chained and
multicycle operations.

• Since the requirement of our design is reliability of the system, it may involve either
temporal or physical redundancy.

Thus, instead of giving the experimental results for several examples, we will classify the
results for a popular example into several cases, and then intensively analyze the effect on
the system. This will be followed by a brief discussion of another example borrowed from
[9]-

The first example is the differential equation which were described in [12]. Two types of
overhead should be introduced due to our design requirement. One is register overhead and
the other is recovery time overhead [13, 16]. They are defined by
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• register ^overhead = (ravau — rmjn/rova,-j) x 100

• recovery Jimejoverhead = (Nrp/N) x 100

We consider two cases in each table. In the first case we hold the maximum allowable
recovery time Dmax constant and compute the number of rollback points inserted for the
various number of available registers rava,-{. since rmin < roua,-/, ravau begins with rm,-n. The
columns show the result of this case. In second case we fix ravau and compute the number of
rollback points required for the various Dmax. Each row illustrates the results for this. The
entries of each table indicate the number of rollback points required in this example.

Table 1 specifies the result for the case of which neither chained nor multicycle operation
is allowed. After the scheduling process, rmin = 5 . The assumptions for this case are as
follows.

• one control step is equivalent to 100ns

• delay time: ALU = 60ns, multiplier =80ns

Table 1 shows that the optimum values for ravaiv and Dmax lie in the range of 20% - 60% of
register overhead and 20% - 40% of recovery time overhead, respectively. The result of the
experiment that has been taken into account the multicycle operations are summarized in
the Table 2. In this case, rm,-n = 6. We also made the following assumptions:

• one control step is equivalent to 60ns

• delay time: ALU = 40ns, multiplier =80ns

favail

5
6
7
8
9
10
11

•Umax

1

3
3
3
3
3
3
3

2
3
2
2
1
1
1
1

3
3
1
1
1
1
1
1

4
3
1
0
0
0
0
0

5
3
1
0
0
0
0
0

6
3
1
0
0
0
0
0

7
3
1
0
0
0
0
0

Table 1: The case for one cycle op-
erations only.

Tavail

6
7
8
9
10
11

Umax
2
4
3
2
2
2
2

3
3
3
3
3
2
2

4
3
2
1
1
1
1

5
3
2
1
1
1
1

6
1
0
0
0
0
0

7
1
0
0
0
0
0

Table 2: The case for the multicy-
cling operations.

For the case of multicycle operations, the suitable values of ravai/ and Dmax lie in 13% -
50% of register overhead and 30% - 50% of recovery time overhead, respectively.

Table 3 shows the result that the chained operations are considered. rmtn is 6 as the
result of scheduling process.

For this case, the following assumptions are made:
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favail

6
7
8
9
10
11

Umax

1

2
2
2
2
2
2

2
1
1
1
1
1
1

3
1
0
0
0
0
0

4
1
0
0
0
0
0

5
1
0
0
0
0
0

6
1
0
0
0
0
0

7
1
0
0
0
0
0

Table 3: The case for the chained operations.

• one control step is equivalent to 100ns

• delay time: ALU = 40ns, multiplier =80ns

In general, it can be easily seen that the register overhead and recovery time overhead have
conflicting requirements. In other words, as the recovery time overhead becomes greater we
should insert more rollback point, and vice versa. Similarly, we can estimate those suitable
values for each case by analyzing the corresponding tables. ^From this analysis of the results,
it can be observed that as the duration of one control step is increased, more register overhead
can be expected. Conversely, we can expect more recovery time overhead as there are more
multicycle operations. Another example shown in Figure 8 is the fifth-order wave digital
elliptical filter borrowed from [9]. This example contains multicycle operations and the
assumption we made in the previous example is also applied. This figure illustrates the final
result of our algorithm when rrot-n = 11 for given ravo,7 = 15 < 37% and Tmax = 6.

5 Conclusion

This paper presented a new approach to high level synthesis for the micro-rollback and
self-recovery system whose objective is to generate a self-recoverable system from a given
behavioral description. Ragahvendra and Lursinsap [13] proposed this new approach to high
level synthesis. However, they did not consider the real world constraints such as chained
and multicycle operations. As we described in the previous sections, such constraints have
been incorporated into our system.

The probability function for the rollback point insertion allows us to avoid searching all
the locations between two consecutive control step in CDFG in order to find the position that
the rollback point can be inserted. From the result of the experiment, we have formulated
a way of arriving at the reasonable values of the number of additional registers and the
allowable recovery time in spite of conflicting requirements.
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Figure 1: The data flow graph Figure 2: The scheduled data
for the example flow graph for the example
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Figure 5: The final live variable Figure 6: Fifth-order wave digi-
graph tal elliptical filter example




