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Abstract - A number of U.S. national programs, including space-based detection
of ballistic missile launches, envisage putting significant computing power into
space. Given sufficient progress in low-power VLSI, multichip-module pack-
aging and liquid-cooling technologies, we will see design of high-performance
multiprocessors for individual satellites. In very high speed implementations,
performance depends critically on tolerating large latencies in interprocessor
communication; without latency tolerance, performance is limited by the vastly
differing time scales in processor and data-memory modules, including inter-
connect times. The modern approach to tolerating remote-communication cost
in scalable, shared-memory multiprocessors is to (i) use a multithreaded archi-
tecture, and (ii) alter the semantics of shared memory slightly, at the price of
forcing the programmer either to reason about program correctness in a relaxed
consistency model or to agree to program in a constrained style. The literature
on multiprocessor correctness conditions has become increasingly complex—and
sometimes confusing—which may hinder its practical application. We propose
a simple modern correctness condition for a high-performance, shared-memory
multiprocessor; the correctness condition is based on a simple interface between
the multiprocessor architecture and high-performance, shared-memory multi-
processor; the correctness condition is based on a simple interface between the
multiprocessor architecture and the parallel programming system.

Keywords: high-performance multiprocessor in space, scalable shared-memory multiproces-
sor, multithreading, relaxed consistency model, multiprocessor correctness condition, parallel
programming model, programming/architecture interface, local acknowledgment protocol,
nonsequential consistency, hybrid model.

1 Introduction

A number of U.S. national programs, including space-based detection of ballistic missile
launches, envisage putting significant computing power into space. When enabling technolo-
gies such as (i) low-power VLSI, including cold chips, (i1) multichip-module packaging, and
(i1i) space-based liquid cooling for hot chips—are sufficiently mature, we will see design of
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space-based liquid cooling for hot chips—are sufficiently mature, we will see design of high-
performance multiprocessors for individual satellites. These machines will communicate with
each other and with ground-based supercomputers—for example, to support massive real-
time data acquisition, up to two terabytes of data per day. Very high speed implementations
of multiprocessor architectures—that is, scalable machines with short processor cycles—that
are built from clusters of interconnected processor and data-memory modules have a potential
performance bottleneck; they must tolerate the large latencies in interprocessor communica-
tion (remote memory accesses may take anywhere from 100 to 1000 processor cycles) [2,11].
Building a shared-memory parallel programming system on top of a so-called “distributed-
memory” multiprocessor architecture may motivate us—after as much latency as possible
has been tolerated by multithreading—to alter the semantics of shared memory slightly, at
the price of forcing the parallel programmer either to reason about program correctness in
a relaxed consistency model or to agree to program in a constrained style. The literature
on multiprocessor correctness conditions has become increasingly complex—and sometimes
confusing—which may hinder its practical application [1,3,4,9-11]. One positive note is that
most relaxed consistency models (actually, these are not models of multiprocessors at all but
rather restrictions on an implementation or protocol, expressed at the level of the proces-
sor/memory interface) support sequential consistency for a special class of well-behaved, i.e.,
well-synchronized, parallel programs. We propose a simple modern correctness condition
for a high-performance, shared-memory multiprocessor; the correctness condition is based
on a simple interface between the multiprocessor architecture and the parallel programming
system.

2 Memory Consistency Models

The conceptual model inherited from von Neumann machines with relatively few processors
is that all memory reads and writes appear to be atomic (indivisible). In early multiproces-
sors, this “default” atomicity was implemented by the indivisible read/write memory cycle.
Closely related to atomicity in the traditional model is the view that each operation in a
(sequential) program thread appears to execute before the next operation in the thread is
issued. The high cost of waiting for each stream operation to globally perform before the
next stream instruction issues is well known [7,8]. The first attempt to define a multiproces-
sor correctness condition that would permit assertional reasoning (essentially, the continued
existence of a program state space) and still be efficiently implementable was Lamport’s
sequential consistency [12]. Assertional reasoning would still be possible, Lamport wrote,
provided that “the result of any execution [by the multiprocessor] is the same as if the oper-
ations of all the processors [had been] executed in some sequential order, and the operations
of each individual processor appear in this sequence in the order specified by its program”.
In simpler language, the program behaves as if the memory accesses of all the threads were
interleaved—without destroying program order—and executed sequentially.

