
4th NASA Symposium on VLSI Design 1992 N 9 4 " 2 1 « l " 6.5.1

Instruction Set Commutivityl

P. Windley
Laboratory for Applied Logic

Department of Computer Science
University of Idaho, Moscow, Idaho 83843

Abstract- We present a state property called congruence and show how it can
be used to demonstrate commutivity of instructions in a modern load—store ar-
chitecture. Our analysis is particularly important in pipelined microprocessors
where instructions are frequently reordered to avoid costly delays in execution
caused by hazards. Our work has significant implications to safety and security
critical applications since reordering can easily change the meaning and an in-
struction sequence and current techniques are largely ad hoc. Our work is done
in a mechanical theorem prover and results in a set of trustworthy rules for in-
struction reordering. The mechanization makes it practical to analyze the entire
instruction set.

1 Introduction.

Instruction pipelining 2 is critical to good performance in modern microprocessors. Almost
every microprocessor developed in the last several years contains an instruction pipeline. Sig-
nificant attention has been given to the development of scheduling algorithms to reduce the
the occurrence of pipeline hazards because of the performance degradation that they cause.
Typically, scheduling involves reordering the instruction stream produced by a compiler.

The approaches to code reordering are largely ad hoc with little or no analysis showing
whether the rules are correct and under what conditions they should be avoided. Indeed,
when asked about the rules that he gave for avoiding semantic changes one researcher, who
developed the code scheduling algorithms for the C compiler in a widely available commercial
UNIX system, stated "Its all ad hoc. It never occurred to me that there might be any other
way to do it."

Clearly, the current approach to code scheduling is unacceptable in safety and security
critical applications. On one hand, modern pipelined architectures perform poorly without
the aid of a compiler that is smart enough to reschedule code to avoid pipeline hazards.
On the other hand, the reordering that the scheduler performs has the potential to initiate
semantic changes in the code stream. We must either give up performance or live with
untrustworthy code. Neither of these approaches is satisfactory.

This paper describes the analysis of a microprocessor instruction set for commutivity.
We are interested in establishing, by analysis, under what circumstances the instructions
can be reordered while avoiding semantic changes. The next section describes related work
and the following sections present our analysis.

JThis work was sponsored by the Department of Defense under University Research Program contract
No. MDA904-91-C-7054

2See [HP90] for an excellent introduction to pipelining and pipeline hazards.



6.5.2

2 Related Work

The formal analysis of code reordering is related to at least three active areas of research: mi-
croprocessor verification, compiler verification, and the automatic generation of optimizers.
This section discusses these three areas of research and relates them to the work presented
in this paper.

Microprocessor Verification There have been numerous efforts to verify microproces-
sors. These efforts have been mostly for research purposes and none have included any kind of
analysis of their instruction sets regarding code reordering. Only one formally verified general
purpose microprocessor has been fabricated and it has so few features as to be impractical
for real use. Descriptions of these efforts can be found in [Coh88, Joy89a, Joy88, Hun89). It
is important to note that none of these projects involved verification of a pipelined processor.

In [SB90], Srivas et al. describe the formal verification of a pipelined microprocessor called
Mini Cayuga, comparable in complexity of design to that of Hunt's FM8501. However, the
structure and behavior of the pipeline were hidden from the abstract specification. Only
prefetching of the next instruction was incorporated into the specification. This precluded
the possibility of formally reasoning about pipeline hazards and instruction scheduling.

We are designing, specifying, and verifying a microprocessor called AVM-2. AVM-2 has
a load store architecture and will be pipelined. The architecture of AVM-2 is largely the
same as that of AVM-1, but the design is substantially different. We described early results
of this research in [Win91] where we demonstrated the integrity of the supervisory mode of
AVM-1. In this paper, we describe results regarding instruction set commutivity for AVM-2.

Compiler Verification There has been much work on verified compilers. Space consider-
ations do not present a full treatment here. Joyce [Joy89b] gives an excellent review. Most of
the early work [Rus77, CohSO, CM86] on the compiler correctness problem used idealizations
of the hardware. Recent work by Joyce [Joy89b], Moore [Moo88], and Young [You89] have
looked at compiler verification under the constraints of a real instruction set. None of these
efforts has addressed code reordering although Young states that initial work on an opti-
mizer has begun. Even so, our approach is different from Young's due to the nature of the
specification. The specifications in Young's work are operational while ours are denotational.

