NASA Technical Memorandum

/N-16 193105 104P

NASA TM - 108432

(NASA-TM-108432) A SIMULATION MODEL FOR PROBABILISTIC ANALYSIS OF SPACE SHUTTLE ABORT MODES (NASA) 104 p

N94-21859

Unclas

G3/16 0198105

A SIMULATION MODEL FOR PROBABILISTIC ANALYSIS OF SPACE SHUTTLE ABORT MODES

By R.T. Hage

Preliminary Design Office Program Development

November 1993

George C. Marshall Space Flight Center

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information operations and Reports, 1215 Jefferson David Holyans, Suite 1204, Action 10, 2202-2402, and to the Office of Management and Burdent Paperwork Reduction Project (0204-0188) Washington, DC 20503.

Davis Highway, Suite 1204, Arlington, VA 22202-4302,	and to the Office of Management a	and Budget, Paperwork Reduction Pro	ject (0704-0188), Washington, DC 20503.	
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AN		
	November 1993	3 Technical	Memorandum	
A Simulation Model for Proba of Space Shuttle Abort Modes 6. AUTHOR(S)			5. FUNDING NUMBERS	
R.T. Hage				
7. PERFORMING ORGANIZATION NAME(8. PERFORMING ORGANIZATION REPORT NUMBER	
George C. Marshall Space Flig				
Marshall Space Flight Center,				
9. SPONSORING/MONITORING AGENCY	NAME(S) AND ADDRESS(I	ES)	10. SPONSORING / MONITORING AGENCY REPORT NUMBER	
National Aeronautics and Space Washington, DC 20546	e Administration		NASA TM-108432	
11. SUPPLEMENTARY NOTES	··································			
Prepared by Preliminary Desig	ın Office, Program D	Development		
12a. DISTRIBUTION / AVAILABILITY STAT	MENT		12b. DISTRIBUTION CODE	
Unclassified—Unlimited				
13. ABSTRACT (Maximum 200 words)				

This report presents a simulation model which has been developed to provide a probabilistic analysis tool to study the various space transportation system abort mode situations. The simulation model is based on Monte Carlo simulation of an event-tree diagram which accounts for events during the space transportation system's ascent and its abort modes. The simulation model considers just the propulsion elements of the shuttle system (i.e., external tank, main engines, and solid boosters). The model was developed to provide a better understanding of the probability of occurrence and successful completion of abort modes during the vehicle's ascent. The results of the simulation runs discussed in this report are for demonstration purposes only, they are not official NASA probability estimates.

14. SUBJECT TERMS space shuttle abort mode	15. NUMBER OF PAGES 110		
assessment, Monte Carlo	16. PRICE CODE NTIS		
17. SECURITY CLASSIFICATION OF REPORT	20. LIMITATION OF ABSTRACT		
Unclassified Unclassified		Unclassified	Unlimited

ACKNOWLEDGMENTS

The author has several people to thank for their help in this effort. Thanks are due to Dr. Fayssal Safie for his assistance with this research effort. Thanks also are due to Bob Walsh and Rick Schmidgall of Johnson Space Center for their expertise on space shuttle abort procedures. Thanks also to Richard W. Brown of Marshall Space Flight Center for his knowledge on this subject.

TABLE OF CONTENTS

			Page
I.	INT	TRODUCTION	1
	1.1	Background	1
		1.1.1 Space Shuttle Description	1
		1.1.2 Space Shuttle Ascent and Abort Modes	3
	1.2	Objective	10
		Scope	10
П.	SIM	MULATION MODEL DEVELOPMENT	10
	2.1	Basic Approach to Model Development	10
		Element Failure Modes	11
		2.2.1 SSME's Failure Model	11
		2.2.2 SRB's Failure Model	13
		2.2.3 ET Failure Model	13
	2.3	Vehicle Performance Model	13
	2.5	2.3.1 Ascent Flight Phase Model	14
		2.3.2 Return to Launch Site Mode Model	14
		2.3.3 Transoceanic Abort Landing Mode Model	15
		2.3.4 Late TAL Mode Model	15
		2.3.5 Press to MECO Mode Model	15
		2.3.6 Press to Abort to Orbit to Mode Model	16
		2.3.7 Contingency Mode Model	16
	2.4	Ascent/Abort Event Tree Diagram	16
		2.4.1 Example Event Tree Description	16
		Zimpo Zione 1100 Zoompuon	
III.	CO	MPUTER CODE DEVELOPMENT	18
	2 1	Computer Program Overview	18
		Computer Program Overview Program Modules	18
	3.2	3.2.1 Initial Abort Selection	18
		3.2.2 RTLS Performance	19
		3.2.3 TAL Performance	19
			20
		3.2.4 TAL Redesignation Option Selection	20
		3.2.6 PTM and PTA Performance	20
		3.2.7 Random Number Generation	21
		3.2.8 Exponential Distribution Value Generation	21
		3.2.9 Uniform Distribution Value Generation	21
		3.2.10 SRB Time to Failure Generation	21
		3.2.11 ET Time to Failure Generation	21
		3.2.12 SSME Time to Failure Generation	22
		3.2.13 SSME Failure Time Determination	22
		3.2.14 SSME Required Run Time Determination	23

TABLE OF CONTENTS (Continued)

		Page
	hicle's Black Zone Status Determinationhicle Inertial Velocity Determination	
IV. SAMPLE APPI	LICATION	25
4.2 Model Out	putput	28
V. SUMMARY A	ND CONCLUSIONS	29
5.1 Conclusion5.2 Recommen	nsdations for Future Research	29 29
REFERENCES		31
APPENDIX A – Ascent	t Checklist—STS-32 Flight Supplement	33
APPENDIX B – Enable	/Inhibit Switch Model	41
APPENDIX C – Vehicle	e Ascent Model	45
APPENDIX D – Vehicl	e Acceleration Estimation	51
APPENDIX E – RTLS	Model Development	55
APPENDIX F – TAL M	Model Development	59
APPENDIX G – PTA a	nd PTM Model Development	61
APPENDIX H – STS A	scent/Abort Event Tree Diagram	63
APPENDIX I – Sample	Application Simulation Output	73
APPENDIX J – Progran	m Tutorial	81

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.	The space transportation system	2
2.	An SSME mission thrust profile	3
3.	A typical RTLS profile	4
4.	Some TAL landing sites	5
5.	Comparison of ATO and nominal orbits	6
6.	A typical contingency abort profile	7
7.	Contingency abort capability	7
8.	Basic approach to model development	11
9.	The SSME mission thrust profile model	12
10.	A hypothetical event tree segment	17
11.	Simulation program overview	18

