
4th NASA Symposium on VLSI Design 1992 IN J7 ^ & A 611

A Novel Visual Hardware Behavioral Language
Xueqin Li H. D. Cheng
Dept of Electrical Engineering Dept of Computer Science
Utah State University Utah State University
Logan UT 84322 Logan UT 84322
Email:xueqin@slow.cs.usu.edu

Abstract - Most hardware behavioral languages just use texts to describe the
behavior of the desired hardware design, but it is inconvenient for VLSI designers
who enjoy using schematic approach. The proposed visual hardware behavioral
language has the ability to graphically express design information using visual
parallel models (blocks), visual sequential models (processes) and visual data
flow graph (which consists of primitive operational icons, control icons and Data
and Synchro links).

Thus the proposed visual hardware behavioral language not only can specify
hardware concurrent and sequential functionality but also can visually expose
parallelism, sequentiality and disjointness (mutually exclusive operations) for
the hardware designers. That would make the hardware designers capture the
design ideas easily and explicitly using this visual hardware behavioral language.

1 Introduction

The success of hardware design is heavily dependent on how effectively the input language
captures the ideas of the designer in a simple and understandable way. A hardware descrip-
tion is behavioral when it is expressed in a manner which conveys only what the hardware
module is supposed to do without committing to an implementation. The hardware behavior
languages are basically the best way we know today to describe what a system looks like at
a more abstract level. Many hardware behavioral languages have been proposed and used in
both academical and industrial environment. For example, VHDL, Verilog, Esim, etc. Some
HDLs provide a mechanism for attaching code written in Fortran, Lisp, Pascal or C in order
to express complex behavior such as HardwareC[10]. But VLSI designers prefer drawing dia-
grams rather than writing codes in design hardware. If the hardware behavioral language can
provide direct, manipulatable graphic models, which are consistent and complete from the
hardware designer's point of view, then simulation and synthesis based on these visualized
models will greatly improve user interface, and the users only need to understand the visual
models. This requires that the hardware behavioral language has the ability to graphically
express abstract design information. The proposed hardware behavioral language is such a
visual hardware behavioral language that can not only specify hardware concurrent and se-
quential functionality but can also visually expose parallelism, sequentiality and disjointness
(mutually exclusive operations).

There are two kinds of visual models in the proposed language: parallel model (block)
and sequential model (process). Using blocks, we are describing the hardware modules
as collections of interconnected objects which operate in parallel. Using processes, we are

6.1.2

input port ouput port inout port

Figure 1: The visual representations for the port

encapsulating certain aspects of the behavior which can be described in the form of a sequence
of steps and expressing these steps in a visual pictorial dataflow style. Our visual behavioral
HDL has its own hardware semantics and visual representations (such as process, block,
signal link, port, wait operation icon, drive operation icon, etc) with adoption of some data
flow syntax and visual representations from other visual language[4, 5, 6] to support the
specification of the hardware design.

2 Definitions and Visual Representations

1. port: A connected point associated with objects which may appear in blocks and pro-
cesses, and which represents information flow into or out of the objects. The attributes
of a port are name, type, width, mode and sensitive token. The port name represents
its own ID which may be a character or a letter and digit string. The type represents
the type of information to be carried through the port which may be a type of bit,
integer, float, character or string. The width indicates an array of units of information,
and the mode represents the direction of data flow into or out of the object which may
be IN, signifying information flow from the "outside" to the "inside", OUT, signifying
flow from the "inside" to the "outside", or INOUT, signifying bidirectional information
flow. The sensitive token has only two values 0 or 1 which indicates whether the port
is a sensitive port to the attached process. The visual representation of the port is
shown in Figure 1. During editing, a double-click on these port icons would enter the
port editor as shown in Figure 2.

2. Signal link: A signal link connects two ports together. A signal link is represented as
a line in the block editor. Signal link has the attributes of type and width which must
be compatible with the ports to which they are connected.

3. Block (parallel model): A form of description managed by the block editor, which
represents description as a collection of interconnected objects which are considered to
operate in parallel. A block has an external port list and contains objects and signal
links. An object may be: 1) an instance of another block; 2) a process. The ports of
the block and ports on the contained objects may be interconnected with signal links.
The visual representation for the block is an empty rectangle with some ports sticking
with it which is shown in Figure 3.

4. Process (sequential model): A form of description expressed in a dataflow style. A

4th NASA Symposium on VLSI Design 1992 6.1.3

PORT EDITOR

name

type

width

sensitive

f CancelJ C set J

Figure 2: The port editor

V \7

Figure 3: The visual representations for the block

6.1.4

Figure 4: The visual representation for the process

process has an external port list and contains data flow primitive operation icons which
are linked by the data/synchro links to express certain behavior which is supposed to
do within the process. A process has some sensitive ports which are indicated by
tokens. A process is said to be sensitive to a particular set of its IN or INOUT ports at
any time and such that execution will be resumed by the simulator whenever there is a
state change at any currently sensitive ports of the process. A process which suspends
when completes its execution (reaching the end of its dataflow graph) will be deemed
at that time to be sensitive to all of its IN and INOUT ports and will be restarted at
the beginning of its dataflow graph upon a state change on any of these ports. We
assume that a process does not contain subprocesses. The visual representation for the
process is a hexagon with some ports sticking with its edges as shown in the Figure 4.