Optimizer Generation Current approaches to instruction scheduling is largely ad hoc.
Current compiler technology utilizes rule-based, heuristic algorithms for optimizing code
sequences. Representative of the state of the art, the IBM RISC System/6000 XL compiler
family uses special flags associated with opcodes to indicate instructions which are "danger-
ous" to move [War90, War92]. To date, there has not been any published results describing
the application of formal methods to pipeline scheduling.

There has been some work on the automatic generation of optimizers from specifications
of one sort or another.

In [Kes84], Kessler describes a tool called Peep. Peep is an architectural description
driven peephole optimizer. The description of the architecture, given in LISP, is used to
generate a table of optimizable instructions that can be used in a an optimizing compiler.



4th NASA Symposium on VLSI Design 1992 6.5.3

In [DF84], Davidson and Fraser present a system that generates peephole optimizations
called PO. PO uses productions which describe the effect of assembly language instructions
in a simulator to determine substitutions for 2 and 3 assembly instruction sequences.

While this work is interesting and related to the work presented here, these efforts differ
in several important ways:

• The descriptions used for generating optimizations are not related to the implemen-
tation in anyway. Our work uses a specification that is related through proof to the
implementational specification.

• It is not clear whether or not any kind of theory underlies the generation of the op-
timizers. As we will show later, there are concepts regarding reordering that can be
generalized and used as a basis for reasoning about reordering.

v

• it is not clear how much faith can be placed on the simulation used to determine
equivalent sequences. Our work will be done in a widely accepted theorem proving
environment.

3 AVM-2

We have designed a computer designated AVM-2 (A Verified Microprocessor). AVM-2 is a
second generation design that will be implemented in CMOS. The design, specification, and
verification of AVM-1, the predecessor to AVM-2, are given in [Win90] where it is used as
an example to demonstrate the utility of generic models in hardware verification. AVM-2,
like AVM-1, will feature a RISC-like instruction set and a large register file. Unlike AVM-1,
AVM-2 will have a pipelined implementation.

The Registers. AVM-2 has a load-store architecture based on a large register file. The
register file is divided into seven supervisor-mode registers and twenty-four general purpose
registers.

Two additional registers are visible at the architectural level: the program counter and the
program status word. The program counter (denoted pc) is used to sequence the computer—
it indicates which instruction in memory to execute next. The program status word (de-
noted psw) is used to keep track of the status of the last ALU operation, whether or not
interrupts are enabled, and the privilege level of the CPU.

The Instruction Set. AVM-2 has 30 programming level instructions. There is a group of
eight, 3-argument (source A, source B, and destination) arithmetic and logical instructions
and another group of 8 arithmetic and logical instructions that use two arguments and a
16-bit immediate value. There are 4 instructions for loading and storing registers. Only the
load and store instructions communicate with memory. In addition, there are instructions
for performing user interrupts, jumps, subroutine calls, and shifts.



6.5.4

4 Instruction Set Specification

The instruction set for AVM-2has been formally specified as part of the design process. The
specification represents a denotational description of the machine language. In this section,
we present several of the state transition functions representing instructions. These examples
will be used in later sections describing the analysis.

The instructions are modeled by state transition functions. In general, each function
operates on a state tuple and an environment tuple. The state tuple, contains variables
representing the register file, reg, the program status word, psw, the program counter, pc,
and the memory, mem. The environment tuple contains variables representing the interrupt
vector, ivec, the interrupt line, int, and the reset line, reset. Each function returns a state
tuple updated to reflect the behavior of the instruction being modeled.

The NOOP instruction updates the state tuple by incrementing the program counter. No
other actions are performed.

\~dej NOOP (reg, psw, pc, mem)
(ivec, int, reset) =

let new^pc = inc pc in
(reg, psw, new_pc, mem)

Note that NOOP is not an identity function, although it is often thought of that way. The
fact that NOOP does affect the state and resides in memory affects its commutivity.