LISTS OF ACRONYMS

ACLS augmented contingency landing site

AOA abort once around

APU auxiliary power unit

ATO abort to orbit

EO engine out

ET external tank

GSE ground support equipment

LEO low Earth orbit

LS landing site

MECO main engine cut-off

MET mission elapsed time

OMS orbital maneuvering system

PTA press to abort to orbit

PTM press to main engine cut-off

RCS reaction control system

RPL rated power level

RTLS return to launch site

SRB solid rocket booster

SSME space shuttle main engine

STS space transportation system

TAL transoceanic abort landing

VI inertial velocity

LIST OF SYMBOLS

a coefficient

ACC(1,104) acceleration of shuttle in abort mode with one SSME functioning at 104 percent

ACC(1,109) acceleration of shuttle in abort mode with one SSME functioning at 109 percent

ACC(2,104) acceleration of shuttle in abort mode with two SSME's functioning at 104 percent

b coefficient

T mission elapsed time*

T(E.RTLS) time for earliest RTLS attempt possibility

T(init.) time of initiation of abort mode

T(L.RTLS) time for last RTLS attempt possibility

T(second failure) time of second SSME failure

TENGBF(1) time of first SSME benign engine failure

TENGBF(2) time of second SSME benign engine failure

Tmeco time of main engine cut-off

Treqd time required for the SSME's to run to complete the abort mode

Treqd(1) time required for one SSME to run to complete the abort mode

Treqd(1-E RTLS) time required for the SSME to run to complete a one SSME RTLS abort mode

Treqd(2) time required for two SSME's to run to complete the abort mode

Treqd(2-E RTLS) time required for the SSME's to run to complete a two SSME RTLS abort mode

VI vehicle's inertial velocity

VITBF(1) vehicle's inertial velocity at the time of the first SSME benign failure

VITMCO vehicle's inertial velocity at the time of main engine cut-off

^{*}Time in all cases mentioned refers to the vehicle's mission elapsed time.

TECHNICAL MEMORANDUM

A SIMULATION MODEL FOR PROBABILISTIC ANALYSIS OF SPACE SHUTTLE ABORT MODES

I. INTRODUCTION

The NASA space shuttle system is a reusable manned vehicle capable of transporting large payloads to low Earth orbit (LEO). The system is designed to provide abort options to accommodate "contained" system failures. Because of the complexity of the system, it is almost impossible to analytically evaluate the risk due to the various abort modes. This report presents a simulation model which has been developed to provide a probabilistic analysis tool to study the various space shuttle abort mode situations. The simulation model considers just the propulsion elements of the shuttle system (i.e., external tank (ET), main engines, and solid boosters). Specifically, the model was developed to provide a better understanding of the probability of occurrence and successful completion of the abort modes during the ascent phase of the mission. The purpose of this document is to demonstrate the use of the simulation program based on the assumptions and the principles used. The results from the simulation runs discussed are for demonstration purposes only and are not official NASA probability estimates.

1.1 Background

1.1.1 Space Shuttle Description. The space shuttle is a system that has been designed to provide a manned reusable transport vehicle capable of transporting large payloads to LEO. The launch configuration of the system is shown in figure 1. The system consists of three main elements: the orbiter, the ET, and the solid rocket boosters (SRB's). The orbiter is the manned vehicle that accommodates payload that is transferred between the ground and orbit. The orbiter ascends in a vertical configuration and returns to Earth as a transatmospheric plane. The propulsion systems that support the orbiter are two SRB's, three space shuttle main engines (SSME's), the ET, orbital maneuvering system engines, and reaction control system thrusters.

Three SSME's are located at the aft end of the orbiter. The engine is throttlable, uses oxygen and hydrogen propellant, and is designed to function for 55 starts (27,000 s). The rated power level (RPL) of the SSME is 470,000 lb of thrust in a vacuum, which corresponds to about 375,000 lb at sea level. The engines can be throttled from 65 to 109 percent of the RPL. During the ascent of the space shuttle, each engine burns for about 520 s during which it undergoes a throttling profile. A typical throttling profile (for STS-26) is shown in figure 2. The engines are throttled up to 100-percent RPL prior to SRB ignition. They then achieve 104 percent before being throttled down to 65 percent during a period of maximum aerodynamic pressure for the vehicle. After the period of maximum aerodynamic pressure on the vehicle has been passed, the engines are throttled back up to 104 percent where they remain before being throttled down prior to main engine cut-off (MECO).

The ET is the "propellant tank" for the shuttle orbiter. It contains liquid hydrogen and liquid oxygen for use by the SSME's. The ET is the backbone of the launch configuration in that it is attached to both the orbiter and the SRB's. After MECO of the SSME's, the ET reenters the atmosphere and disintegrates; the remnants of the ET land in the ocean.

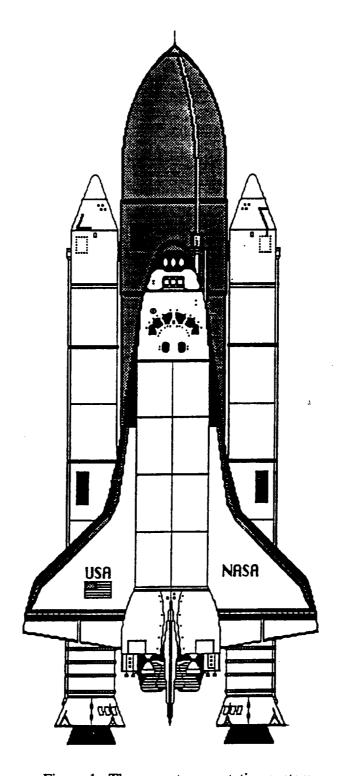


Figure 1. The space transportation system.

STS-26 MISSION PROFILE

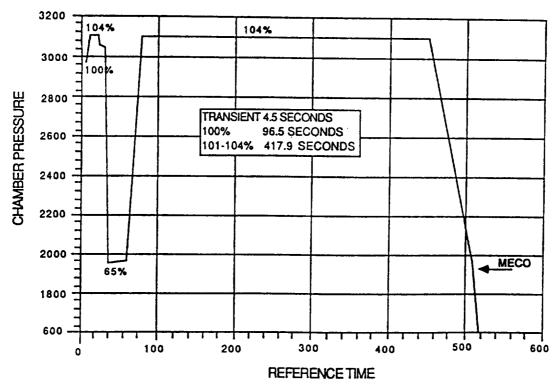


Figure 2. An SSME mission thrust profile.

The SRB's provide thrust to propel the space shuttle to orbit and serve as the launch pad mounts for the vehicle prior to lift-off. There are two SRB's located on opposite sides of the ET. Each SRB produces approximately 2.9 million lb of thrust. The SRB's complete their burn when the vehicle has reached about 150,000 ft, at which time they separate from the ET and drop into the ocean, with parachutes slowing their fall. The cases of the SRB's are recovered and reused.

The orbital maneuvering system (OMS) engines provide thrust to support the orbit attainment, orbit adjustments, and reentry of the vehicle. There are two OMS engines located on the aft end of the orbiter. The OMS engines use monomethylhydrazine and nitrogen tetroxide for their propellant. Each engine produces 6,000 lb of thrust in a vacuum.