There are at least two problems with sequential consistency as a correctness condition.
First, it has been widely misinterpreted to mean that one processor’s update to a shared
variable must be reflected in every other processor’s view before the updating processor
may issue another memory access, thereby confusing the correctness condition—sequential
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consistency—with one particular low-performance implementation [7,9]. In this interpreta-
tion, all memory accesses to all shared variables are serializable even in the absence of any
explicit synchronization and /or dependence information in the parallel program. Second, (se-
quential) program order is an extremely opaque tool for expressing the semantics of a parallel
program decomposed into threads (instruction streams) [5,11]. This is what makes DASH
release consistency so conservative from a parallel-programming point of view—questions
such as, does this P protect this read? are occluded, and the program interpreter must re-
spect the (sequential) programmer synchronization as written. In the DASH protocol, this is
governed by a set of rules for the permissible orderings among acquires, releases and ordinary
memory accesses [9]. “Thread partial order” consistency is more forward looking—as far as
possible, all such questions about the protects relation on program operations are answered
clearly by the parallel programmer and expressed as a partial order on synchronizing and
ordinary memory accesses.

When a shared-memory parallel program is presented to the “program interpreter” of
a so-called “distributed-memory” multiprocessor, the machine is not—in current practice,
anyway—given an abstract program specification that defines the dependence orderon the set
of program operations. In concrete terms, the dependence order includes such necessary tem-
poral precedences among program operations as uniprocessor control and data dependences
(and antidependences), interprocessor data flow- and anti-dependences, and interprocessor
control dependences (including necessary temporal precedences arising from an operation
that depends on the restoration of an invariant). By definition, the dependence order is the
limit for optimization—assuming sequential threads as the starting point—by the program
interpreter; it defines the necessary temporal precedences among program operations that
must appear to be observed in any correct execution of the parallel program. This depen-
dence order is defined over the set of all program operations, including synchronizing and
ordinary memory accesses, control-transfer instructions and register-only instructions.

In general, it is unrealistic to expect the programmer to articulate the program depen-
dence order to the program interpreter; this may be more realistic at lower levels where a
correctness proof of a critical subalgorithm can help the programmer to discover the de-
pendence order {13]. In practice, what the program interpreter has to work with is (i) all
compiler-discoverable local order, and (ii) all programmer-supplied local order, including
explicit synchronization and other dependence information. To aid the parallel program-
ming system, the high-level parallel programmer ought to do the following: (i) identify each
P-type synchronizing operation (i.e., one that potentially blocks this thread), (ii) identify
each V-type synchronizing operation (i.e., one that potentially unblocks some other thread),
(iii) identify each PV-type synchronizing operation (i.e., one that potentially either blocks
this thread or unblocks some other thread), and (iv) indicate, for each thread, the thread
partial order that specifies the necessary temporal precedences among synchronizing and
ordinary program operations in that thread. By so doing, the parallel programmer defines
the protects relation on program operations. To focus on semantics, we defer the question of
how thread partial orders and scopes of synchronization primitives are expressed in parallel
programming languages [2,5,11). Instead, we adopt the “fiction” that threads are presented
to the program interpreter directly as partial orders. The interpreter respects the program-
mer synchronization as written, with “thread partial order” replacing “program order”. The
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set of rules for respecting programmer synchronization in our protocol is given in Section 4.
Reference [14] is an elegant introduction to partial orders in parallel systems.

I

Figure 1: Abstract block diagram showing interconnection network, processor modules, data
memory modules and operation buffers. No “dancehall configuration” is implied.