Other instructions are quite a bit more complicated than the NOOP instruction. For
example, the ADD instruction is shown below:

\~def ADD (reg, psw, pc, mem)
(ivec, int, reset) =

let a = EL (GetSrcA pc mem) reg and
b = EL (GetSrcB pc mem) reg and
d = GetDest pc mem in

let result = add (a, b) in
let cflag = addp (a, b, result) and

vilag = aovfl (a, b, result) and
nflag = negp result and
zilag = zerop result and
sm = get_sm psw and
ie = get_ie psw in

let new_reg = UPDATE_REG psw d reg result and
new.psw = mk_psw(sm, ie, vilag,

nflag, cflag, zflag) and
new_pc = inc pc in

(new_reg, new_psw, new_pc, mem)

The ADD instruction updates every member of the state tuple except the memory. The
primary action, summing two registers and updating the register file accordingly is reflected
by the updated register file, reg. The instruction also calculated new values for the overflow,
carry, negative, and zero flags of the program status word, psw. The supervisory mode bit



4th NASA Symposium on VLSI Design 1992 6.5.5

Figure 1: State Congruence

and the interrupt enable bit remain unchanged, as expected. The program counter, pc is
incremented.

5 State Congruence

Our notion of state correspondence is motivated by the denotational description of the in-
struction set. Because the specification is denotational, we are interested in showing that
state transitions made by one sequence of instructions are equivalent to the state transitions
made by another sequence of instructions.

Unfortunately, the instructions sequences themselves are part of the state and so we
cannot use equivalence as the relation between states. Instead, we relate the states using
a property we call congruence. We call this relationship congruence because the states are
equivalent except for (i.e. modulo) the ordering of the instruction sequences in memory.

Figure 1 illustrates congruence. As the figure shows, we start with two states, SI and
S2, which are related by the relation p. After they have been transformed by a sequence of
instructions, we are left with two modified states SI' and S2'. Ideally, these new states are
still related by /?, but as we will see in Section 5.2, this is not always the case and so we show
them related by p'.

The primary congruence relation that we use in the examples is given by the following
predicate:



6.5.6

/ Congruent loc (regl.pssl,pel,meml)
(reg2,psw2,pc2,mem2) =

(regl=reg2) A (pswl=pss2) A (pcl=pc2) A
(V a . ->(a = address loc) A

-i(a = address (inc loc)) =>
(fetch (meml.a) = fetch (meml.a))) A

(fetch (meml,address loc) =
fetch (men2,address (inc loc))) A

(fetch (mem2,address loc) =
fetch (meml.address (inc loc)))

The predicate operates over a location and two state tuples. We say that the state tuples are
congruent if their register files, regl and reg2, program status words, pswl and psw2, and
program counters, pel and pc2, are the same. Additionally, we require that the memories,
meml and mem2 be the same except that the words located at loc and loc+1 in meml are
swapped in mem2.

5.1 Swapping NOOP

To start with, we examine the cornmutivity of the NOOP instruction. While this may seem
like a trivial problem, the problem is not as straightforward as it seems since NOOP does
affect the state. Also, the difficulties encountered in NOOP cornmutivity are typical of other
cornmutivity proofs.

The following theorem shows that NOOP can be commuted with any instruction that does
not modify memory or alter program flow:

h let si = (regl,pssl,pel,meml) and
s2 = (reg2,psv2,pc2,mem2) and
e = (ivec.ireq,reset) in

V inst.
(inst = macro_inst (Opcode si e)) =*•
Congruent pc2 si s2 A
HOH_MEM_IHST (Opcode si e) ^
let si' = (NOOP (inst si e) e) and

s2' = (inst (HOOP s2 e) e) in
Congruent pc2 si' e2'

We assume that the environment does not change during execution of the two instructions
(e, representing the environment, is used as an argument for both of them). The theorem
states that for every instruction in the instruction set, if the initial states are congruent the
modified states are also congruent.

The theorem is not true for instructions that alter flow control because the NOOP would
never execute in one case and some other instruction would execute in its place. For instruc-
tions that modify memory, we can prove a more restricted version that assumes that the
memory instruction does not interfere with the program (instructions and data are stored in
the same memory). We will see an example using a non-interference condition in the next
section.



4th NASA Symposium on VLSI Design 1992 6.5.7

5.2 Swapping Arithmetic Instructions

The arithmetic instructions of AVM-2 that do not use the carry flag commute under weak
congruence. Weak congruence is the same as strong congruence (denned above), except that
it does not require equivalence for the entire program status word. Rather we require only
that the supervisory mode bit and the interrupt enable bit be the same. Most instructions
that modify the overflow, carry, negative, and zero flags of the program status word do so
without regard to their previous values, so the value of the two program status words cannot
be equal.