The reaction control system (RCS) thrusters provide thrust for pitch, yaw, and roll control of the vehicle. There are 44 thrusters in all, and they are located in the fore and aft portions of the orbiter. The RCS thrusters use monomethylhydrazine and nitrogen tetroxide for their propellant. The RCS thrusters include primary thrusters for major adjustments, which produce 870 lb of thrust in a vacuum each, and vernier thrusters, for finer adjustments, which produce 24 lb of thrust each in a vacuum.

1.1.2 <u>Space Shuttle Ascent and Abort Modes</u>. The process of inserting the orbiter into orbit consists of four phases: the prelaunch phase, the first stage, the second stage, and the orbit insertion.

The prelaunch period is the time during which the vehicle is held down and the SSME's are fired.

After the prelaunch time has been completed, the SRB's are ignited, the vehicle is released from the pad, and the first stage operation begins. After lift-off, the SSME's are throttled down before a

period of maximum aerodynamic pressure is experienced by the vehicle. After the period of maximum pressure has been passed, the engines are throttled back up. After the SRB's have completed their operation, they are separated from the ET.

The second stage begins after SRB separation. The SSME's are throttled down prior to MECO in order to achieve the desired insertion velocity. Once MECO is completed, the second stage has also been completed.

After MECO, the ET separates from the orbiter, the OMS engines are then used to place the vehicle in the desired orbit. Either one or two OMS burns will be used, depending on the type of mission that is being performed.

The STS has several abort options: return to launch site (RTLS), transoceanic abort landing (TAL), press to abort to orbit, press to MECO, late TAL, and contingency aborts.

RTLS is the abort option which occurs during the first window for the shuttle. The window for this option varies from flight to flight, but, in general, it extends from shortly after SRB separation until the first capability for TAL.

The RTLS is performed in three phases as shown in figure 3: powered flight, ET separation, and glide-flight. During the power-flight portion of the RTLS, if the vehicle is not at the boundary of RTLS capability, the pitch attitude is changed to allow the vehicle to be lofted out of the atmosphere. This will be performed until the required amount of fuel in the ET has been depleted. The pitch-around maneuver is then executed (at approximately 10°/s) to begin the flyback phase for the vehicle. The vehicle then aims itself at a target position and velocity for completing the RTLS. When the desired altitude is reached, the vehicle pitches down to an attitude of approximately -4°. The SSME's are throttled down to 65 percent and MECO is then performed. Shortly after MECO, the ET is separated from the orbiter. After ET separation, the vehicle pitches back up, and resumes a glide path for the RTLS runway.

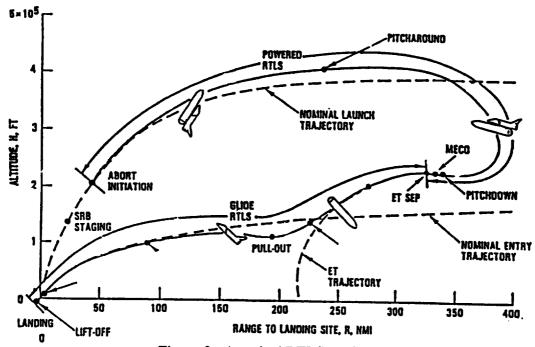


Figure 3. A typical RTLS profile.

TAL is more complex than RTLS in that for a typical flight there are several possible TAL landing sites, and different criteria determine which site will be attempted. Some of the possible landing sites for TAL aborts are shown in figure 4. In general, the window for the initiation of this option extends from the inertial velocity at the RTLS/TAL window to the velocity of first press-to-abort (PTA) to orbit capability.

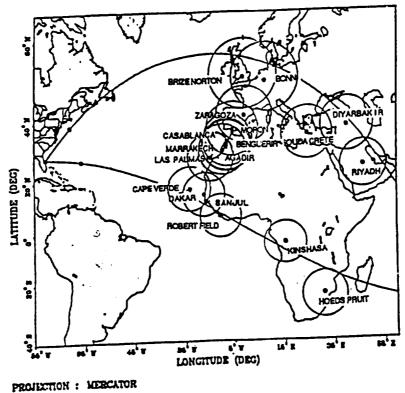
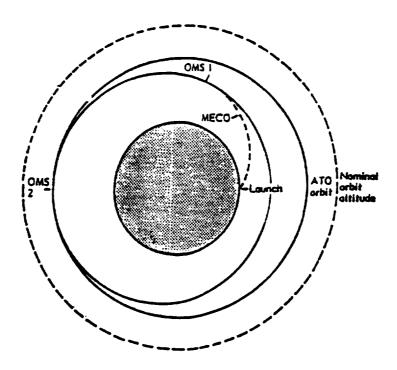



Figure 4. Some TAL landing sites.

The steps in performing a TAL include: selecting the TAL site, performing an OMS propellant dump, achieving the desired MECO altitude and velocity, performing MECO, and gliding to the landing site. The TAL site is selected based on the vehicle's position in the ascent when the abort is initiated and will be discussed in detail in later sections. After the site has been selected, dumping of the OMS propellant will be initiated, and the vehicle will begin steering toward the selected landing site. After the vehicle has reached the desired altitude and velocity, the MECO will be performed. After MECO, the vehicle will glide to the runway at the target site.

PTA is an abort option in which the vehicle attempts to achieve an off-nominal orbit. The lower orbit is attained because there is insufficient energy to attain a nominal orbit, and/or systems performance suggests that an early reentry may be desired. In general, the window for this option extends from the TAL/PTA boundary to the press-to-main (PTM) engine cut-off boundary.

The procedure for a PTA is similar to the procedure for a nominal ascent, with the exception that the orbit which is attempted to achieve is shallower than the nominal orbit. After the PTA option is selected, the engines run until the desired MECO velocity and position is reached. After MECO, the two OMS engine burns place the vehicle in the desired orbit, as shown in figure 5.

NOTE: This drawing is not to scale.

Figure 5. Comparison of ATO and nominal orbits.

PTM involves the vehicle attempting to achieve its desired orbit despite its problems. This option involves adjusting vehicle thrust and trajectory in order to achieve the desired orbit. The window for this option extends from the PTA/PTM boundary until MECO. The procedure for this abort option is similar to the PTA option, with the exception that the nominal orbit is attempted rather than a shallower one.

Late TAL is an abort to a landing site that is performed because of an early MECO. This abort option is used when the vehicle cannot attain an orbit and it is past the region for the normal TAL option. This option is generally available during the last minute of flight. This option involves "gliding in" to the landing site that has been chosen based on the vehicles situation at the time of MECO.

Contingency aborts are performed because of either structural failures, multiple systems failures, or multiple engine failures. A contingency abort is performed for multiple SSME failures whenever the thrust of the engines is inadequate for either the vehicle achieving orbit or an intact abort. The profile of a typical contingency abort is shown in figure 6. During a contingency abort due to multiple SSME failures, an attempt will be made to achieve a gliding path for the vehicle from which either a vehicle ditch or a crew bailout can be performed. The vehicle and crew will be lost if the vehicle is in a "black zone," a region in which the vehicle's structural constraints are exceeded, at the time of multiple engine failures. The current contingency capability for multiple engine failures during the ascent is shown in figure 7.