3 Thread Partial Order

Figure 1 shows an abstract block diagram for a multithreaded, scalable, shared-memory
multiprocessor. Conceptually, the distinction between a distributed-memory and a shared-
memory hardware architecture is small. In either case, any processor can access any address
in the single, global address space. NUMA machines have a distinction between “cheap”
local and “expensive” remote memory access, while UMA machines provide a constant-
latency path between processors and memory. Multithreading means that a processor may
issue a (possibly blocking—it depends entirely on the thread partial order) memory access
by one thread via the operation buffer, and then—if necessary, i.e, if one has run out of
concurrently-enabled operations in this stream—perform a context switch to some other
thread while waiting for the first memory access to complete. Figure 1 applies equally well
to architectures with various degrees of data caching, whether implemented in processor or
data modules. Instruction caching is handled separately. The queues are operation buffers
for memory accesses; these buffers contain multiple instructions that have been issued in
parallel by processors and threads. Multithreading supports multiple pending operations by
an individual processor. Relaxed consistency supports multiple pending operations by an
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individual thread. Further optimization is possible when there are local acknowledgment
protocols for memory accesses; this requires (data) caching of the processor’s view [5].

The sharpest formulation of relaxed consistency is to state that memory accesses see
“consistent” values only when such accesses are protected by synchronizing operations. Full
consistency states that all memory accesses see consistent values (for example, reads return
the most recent write) even when all synchronization is implicit. Most relaxed models include
the programming constraint that every pair of conflicting memory accesses is protected by
a synchronization chain. Two accesses conflict if they access the same location and at least
one of them is a write. Abstractly, P-type operations define input synchronization points
at which (i) partial or total program state is defined, and (ii) some invariants have been
restored—because certain operations in other threads have completed. Similarly, V-type
operations define output synchronization points at which (i) partial or total program state
is defined, and (ii) some invariants have been restored—because certain operations in this
thread have completed. PV-type operations (e.g., barriers) define both input and output
synchronization points, and combine the semantics of P- and V-type operations [6].

When caches are present, processors (on which threads are scheduled) can have views.
When local acknowledgment protocols are permitted due to (data) caching of a processor’s
view, “soft” V-type operations define virtual output synchronization points at which cer-
tain operations in this thread have sufficiently completed so that synchronization chains
leaving this thread (possibly across processors) keep their usual semantics provided that we
implement an additional protocol. Specifically, when semaphores are bound to the shared
variables they protect, semaphore operations can be integrated with the remembering of
updated values. The use of timestamps allows only the relevant portion of a processor’s
view to be copied to the other processor when there is a synchronization chain between
threads on different processors [5]. Conceptually, this amounts to absorbing interprocessor
communication into interprocessor synchronization.

write(X) . _

thread 1: P(sem)/ ™ V(sem)
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thread 2: P(sem)\ > V(sem)
read(x) =~

Figure 2: Two thread partial orders with local acknowledgment protocols.
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Figure 2 shows the simple case of two critical sections in two threads where the operations
in each critical section are concurrent. Here, the operations in each P/V-bracketed pair com-
mute. When two concurrent operations in a thread partial order do not commute (i.e., when
both orderings are permitted but have different results), a partial-order representation with
branching structure may be required [15-17]. Incidentally, programmer-supplied local order
is not restricted to defining the protects relation; it may also include specifying necessary
temporal precedences between two program operations neither of which is a synchronizing
operation (here, the theory becomes nontrivial). Without loss of generality, suppose that
thread 1 has entered its critical section ahead of thread 2. At this point, there is a flow
dependence from write(z) to read (z), and an antidependence from read(y) to write(y).

When there is no data cache, thread 1 must learn that both its memory accesses have
completed with respect to thread 2 before its V operation may be issued. In this case, global
acknowledgment protocols notify thread 1 of completion, while synchronizing operations
guarantee completion to thread 2. When there is a data cache, thread 1 may issue its V
operation as soon as local acknowledgment protocols for both its memory accesses have
completed. Why? When thread 2 issues its P operation, an additional protocol can ensure
that the P operation does not complete until (i) the new value of z has been communicated
from thread 1 to thread 2, and (ii) the read of y has completed in thread 1 (see the next
paragraph). This form of “delayed consistency” allows thread 1 to continue past its V
operation before the output synchronization point has been actually reached [5].