Weak_Congment loc (regl,pswl,pcl,meml)
(reg2,pss2,pc2,mem2) =

(regl = reg2) A
(pel = pc2) A
((get_sm pswl) = (get_sm psw2)) A
((get_ie pswl) = (get_ie psw2)) A
(V a . ->(a = address loc) A

-i(a = address (inc loc)) =>
(fetch (meml,a) = fetch (mem2,a))) A

(fetch (meml,address loc) =
fetch (mem2,address (inc loc))) A

(fetch (mem2,address loc) =
fetch (meml,address (inc loc)))

In order to commute two arithmetic instructions, we require that they be non-interfering.
That is, the destination registers cannot be the same as the source registers. For example,
the following instructions do not commute:

a := b + c
d := a + e

Since the second instruction uses the value computed in the first, we cannot swap them
without changing the resulting state. In addition, we require that the destination registers
be different. The following predicate defines the non-interference property in terms of the
functions used by the instruction set definition to retrieve the source and destination register
indices from memory.

t-<ie/ Non_Interf ering pc mem =
-i(GetSrcA (inc pc) mem = (GetDest pc mem)) A
->(GetSrcB (inc pc) mem = (GetDest pc mem)) A
-•(GetDest (inc pc) mem = (GetDest pc mem))

Using the weak congruence predicate and the non-interference predicate, we can show,
for example, that ADD and SUB commute:



6.5.8

let si = (regl,pswl,pcl,meml) and
s2 = (reg2,psw2,pc2,mem2) and
e = (ivec.ireq,reset) in

Congruent pc2 si s2 =>
Non_Interfering pel meml A
Non.Interfering pc2 mem2 =>
let si' = (ADD (SUB si e) e) and

s2' = (SUB (ADD s2 e) e)) in
Weak_Congruent pc2 si' s2'

Note that we use strong congruence in the assumptions, but can only show weak congruence
between the resulting states.

We have presented only two theorems regarding instruction commutivity in AVM-2. We
can prove more general theorems about the commutivity of arithmetic instructions. We can
also show arithmetic instructions commute with load and store instructions provided they
are non-interfering.

6 Discussion

We have presented only a few small theorems regarding the analysis of the A VM-2 instruction
set. A more thorough analysis is presently underway. Even so, we believe the results to be
interesting.

The fact that we can only show weak congruence when commuting arithmetic instructions
is a function of the design of the instruction set. Other instruction sets would provide
different results. The contribution of formal analysis is that this property is clearly and
unambiguously stated in the resulting theorem.

Also, the weak congruence result affects when we can actually commute arithmetic in-
structions in a program. We cannot, for example, commute two arithmetic instructions
that are followed by a conditional jump since the values of the flags are changed. Strong
congruence is required to maintain the program meaning in this case.

We should note that our initial efforts in this area have had an affect on the architecture of
A VM-2. In light of the results presented here regarding weak congruence, we have undertaken
a modification of the instruction set semantics so that arithmetic instructions commute under
strong congruence. This will allow greater freedom in code reordering to avoid pipeline
hazards.

Certainly none of our specific discoveries regarding the A VM-2 instruction set will sur-
prise veteran compiler writers. The rules that we have demonstrated for code reordering
in the AVM-2 instruction set are well known. What is important, however, is that we are
not veteran compiler writers. Analysis allowed us to show that they were correct rather
than relying on years of experience and intuition. This, it seems, is the heart and soul of
engineering [ShaQO].



4th JVASA Symposium on VLSI Design 1992 6.5.9

7 Future Work

We plan to extend our analysis of commutivity to explore code motion for larger code
fragments. Our intent is to automate a complete analysis of instruction commutivity for
all instruction pairs and use these results to determine when large instruction sequences are
congruent.

As mentioned earlier, the behavioral specification of AVM-2 will be verified against its
implementation. Because of the hierarchical nature of the specification (see [Win90]), the
phase-level mode of the pipeline will have a similar structure to the behavioral model of
the top-level. We believe that the techniques demonstrated in this paper will allow us to
perform an analysis of the pipeline to identify hazards. This work is underway.