Aborts for the space shuttle can be initiated for either systems problems or SSME failures.

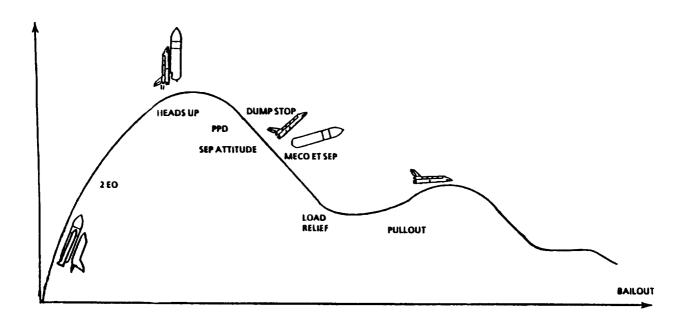


Figure 6. A typical contingency abort profile.

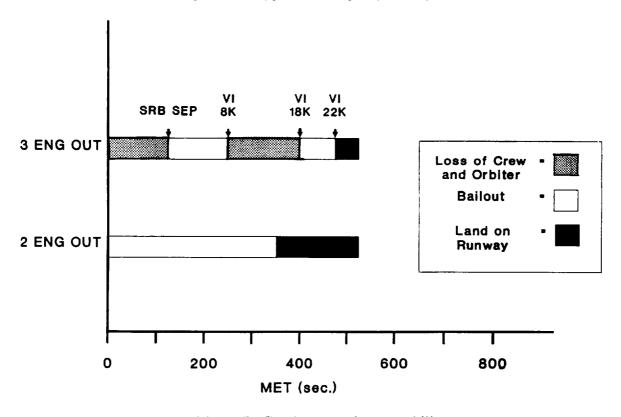


Figure 7. Contingency abort capability.

The procedures for selecting abort options for SSME failures is based on interaction between Mission Control and the astronauts. Flight procedures and checklists are used to minimize the decision time in the abort selection process. The earliest time at which an abort can be initiated is approximately 2 min 30 s into the flight, which is shortly after SRB separation. The many different possible situations for SSME failures causes the abort selection process to be very complex, as the abort selected is largely a function of when the SSME failure(s) occurred during the STS ascent and aborts.

1.1.2.1 <u>STS Operational Flight Rules—All Flights</u>. The purpose of the flight rules discussed in the document "STS Operational Flight Rules—All Flights" is stated as: "The flight rules outline preplanned decisions designed to minimize the amount of real-time rationalization required when non-nominal situations occur from the start of the terminal countdown through crew egress or ground support equipment (GSE) cooling activation, whichever occurs later."

In the "Flight Operations Rules" section of the document, rules relating to abort procedures are discussed. In this section, the topics that are discussed include: shuttle abort criteria, ascent mode priorities for performance cases, aborts for systems failures, and contingency ascents/aborts.

The shuttle abort criteria subsection states that the nominal ascent will not be continued if any of the following conditions occur: engine problems occur in a region where their performance is required, deorbit maneuver capability is lost, attitude control is lost, or consumables, cooling, or systems lifetime problems occur that will not support a first day landing to the primary landing site. The aborts that will be used due to engine problems will be chosen based on the region in which the engine(s) problems occurred.

The subsection that discusses the ascent mode priorities for performance cases discusses the order of precedence for the selection of abort modes and provides some discussion on the performance of the aborts. The order of precedence for the abort modes is as follows: press-to-orbit (including press-to-MECO and press-to-orbit (ATO)), TAL, RTLS, late TAL, and abort-once-around (AOA). The press-to-orbit decisions will be based on such factors as the ET impact location and post-MECO performance capability.

The subsection that discusses the abort modes that will be used for systems failures describes systems failures that will result in abort initiation, and which aborts will be used for the various systems failures. Examples of systems failures that would result in aborts include: loss of a thermal windowpane, a cabin leak that results in a significant rate of pressure loss, two leaking or failed OMS tanks, the loss of two Freon loops, and the loss of two main busses. The abort modes that are considered in this section are RTLS, TAL, late TAL, and AOA. The abort modes that are used based on the systems failures are selected based on the option that provides the earliest available landing time or to avoid requiring a lost capability.

The contingency ascents/aborts subsection provides a general discussion of contingency ascents/aborts and the possible outcomes. Contingency aborts will be used when structural failures or multiple systems or SSME failures have occurred. Possible contingency abort cases include the following: crew bailout or orbiter ditch due to the loss of multiple SSME's in a region where no acceptable landing site is available; an attempt to land at an RTLS, TAL, AOA, or ACLS due to structural or multiple orbiter systems problems which necessitate landing at the earliest possible time; or an attempt to land at an RTLS, TAL, AOA, LS, or ACLS due to multiple SSME failures coupled with other orbiter failures which result in severe ascent performance loss. The contingency abort may result in the loss of the vehicle and the crew if there is total SSME thrust loss in a "black zone," which is a region where the contingency abort would result in a violation of the vehicle's constraints (such as structural constraints).

1.1.2.2 <u>Flight Procedure Handbook—Ascent/Aborts</u>. The purpose of the "Flight Procedure Handbook—Ascent/Aborts" is stated as: "to describe and provide rationale for the flight procedures used using space shuttle ascent and aborts. It has been prepared for shuttle flight crews and ground operations personnel as an ascent flight training supplement and convenient reference source."5

The Flight Procedure Handbook discusses in detail the procedures that the crew must be trained for during the ascent and during the performance of shuttle aborts. This document was a valuable reference in understanding the process that is involved in the ascent, and selecting and performing the abort options.

When performance problems occur that will have to be compensated for by using aborts, a certain amount of time is required by the crew (and possibly mission control) to discuss the problem and decide on the appropriate abort option to select. The time between the occurrence of the problem and the initiation of the selected abort option is referred to as the decision time. The decision time that is required is generally 15 s.

The inhibit/enable switch is a device that is used to control whether or not the SSME's will be automatically shut down due to exceedence of red-line limits of certain performance parameters. If the switch is in the enable position, the SSME's are shutdown if the red-lines are exceeded. If the switch is in the inhibit position, the SSME's are not shutdown if the red-lines are exceeded. The switch is in the enable position initially. If an engine fails while the vehicle has not yet reached a region of single engine capability, the switch is placed in the inhibit position. The switch may be placed back in the enable position if the engines achieve single engine capability while two engines are still functioning.

1.1.2.3 Ascent Checklist. The ascent checklist⁷ is a document that summarizes the procedures that the crew must perform during a shuttle ascent and during the performance of aborts. The checklist consists of a generic document that pertains to all flights and flight supplements that are used for the specific flight. Part of the ascent checklist flight supplement for STS-32 is contained in appendix A.