Dataflow graph: Some ordered operational icons connected by data and synchro links
represent certain algorithms. The visual data flow graph represents the algorithm as a
set of operational icons connected by Data links and Synchro links. Consider a process
which has the function: F = XiX2 + Xa after 20ns. A process showing the dataflow
model of this function is shown in Figure 5. The process will be activated whenever
any one input variable of the input list: (XijXajXa) changes. Once the process is
activated, the "and" operation will be executed before the "or" operation because of
its data-dependence. The "drive" operation is to model the time of function. That is,
"F" will be updated after 20ns from the time the process is activated. The operational
icons connected by Datalinks are guaranteed to execute in a serial order. The Synchro
link allows the designer to specify control dependencies among data-independent icons.
In Figure 6, the computation Aj + Aa must be carried out before the computation
A.3 + A4. The multiplication must be carried out after two additions because of its
data-dependence.

Following elements are needed to specify hardware functional behavior within the data
flow graph.

• Primitive icons: primitive icons visually represent arithmetic, relational or logical
operations. These icons have at most two inputs (terminals) and one output
(root) as shown in the Figure 7. This form corresponds closely to the operations
that can be carried out directly in the hardware. Table 5 gives the definition of
these primitive operations.

4th NASA Symposium on VLSI Design 1992 6.1.5

J input bar

output bar

Figure 5: An example of dataflow graph to model a combinational logic

input bar

Datali

J output bar

Figure 6: The visual representation for the Datalink and Synchro link

6.1.6

xl\ v
two terminals

root

Figure 7: The example of primitive icon

Table 1: The definition of the primitive operations
Group

arithmetic
(binary)

arithmetic
(unary)

relational

logical

input
output

Symbol
+
-
*

/
**

mod
rr
rl
»
«

drive
+1
-1

abs
==
!=

<
>
<
>

and
or

nand
nor
xor
not
ask

show

Function
addition

subtraction
multiplication

division
exponentiation

modulus
rotate right
rotate left
shift right
shift left

signal assignment
unary plus

unary minus
absolute value

equal
nor equal
less than

greater than
less than or equal

greater than or equal
logical and
logical or

complement of and
complement of or

logical exclusive-or
complement
read data

display data

4th NASA Symposium on VLSI Design 1992 6.1.7

Simple

O
1 Ixl Match

A i
0 O
Set

O O O O

selectMax
O

b = A(i)

b
O

> get
C3 O
A i

Local Wait

A(i) = b

Figure 8: The Operation icons

Operation icons: There are several operation icons: Simple, Match, Wait,
Constant, Set, Get, Local. Figure 8 shows these operational icons. An opera-
tion when first created is Simple. After its name has been typed and the Return
Key pressed, the interpreter parses the name and determines whether it refers
to a primitive or a user-defined operation, altering the appearance of the oper-
ational icon accordingly. A constant icon has a value and a single root. When
the operation executes, this value is made available on its root. When a match
operation executes, its value is compared to the value flowing into its terminal.
The match operation may be 1 or 0 with the success or failure of the compar-
ison. Wait operation causes the process to suspend itself until the event being
waited occurs or the time it is waiting for has elapsed. Wait operation provides
strong synchronization across processes. Get and Set operation are used for the
variable reference. Local operation is an encapsulation of a body of codes into
a single icon. We can treat each local icon as a closed box that communicates
with the rest of the program within the process only through its inputs and out-
puts. We can alter or rearrange the statements inside the box at will, provided
the changes do not affect the local icon's input or output. In this way, we can
define a hierarchy of procedure call within a process. Consider a simple example:
F = (a + b + c + d + x + y-|-z)*s = [(a + b + c + d) + x + y + z]*s. In Figure 9,
we make the sum of 4 operants into one local icon sum4.

Control icons: Control icons are attached to the operation icons. Control icon is
visually a small icon attached to the right side of an operation icon and is used
for implementing the condition and loop functions. A control has two aspects:
the action to be taken, and whether this action is taken on success or failure of
the operation. Control icons depict these two aspects as follows:

— A check mark (V) within the control icon indicates that it is activated on
success of the operation.

— A mark (X) within the control icon indicates that it is activated on failure of

6.1.8

J L

J L

Figure 9: The example of the local icon

Next case

Finish

n

Terminate

0 (X, Fail

loop

step

Figure 10: The control icons

the operation.
— The other graphics within the control icons indicate the action to be taken.