The dashed arrow from read(y) to V(sem) in thread 1 may appear puzzling at first sight.
Dashed arrows only make sense if the processors on which threads 1 and 2 are scheduled
can remember their own views. In this case, why should there be an antidependence from
read(y) to write(y)? If both threads are currently scheduled on the same processor, then they
share the same view and the antidependence exists. If both threads are currently scheduled
on different processors, then their views are disjoint and no antidependence exists. Since
only the runtime system can determine which threads are currently on which processors, it
is simpler for the compiler to generate code as if both threads currently shared the same
view.

The graphics in Figure 2 can now be explained. In a thread partial order, a solid arrow
a — bmeans: b may not be issued until a has completed, while a dashed arrow a --+ b means:
b may not be issued until @ has locally completed (that is, has had its serialization order
irrevocably determined). Abstractly, Figure 2 illustrates a 2-phase token release protocol.
This is an implementation optimization; using only solid arrows in thread partial orders
would not alter the correctness condition that was being implemented.

Figure 3 illustrates why the widespread emphasis on critical sections in discussions of re-
laxed consistency (due partly to programmer familiarity and partly to unexamined tradition,
we suppose) is misleading. Here, there is a static dependence between a group of operations
in one thread (protected by a V-type operation) and a group of operations in another thread
(protected by a P-type operation). It seems strange to enforce a simple flow dependence be-
tween two threads by unlocking in one thread and locking in the other (although—to borrow
a joke from Burton J. Smith—we could call this “generalized critical section” synchroniza-
tion). The constraint issue is whether we still require that any thread’s access to a shared
variable be dynamically enclosed between a P-type and a V-type operation—as judged by
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the thread partial order—even in cases where we are enforcing a static dependence. This
constraint is satisfied in textbook solutions to the bounded-buffer problem, where both static
and dynamic dependences are enforced. The answer in general is, it depends. If there is
a dependence of these operations in thread 1 on “earlier” operations, then they should be
bracketed, otherwise not.

thread 1: {x x x} ------ - V(sem)

thread 1: P(sem) —— {x x x}

Figure 3: Synchronization primitive scope without critical sections.

4 Nonsequential Consistency

Sequential consistency and processor consistency are correctness conditions while weak con-
sistency, release consistency, entry consistency, etc., are implementation restrictions [5,7,9].
Sequential consistency asserts that a multiprocessor execution is incorrect if it cannot be
simulated by a serial (uniprocessor) execution that respects the “program order” of each
thread. Serial program order is thus the test of whether the noncommutativity of two con-
flicting ordinary operations matters. The obvious modification is to replace “program order”
by “thread partial order”. The new condition reads as follows. First, all operations within
a thread appear to execute in thread partial order, as viewed by the processor executing
that thread. Second, the result of program execution is the same as if all synchronizing and
ordinary memory accesses had been executed in some sequential order, and the projection
of this sequence onto each thread is a linearization of that thread’s partial order. Serial ex-
ecution means possible (i.e., legal) execution on a uniprocessor. A multiprocessor satisfying
this condition will be called nonsequentially consistent. But this is not quite right.