The ascent checklist contains information that can be used by the shuttle crew to select the abort mode if performance problems occur with the vehicle and the crew does not have communication with mission control. The information contained in the ascent checklist is in the form of cards. During the flight, the cards are placed in a pad for the commander and pilot, and they may be referenced during the vehicle's ascent and during abort attempts. Items of interest to this study that are contained in the ascent checklist include: the systems flight rules card, the no comm mode boundaries card, the auto TAL card, the late TAL card, the ascent ADI-nominal card, and the TAL redesignation cards.

The systems flight rules card states which abort option (s) will be used for certain systems failures. The systems rules card is a summary of the information that is provided in the operational flight rules pertaining to the abort modes that will be used for systems failures.

The no comm mode boundaries card is used by the crew if they do not have communication with mission control. This card contains vehicle inertial velocity boundary value information from which the abort options can be selected.

The auto TAL card states the inertial velocity at which MECO would be performed for a TAL attempt.

The late TAL card states the boundary inertial velocity values at MECO for late TAL attempts as well as the lowest inertial velocity at MECO for which a successful late TAL landing may be achieved.

The ascent ADI-nominal card provides information on the vehicle's inertial velocity versus the altitude of the vehicle.

The TAL redesignation cards are used to select a landing site for a one-engine TAL attempt if a two-engine TAL attempt was selected and a second engine failed before the two-engine TAL attempt could be completed. TAL redesignation cards are included for two-engine TAL attempts to the primary two-engine TAL site, Benguerier, and the second two-engine TAL site, Moron. In using the TAL redesignation cards, the column that contains the first EO VI value is first entered by choosing the column that corresponds to the value of the inertial velocity at the time of the first engine failure and rounding to the nearest 100 value. The correct row item is chosen by selecting the row with the VI value that contains a value that is less than or equal to the inertial velocity at the time of the second engine failure and that contains the value closest to the inertial velocity value at the time of the second engine failure.

1.2 Objective

The purpose of this study was to develop a simulation model that could be used to analyze the various space shuttle abort mode situations and that could provide a better understanding of the probability of occurrence and successful completion of the abort modes during the ascent phase of the mission.

1.3 Scope

This study focuses on the effect of propulsion system failures on the ascent phase and the related abort modes for the space shuttle. Systems failures (such as APU failures, Freon loop failures, etc.) are not considered in this analysis.

The space shuttle items which were considered (the propulsive elements) were: the SSME's, the SRB's, and the ET.

The simulation program has been designed for supporting analysis of various mission situations. In addition to supporting analyses of specific missions, the program supports sensitivity analyses of the effects of various ascent and abort parameters.

II. SIMULATION MODEL DEVELOPMENT

2.1 Basic Approach to Model Development

The basic approach to model development is described by an event tree diagram which accounts for all the events during the space shuttle ascent and its abort modes. The event tree diagram was constructed by referring to NASA flight rules and procedures. The paths in the tree are determined based on the failure times of the propulsion system elements. The propulsion elements considered in the analysis are the ET, the SRB's, and the SSME's. A failure model described by a probability distribution is constructed for each of the three elements. A failure of either the ET or the SRB at any time during their flight times will result in a catastrophic failure of the vehicle. For the SSME's, the probability

distribution is used to generate a failure time for each of the three engines. The failure time is then checked against the mission profile to determine if the mission is a success or if a failure has occurred that would result in loss of the vehicle or a mission abort. In case of an abort, the vehicle performance model is taken into consideration. The vehicle performance model considers the vehicle velocity versus mission time and the conditions for the successful completion of the abort modes. The vehicle velocity versus mission time is used to determine the velocity at which the engine failure occurs. Given this velocity, the time required for the engines to complete a successful abort is determined by the conditions for abort completion. A summary of the model elements that where developed is shown in figure 8.

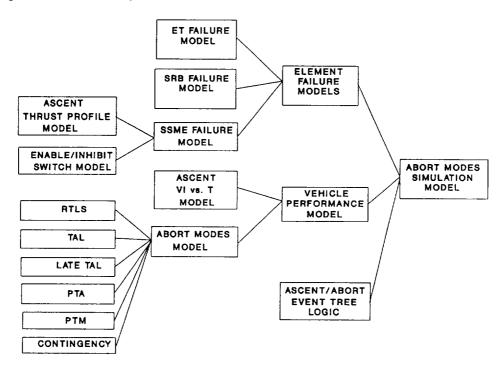


Figure 8. Basic approach to model development.

2.2 Element Failure Modes

Although various nonpropulsive systems failures would result in the initiation of abort options, this study only considered the effect of performance of space shuttle propulsive elements on ascent/aborts. The items which were considered in the model development were: the SSME's, the SRB's, and the ET. The models that were developed to represent the performance of these items are discussed in the following sections.

2.2.1 <u>SSME's Failure Model</u>. The SSME's were the most difficult elements to model since their design and operation are the most complex of the three items considered. The SSME's operate at various performance levels and are subject to both benign (self-contained) failures and catastrophic (criticality 1) failures. An additional factor which must be considered in the modeling of the time-to-failure of the SSME's is whether or not the engines are "inhibited" from shutting themselves down due to off-normal measurements.

The SSME's operate from the beginning of the prelaunch phase until they either shut down because of a failure or MECO is performed.

The time-to-failure for the engines was treated as an exponential distribution. This distribution was considered for this case because the SSME's are very complex, with many parts. For systems with many parts, an exponential distribution is sometimes used because the items are just as likely to experience "random" failures any time during their life. Another distribution considered was a Wiebull distribution that is modeled to predict higher probability of failure during the early time of the items lifetime. This distribution has been shown to more accurately predict the failures for the SSME's and should be used for future applications of the simulation program that was developed. The exponential distribution was used in this study for the initial demonstration of this simulation program because of its ease of use and simplified approximation of the predicted failure times of the SSME's.

Since various power levels, catastrophic and benign failures, and inhibited and enabled engines are being considered, distribution parameters are required for each case. The power levels that were considered were 100, 104, and 109 percent. Catastrophic failures are those failures that correspond to criticality 1 failures. Benign failures are those failures that correspond to failures that result in a safe engine shutdown. Inhibited engine failures are failures that occur when the engine is inhibited from failing due to red-line exceedence of its various performance items. Enabled engine failures are failures that occur when the engine is not inhibited from failing due to red-line exceedence of the various performance items.

The source for obtaining the estimates for the exponential parameters for the various situations was the SSME reliability study by Dr. Safie.⁹ The method for obtaining exponential time-to-failure estimates for the engines from the reliability study and estimates that are obtained are presented in the referenced study.