We use following types of controls: Next case, Terminate, Finish, Fail and loop
as shown Figure 10.

Consider an example of a Mod-4 up counter. The counter counts up if the control
input enable equals 1 at the rising edge of the clock, elk, signal. Figure 11
shows the behavioral representation of this counter. A method with two cases is
required to express the counter. The first case is to be activated whenever elk
and enable equal to 1. A primitive operation of the form (1 + count) mod 4
is to be executed revealing the new value of count which will be scheduled after
elk-width. The second case is activated if either elk or enable equal to 0. In
this case, the counter will retain its current value.

6. Template library: An external collection of the blocks, which consist of some generic
components such as: ALU, counters, comparators, registers and interconnect units

4th NASA Symposium on VLSI Design 1992 6.1.9

counter easel counter (case2)

enable elk coun
U

enable

n

Figure 11: An example 4 mod up counter

(bus, multiplexors), etc. Each process in the template library has a certain function
associated with it.

3 Visual Editors for the Visual Hardware Behavioral
Language

In our proposed visual hardware behavioral language, the block is the most top model which
may contain some processes and the instances of other blocks. When one is working in
the block editor, a new model is required. The block editor is shown in Figure 12. In this
editor, a mouse is used to direct a cursor about the screen, to control selections from drawing
modes, editing modes and a set of pop-up menus, and to select and position design objects
on the screen. Pop-up menus and overlapping windows are created on the fly as needed
to select items for creation and to provide access to the file system. Drawing a rectangle
or hexagon within the editing area creates an anonymous ("unbound") model instance, the
model instance can be given a name, and ports can be added and annotated (given names,
types, widths and modes). If we type the name inside the model instance area, a search can
take place for a block or a process instance created before with the same name and the model
instance is bounded if a match is found. Otherwise the model instance remains unbound. If
the new model instance is a block and unbound, a double click on this instance can create
a new block of the same name and enter the block editor. If the new model instance is a
process and unbound, a double click on this unbounded process would enter the dataflow
editor which is shown in Figure 13. A double click on a bounded model instance would enter
the editor corresponding to the model that the instance is bounded to.

6.1.10

BLOCK EDITOR

Quit File ... Template library help

Drawi
mo

ng
des

process

port /\

Av
Signal
link

input portl

17
input port2

V V V
output portl output port2 output port3

Editing
modes

undo

delete

move

rotate

copy

scale

D

Figure 12: The Block Editor

4th NASA Symposium on VLSI Design 1992 6.1.11

| Dataflow Editor | < | [T] |l>

Quit Primitive Opers Control

D

v

Figure .13: The data flow editor

4 Conclusions

The major features of the proposed visual hardware behavioral language are as follows:

• The ability to design abstract information graphically.

It can graphically display parallelism, sequentiality and disjointness using parallel
model (visual blocks), sequential model (visual processes) and data flow graph on
the screen.

• Two level behavioral descriptions.

At the architectural level, we use blocks and cooperating processes to describe the
communication and connected behavior of the processes within the design. At the
functional level, we use data flow graph to describe the algorithm accomplishing certain
functions.

• Data flow style.

• Easy to learn and use.

Because the proposed visual hardware behavioral language provides graphical informa-
tion such as diagrams (rectangles for blocks and circles for processes) and operational
icons in the actual process of hardware design, it is easy to learn and use for VLSI
designers.

References

[1] A Rountable, "Behavioral description languages - PART I: Are designers Benefiting?".
IEEE Design Test of Computers, February 1990, pp56 - 62.

6.1.12

[2] R. Camposano, L. F. Saunders and R. M. Tabet, "VHDL as Input for High - Level
Synthesis" IEEE design Test of Computers, March 1991, pp43 - 49.

[3] D. Ku and G. De Micheli, "Hardware C: A Language for Hardware Design" tech, rpt.
CSL-TR 90- 419, Computer System Lab., Stanford University, August 1990(version
2.0).

[4] "Prograph Tutorial" The Gunakara Sun Systems Limited, 1990.

[5] "Prograph Reference" The Gunakara Sun Systems Limited, 1990.

[6] Shi-kuo Chang, "Principles of Visual Programming Systems" Prentice-Hall. Inc, 1990.

[7] Alex Orailoglu and Daniel Gajski, "Flow Graph representation" IEEE 23rd Design
Automation Conference, 1986, pp503 -509.

[8] Akira Sugimoto, "VEGA: A Visual Modeling Language for Digital Systems" IEEE
Design Test of Computers, June,1991, pp38 - 45.

[9] Paul J. Dronggowski, Juahar R. Bammi and Tsu-Hua, Wang, "A graphical hardware
Design Language", IEEE 25th Design Automotion Conference, 1988, ppl08-144.