8 Conclusion

This paper has presented examples from an analysis of commutivity in a modern instruction
set. Commutivity is start at a more general notion of instruction reordering that in important
to both compiler optimizations and pipeline scheduling. Analysis of instruction set reordering
is important in both safety and security critical applications because of the danger ad hoc
approaches present to the semantic integrity of the instruction stream.

Our analysis could have been performed without the benefit of a formal specification of
the instruction set or a formal statement of the desired properties. However, the formal
analysis has several benefits:

• The theorems about commutivity form a set of rules for commuting instructions. These
rules have a demonstrated correctness.

• The formal analysis was helpful in finding interferences between instructions that were
not immediately obvious.

• The assumptions and results are unambiguously stated and can be used for further
reasoning about optimization and scheduling.

• In providing a set of rules about commutivity, the instructions must be analyzed on
a case-by-case basis whether the analysis is done by hand or automated. The formal
analysis provides a tool for quickly analyzing the instructions.

References

[CM86] Laurian M. Chirica and David F. Martin. Toward compiler implementation cor-
rectness proofs. ACM Transactions On Programming Languages And Systems,
8:185-214, April 1986.

[CohSO] Avra Cohn. Machine Assisted Proofs of Recursion Implementation. PhD thesis,
University of Edinburgh, April 1980.



6.5.10

[Coh88] Avra Colin. A proof of correctness of the VIPER microprocessor: The first level.
In G. Birtwhistle and P. Subrahmanyam, editors, VLSI Specification, Verification,
and Synthesis, pages 27-72. Kluwer Academic Publishers, 1988.

[DF84] Jack W. Davidson and Christopher W. Fraser. Automatic generation of peep-
hole optimizations. In ACM SIGPLAN 84 Symposium on Compiler Construction.
ACM, June 1984.

[HP90] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., 1990.

[Hun89] Warren A. Hunt. Microprocessor design verification. Journal of Automated Rea-
soning, 5:429-460, 1989.

[Joy88] Jeffrey J. Joyce. Formal verification and implementation of a microprocessor. In
G. Birtwhistle and P.A Subrahmanyam, editors, VLSI Specification, Verification,
and Synthesis. Kluwer Academic Press, 1988.

[Joy89a] Jeffrey J. Joyce. Multi-Level Verification of Microprocessor-Based Systems. PhD
thesis, Cambridge University, December 1989.

[Joy89b] Jeffrey J. Joyce. Totally verified systems: Linking verified software to verified hard-
ware. In Miriam Leeser and Geoffrey Brown, editors, Proceedings of the Mathe-
matical Sciences Institute's Workshop on Hardware Specification, Verification, and
Synthesis, July 1989.

[Kes84] Robert R. Kessler. Peep—an architectural description driven peephole optimizer.
In ACM SIGPLAN 84 Symposium on Compiler Construction. ACM, June 1984.

[Moo88] J. Strother Moore. A mechanically verified language implementation. Technical
Report 30, University of Texas at Austin, 1988.

[Rus77] Bruce D. Russell. Implementation correctness involving a language with goto
statements. SIAM Journal of Computing, 6(3), September 1977.

[SB90] M. Srivas and M. Bickford. Formal verification of a pipelined microprocessor. IEEE
Software, 7(5):52-64, September 1990.

[Sha90] Mary Shaw. Prospects for an engineering discipline of software. Software Engi-
neering, 7(6):15-24, November 1990.

[War90] Henry S. Warren. Instruction scheduling for the IBM RISC System/6000 processor.
IBM Journal of Research and Development, 34(l):85-92, January 1990.

[War92] Henry S. Warren. IBM T.J. Watson Research Center, Private communication,
February 1992.

[Win90] Phillip J. Windley. The Formal Verification of Generic Interpreters. PhD thesis,
University of California, Davis, Division of Computer Science, June 1990.



4th NASA Symposium on VLSI Design 1992 6.5.11

[Win91] Phillip J. Windley. Using correctness results to verify behavioral properties of
microprocessors. In Proceedings of the IEEE Computer Assurance Conference,
June 1991.

[You89] William D. Young. A mechanically verified code generator. Journal of Automated
Reasoning, 5, 1989.