For simplicity, the thrust profile that is used during the ascent phase was modeled using both 100- and 104-percent RPL's. A model of the thrust profile is shown in figure 9. The thrust level that was used for the various abort situations also used both 100- and 104-percent RPL's. Abort mode attempts

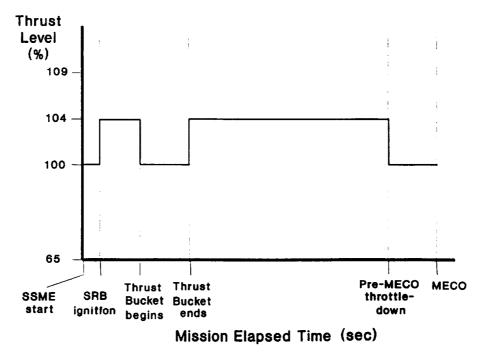


Figure 9. The SSME mission thrust profile model.

that will be said to have engines functioning at 104 percent are: 2-E RTLS, 2-E TAL, 2-E PTA, 1-E PTM, 1-E TAL to the primary TAL site, and 1-E TAL redesignation site attempts that require engines at 104 percent. Abort modes attempts that will be said to have engines functioning at 109 percent are: 1-E RTLS and 1-E TAL redesignation sites that required engines functioning at 109 percent.

The model for the operation of the enable/inhibit switch was based largely on discussions with engineers familiar with it. A diagram summarizing the operation of the switch, a summary of the development of the switch model, and a flowchart that depicts how the switch's operation is modeled is presented in appendix B. As can be seen from the diagram, the switch is initially in the enable position. If a first engine failure occurs before the inertial velocity required for a one-engine abort capability has been reached, the switch is placed in the inhibit position. If there are no further engine failures before the one-engine abort capability is achieved, the switch is placed in the enable position when the VI boundary value for one-engine capability has been reached. If a second engine failure occurs, the switch is placed in the inhibit position, where it remains.

From conversations with engineers familiar with the SSME, some general observations were provided concerning the performance of inhibited SSME's in relation to the performance of enabled SSME's. Approximately 50 percent of the failures that would lead to an engine shutdown due to red-line exceedance for the enabled SSME's would lead to catastrophic failures in the case of inhibited SSME's. An additional observation was that about 1 percent of the benign failures in the enabled SSME case would be benign failures in the case of the inhibited SSME. The use of the approximations that were suggested by the engineers in the development of the model for the switch is discussed in appendix B.

2.2.2 <u>SRB's Failure Model</u>. The operation of the SRB's was considered from the time of their ignition to the time of their separation (or, for the first stage).

Since the performance of the SRB's is largely driven by the manufacturing process, they were modeled somewhat differently than the SSME's. The probability of the successful operation of the SRB's up until separation was treated as a Bernoulli distribution, with the SRB's either catastrophically failing or successfully completing their burn time. If it is determined that the SRB's will fail, the time of the SRB failure is then determined. The time to failure for the SRB's is treated as being uniformly distributed, with the earliest time occurring at ignition and the last time occurring at separation.

2.2.3 ET Failure Model. The operation of the ET was considered from the time of the beginning of prelaunch until either an abort was initiated or nominal MECO of the SSME's occurred.

The performance of the ET was treated similarly to that of the SRB's. The probability of success was treated as a Bernoulli distribution. If a failure occurred, the time to failure was treated as being uniformly distributed, with the minimum time occurring at the beginning of the prelaunch phase and the last time occurring at the time of MECO.

2.3 Vehicle Performance Model

A model was developed for the performance of the vehicle during the ascent and during the abort modes. The model for the ascent involved obtaining an estimate for the vehicle's inertial velocity as a function of time. The models for the vehicle's performance during the abort modes involved estimating the time or inertial velocity that was required for successful completion of the abort options.

2.3.1 <u>Ascent Flight Phase Model</u>. Since inertial velocity is the parameter that is used to decide between different abort options and since the run time of the engines is the value that is obtained based on the distributed times to failure for the engines, a model was required for the simulation that depicted the vehicle's inertial velocity as a function of the time during the ascent at which the failure occurred. The development of the vehicle ascent is discussed in its entirety in appendix C.

By plotting the VI as a function of MET for space shuttle ascent performance data, it was observed that the function can be modeled as an exponential function during the second stage. Since no aborts can be initiated before the beginning of the second stage, only the values in this region were considered. The VI versus mission elapsed time for the second stage can be modeled as:

$$VI = \exp(a + b * T) , \qquad (1)$$

where

VI = the vehicle's inertial velocity

a = a coefficient

b = a coefficient

T = the mission elapsed time.

2.3.2 Return to Launch Site Mode Model. An RTLS attempt is said to be successful if the time of the engine failure(s) are greater than the time that is required for an RTLS completion. The development of the model of the RTLS required time for completion is discussed in its entirety in appendix E.

In developing the model, VI versus the MET data for an RTLS attempt was considered. The model considered two phases during the RTLS attempt, the fuel dissipation phase, and the flyback and powered pitchdown phase. During the fuel dissipation phase, the vehicle is heading down range prior to heading back to the launch site. This phase is therefore very dependent on the time at which the abort was initiated. The data that appeared to represent the fuel dissipation phase were linear and appeared to be dependent on the time that the first engine failed. The flyback and powered pitchdown phases are performed to attain a proper attitude to release the ET and to attain a proper range and velocity at MECO so that a successful RTLS abort may be performed. It appears reasonable that the total duration of the flyback and powered pitchdown phases should be fairly constant over the range of initiation times for the RTLS attempt since there is not much flexibility in the position that vehicle should be in for performing ET separation and MECO. The data that appeared to represent this phase exhibited very nonlinear characteristics, but the total time duration seemed to be relatively constant for different abort initiation times. Models for the required time for the completion of both of the phases was combined to obtain an estimate for the required run time to complete an abort.

The required remaining run time for engines for the successful completion of a two-SSME RTLS abort is therefore:

$$Treqd(2-E RTLS) = 350 + (270/(T(L.RTLS) - T(E.RTLS)))*(T(L.RTLS) - T(init.))$$
 (2)

The required remaining run time for the remaining engine functioning at 109-percent RPL is therefore:

2.3.3 <u>Transoceanic Abort Landing Mode Model</u>. A TAL attempt is said to be successful if the vehicle attains the inertial velocity that is required for a successful TAL attempt. The development of the model of the TAL VI versus t is discussed in appendix F.

Since the VI value of the vehicle is the criteria that must be known for making the TAL option selections, an estimate was required for the vehicle acceleration in order to relate the mission elapsed time to the current vehicle VI value.

In order to see if the programming could remain simpler, acceleration estimates for TAL, PTA, and PTM were made and compared with each other to see if they could be combined into one estimate. The estimation of the vehicle acceleration is discussed in appendix D. The acceleration values that will be used for the vehicle for the abort options at the various number of functioning engines and engine power levels are therefore:

$$ACC(1,104) = 22.8 \text{ ft/s}^2$$

 $ACC(1,109) = 23.8 \text{ ft/s}^2$
 $ACC(2,104) = 45.5 \text{ ft/s}^2$.