The role played by a programming constraint should be stated explicitly as a premise of
the correctness condition; this is preferable to starting with an (arbitrary) implementation
restriction and arguing that it implements a traditional correctness condition like sequential
consistency given the programming constraint. In this spirit, coarsen the granularity to
consider just the synchronizing and ordinary shared-variable accesses in a parallel program.
We say that, if an ordinary shared-variable access is dynamically enclosed between a P-type
and a V-type operation, then it i1s a protected access; otherwise, it is an unprotected access.
A general correctness condition should include both types of access, and should allow for
concurrent noncommutative operations within a single thread. If a parallel program is run on
a nonsequentially-consistent multiprocessor, then—at this level of granularity—every correct
execution on this machine has the following property:

(?) For each thread, there exists a serial execution of all the program operations that
simulates the actual execution, and whose projection on that thread does not violate
thread partial order. :
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(¢7) Moreover, there exists a serial execution of only the synchronizing and protected ac-
cesses that simulates the matching portions of the actual execution, and—for each
thread—the projection of this sequence on that thread does not violate thread partial
order.

The easiest way to visualize the second condition is to imagine that the parallel program
has been divided into properly- and improperly-synchronized epochs; when the final state
of one epoch is intended as the initial state of another (this is the usual case), the two
epochs will be separated by a barrier. During improperly-synchronized epochs, only processor
consistency will hold. During properly-synchronized epochs, sequential consistency will hold.
Serial simulation of a properly-synchronized epoch must take the initial and final states—
which hold at the initial and final barriers, respectively—into consideration. In this way,
a single, piecemeal serial execution can simulate all properly-synchronized portions of the
actual execution.

We propose the following implementation of nonsequential consistency; temporarily name-
less to avoid further confusion, it is one of many members of the “release consistency” family
of implementation restrictions. The primary influence—apart from viewing threads as par-
tial orders—is Tera release consistency [6,18] with an optional dash of entry consistency [5]
for those people who believe that caches are the best way to implement shared memory (they
are certainly not the only way).

(¢) No processor may issue a shared-variable access until all P-type operations protecting
it—that is, all P-type operations that precede the memory access in thread partial
order—have completed.

(it) No processor may issue a V-type operation until all shared-variable accesses protected
by it—that is, all memory accesses that precede the V-type operation in thread partial
order—have (at least locally) completed.

(¢it) When a thread contains a PV-type operation (e.g., a barrier), all ancestor shared-
variable accesses must have (at least locally) completed before the PV-type operation
may issue, and the PV-type operation must have completed before any descendant
shared-variable access may issue, where memory-access “ancestor” and “descendant”
of a PV-type operation are defined by thread partial order.

That is, the program interpreter at each processor must run completion protocols for
both synchronizing and ordinary memory accesses. When there are data caches available to
processors, the optimization of “delayed consistency” is possible.

5 Conclusion

Discussions of correctness conditions and memory consistency models in shared-memory mul-
tiprocessors have grown needlessly complex in the last five years as implementation detail
and excess formalism have obscured the simple language (i.e., semantics) issues. By cleanly
separating the correctness condition (i.e., multiprocessor model) from the implementation




4th NASA Symposium on VLSI Design 1992 ' 6.4.9

restriction (i.e., protocol model), we have brought out the simplicity of the “release con-
sistency” implementation family. The key to simplicity is the programmer’s definition of
the protects relation on synchronizing and ordinary memory accesses. In the absence of full
program dependence order, this is perhaps the most useful information that can be supplied
by the programmer to the program interpreter; a good optimizing compiler can then ad-
just for uniprocessor dependences without altering the protects relation. Again, there will
be elements of programmer-supplied local order in addition to the protects relation. We
have proposed a new correctness condition which encompasses a wide range of parallel pro-
gramming models, including ones with a mixture of shared-memory and message-passing
semantics. The requirements specification of a special-purpose high-performance multipro-
cessor architecture for space applications would not include applicability to a wide spectrum
of problems, but that does not make the ideas of this paper any less relevant (for example,
they could be used to evolve the AT&T DSP3 Parallel Processor). We have indicated how
to make an intelligent division of labor between programmer and optimizing compiler in
discovering the thread partial order. One distinguishing feature of space applications is a
concern for reliability; we are currently investigating a distributed-memory architecture for
a fault-tolerant nonsequentially-consistent shared memory. Space systems are distributed
systems, and—in this context—fault tolerance is as important as performance.
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