The 2-E TAL attempts occur with the engines functioning at 104 percent, and the 1-E TAL attempts occur with the engines functioning at either 104 or 109 percent. For a 2-E TAL attempt,

Treqd =
$$(VITMCO-VITBF(1))/ACC(2,104)$$
. (4)

For a 1-E TAL attempt with the engine functioning at 104-percent RPL,

$$Treqd = (VITMCO-VITBF(1)-ACC(2,104)*(TENGBF(2)-TENGBF(1)))/ACC(1,104).$$
 (5)

For a 1-E TAL attempt with the engine functioning at 109-percent RPL,

$$Treqd = (VITMCO-VITBF(1)-ACC(2,104)*(TENGBF(2)-TENGBF(1))/ACC(1,109).$$
 (6)

- 2.3.4 <u>Late TAL Mode Model</u>. A late TAL attempt is said to be successful if the vehicle's VI value at the time of the premature MECO is greater than the minimum value required for the completion of a late TAL attempt and less than the maximum value for the selected late TAL option.
- 2.3.5 <u>Press to MECO Mode Model</u>. The abort attempt is said to be a success if the vehicle achieves the inertial velocity that is required to achieve the orbit. The development of the model of the PTM required time to completion is discussed in appendix G. For a 2-E PTM with the engines at 104-percent RPL,

$$Treqd(2) = (3/2)*(TASCNT(5)-TENGBF(1)) . (7)$$

For a 1-E PTM with the engine at 104-percent RPL,

$$Treqd(1) = 3*TASCNT(5)-TENGBF(1)-2*TENGBF(2) . (8)$$

2.3.6 <u>Press to Abort to Orbit to Mode Model</u>. The abort attempt is said to be a success if the vehicle achieves the inertial velocity that is required to achieve the orbit. The development of the PTA required time to completion is discussed in appendix G. For a 2-E PTA with the engines functioning at 104-percent RPL,

$$Treqd(2) = (3/2)*(TASCNT(5)-TENGBF(1)) . (9)$$

2.3.7 Contingency Mode Model. Contingency aborts that are initiated when there are two failed SSME's in a region where no other abort options are available are said to result in crew bailouts with the loss of the vehicle. The results of contingency aborts that are initiated when there are three failed SSME's in a region where no other abort options are available are said to result in either a crew bailout with the loss of the vehicle or the loss of the crew and vehicle due to the exceedence of constraints on the vehicle. The crew will be said to bail out if the three engines failed in a region not in the contingency abort "black zone." The crew and the vehicle will be said to be lost when the three engines failed within the "black zone." The region of the black zone will be said to extend from a VI value of 8,000 ft/s up to a VI value of 18,000 ft/s.

2.4 Ascent/Abort Event Tree Diagram

The event tree that was developed to model the space shuttle ascent and its abort options is based on NASA procedures and conversations with personnel involved with analysis of space shuttle ascent/aborts. The event tree is shown in appendix H.

2.4.1 Example Event Tree Description. A hypothetical portion of an event tree is shown in figure 10. This event tree is for description purposes only and is not part of the actual ascent/abort event tree.

The tree is continued from a previous path after the first engine failure occurred. If the time between the first and second failures is greater than the time required to make a decision, the inertial velocity of the vehicle is compared with the inertial velocity required for the initiation of a two-engine abort to the abort site. If the inertial velocity is greater than that required for the initiation of a two-engine abort, the event path is continued on chart 2; otherwise the path is continued on chart 3. If the time between the second and the first failures is less than the decision time, the criticality of the engine failure is checked. If a catastrophic failure occurred, the crew and vehicle are lost. If a catastrophic failure did not occur, the inertial velocity of the vehicle is compared to the inertial velocity required for a one-engine abort attempt. If the inertial velocity is less than that required for a one-engine abort, the crew bails out of the vehicle. If the inertial velocity is not less than the required velocity, a one-engine abort is attempted. If the third engine failure occurs before the completion of the one-engine abort, the criticality of the failure is checked. If the engine failure was catastrophic, the crew and vehicle are lost. If the failure was not catastrophic, the inertial velocity of the vehicle is checked to see if the vehicle is in a black zone. If the vehicle is in a black zone, the vehicle and crew are lost, otherwise the crew bails out of the vehicle.

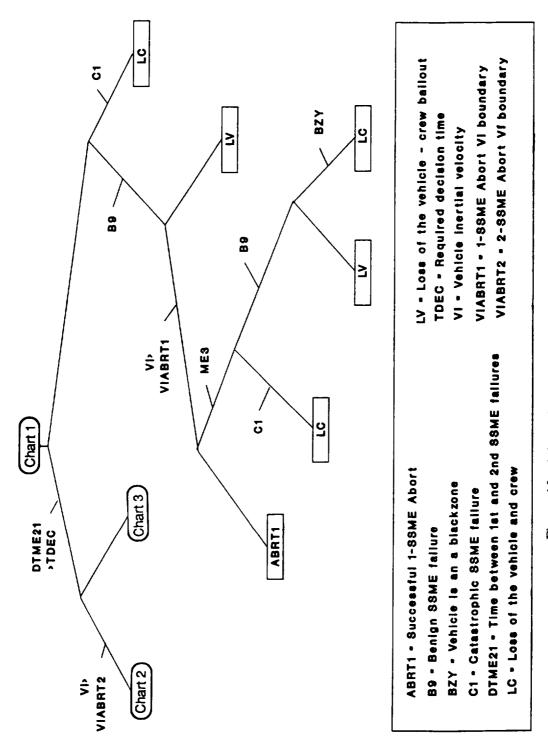


Figure 10. A hypothetical event tree segment.

III. COMPUTER CODE DEVELOPMENT

3.1 Computer Program Overview

The computer code that was developed in Fortran 77 can be obtained by requesting it from the NASA Marshall Space Flight Center Program Development Office (PD22). A simplified overview of the program is shown in figure 11. As can be seen from the diagram, during the simulations the failure times of the elements are first generated. The failure times are generated from statistical distributions, the values of which are determined by pseudo-randomly generated numbers. The failure times are checked to see if any failures occurred before the completion of the ascent. If a failure did occur, the type of failure is checked to determine if the failure was an ET, SRB, or SSME failure. If either an ET or SRB failure occurred, the crew and vehicle are counted as being lost. If an SSME failure occurred, the criticality of the failure is checked. If the failure was catastrophic, the vehicle is lost. If the SSME failure was not catastrophic, the vehicle attempts an abort. If the abort is successful the vehicle is safe; otherwise, the vehicle is lost.

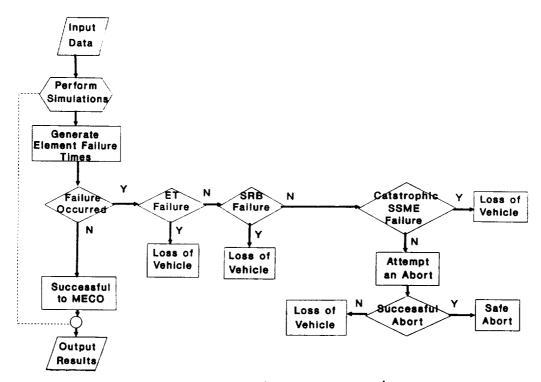


Figure 11. Simulation program overview.

3.2 Program Modules

3.2.1 <u>Initial Abort Selection</u>. Subroutine ABTSLCT represents the selection of abort modes for one-engine out. The subroutine is called when there is one shutdown SSME on the vehicle in a region of the ascent where an abort may be initiated. The region during which a one SSME shutdown abort may be initiated begins at approximately 150 MET and lasts until the time of MECO.

If there is sufficient time between the first two engine failures to make a decision, the appropriate subroutine (RTLS, TAL, or PRESS) is called based on the vehicle's inertial at the time of the engine failure.

If there is not sufficient time between the first two engine failures to make a decision and if the second failure was not catastrophic, the time of the third engine failure is checked to see if there was enough time before the third engine failure to make a decision. If there is not enough time before the third engine failure and the engine failure is not catastrophic, a subroutine is called to determine if the vehicle successfully completes a late TAL.

If there is enough time between the second and third engine failure to make a decision, the one-SSME abort option is chosen based on the vehicle's VI. If a one-SSME PTM is attempted and the engine fails before abort completion and it is a benign failure, a subroutine is called to simulate a late TAL attempt. If a one-SSME TAL or late TAL is attempted and a benign engine failure occurs before abort completion, the vehicle and crew are lost if they are in a black zone or the vehicle is lost and the crew bails out. If the one-SSME VI is less than the VI required for a TAL droop, the crew is said to bail out and the vehicle is said to be lost.

3.2.2 <u>RTLS Performance</u>. Subroutine RTLS represents the RTLS success/failure logic. This subroutine is called from ABTSLCT when an RTLS attempt is selected based on the ascent VI value at which there was one shutdown SSME.

If a benign second engine failure occurs before the completion of a two-SSME RTLS and there is adequate time between either the first and second failures or the second and third failures to make a decision, a one-SSME RTLS is attempted. If there is a benign failure of the third engine before the completion of the one-SSME RTL's, the VI of the vehicle is checked to see if it is in a black zone. If the vehicle is in a black zone, the vehicle and crew are said to be lost, otherwise the vehicle is lost and the crew bails out.

If there are three engine failures of which none are catastrophic before a decision can be made, either the vehicle and crew will be lost or just the vehicle will be lost, depending on whether or not the vehicle is in a black zone region.

3.2.3 <u>TAL Performance</u>. Subroutine TAL represents the TAL success/failure logic. This subroutine is called from ABTSLCT when a TAL attempt is selected based on the ascent VI value at which there was one shutdown SSME.

If a second benign engine failure occurs before the completion of a two-SSME TAL and there is enough time to make a decision before a third engine failure, a one-SSME TAL redesignation option is selected by calling the subroutine TALSLCT. If the vehicle's VI is too low, a crew bailout is performed, otherwise an attempt for the selected one-E TAL site is attempted. If a third benign engine failure occurs before the abort is completed, the crew either bails out or is lost depending on whether or not the vehicle is in a black zone.

If there is not enough time between the first and second engine failures to make a decision, either a one-SSME TAL attempt to the primary site or a TAL droop will be attempted if the vehicle has an adequate VI value. If a third benign engine failure occurs before the completion of either a one-E TAL or TAL droop attempt, a contingency abort is attempted. If the VI value is less than the VI boundary value for a TAL droop, the crew is said to bail out and the vehicle is said to be lost.

3.2.4 TAL Redesignation Option Selection. Subroutine TALSLCT represents the logic for selection of a two-engine out TAL redesignation site. If the rounded value for the VI at the time of the first engine failure is greater or equal to the lowest VI value for one-SSME TAL capability, the sub-program of the value of the first engine out entry that matches up with the VI at which the first engine failed is found by performing a loop for the total number of TAL redesignation velocities. When a value is found that corresponds to the VI at the first failure, the integer parameter that corresponds to this value is assigned the value that the counter has at that time.

After the proper column is found on the TAL redesignation chart, the option that will be selected at that value of the first engine failure is chosen. To select the correct option, a loop is first entered that will be performed for the total number of redesignation options for two engines out. Whenever the rounded value for the VI of the second failure is greater than or equal to the boundary value at an option, the option variable is assigned the value of the counter corresponding to that option. After the loop is completed, the option variable will contain the value that corresponds to the redesignation option that has been chosen.

3.2.5 <u>Late TAL Performance</u>. Subroutine LATETAL represents the late TAL success/failure logic. This subroutine is called from ABTSLCT, TAL, and PRESS after an early MECO occurs in a region where a late TAL can be attempted.

If the inertial velocity of the vehicle is less than that required for the earliest late TAL capability, a contingency abort is attempted. If the VI value is less than or equal to the boundary for the first option but greater than or equal to the earliest late TAL boundary value, then the vehicle is said to successfully land at the first late TAL site. For the subsequent late TAL options, if the VI value is less than the boundary value, the vehicle is said to successfully land at the late TAL site corresponding to that option. If the VI value is greater than the value for the last option (the option with the highest VI boundary value), then contingency abort will be attempted.

3.2.6 <u>PTM and PTA Performance</u>. Subroutine PRESS represents the PTA and PTM success/failure logic. This subroutine is called from ABTSLCT when a PTA or PTM attempt is selected based on the ascent VI value at which there was one shutdown SSME.

Whether a two-SSME PTA attempt or a two-SSME PTM attempt will be made is first determined. The logic for both a two-SSME PTA and a two-SSME PTM attempt are similar to each other with the only difference being the two-SSME attempts.

If a second benign SSME failure occurs during the completion of the two-SSME abort attempt, and there is adequate decision time between the times of the engine failures, either a crew bailout, a TAL droop, a one-SSME TAL to the primary site, or one-SSME PTM is attempted. If the vehicle has an inertial velocity less than that required for a TAL droop attempt, the crew bails out and the vehicle is lost. If a benign engine failure occurs before the completion of an attempted one-SSME abort option, the subroutine LATETAL is called to determine if the vehicle successfully completes a late TAL.

If there is not enough decision time before the second benign engine failure and if the third benign engine failure does not happen before the required decision time, logic similar to the case where the time between the first and second failures is not less than the decision time is followed. If there is not enough time to make a decision between either the first and the second or the second and third engine

failure times, the subroutine LATETAL is called to determine if the vehicle successfully completes a late TAL attempt.

- 3.2.7 <u>Random Number Generation</u>. Function RANDOM is the pseudo-random number generator for the program.
- 3.2.8 Exponential Distribution Value Generation. Function EXPON creates exponentially distributed random variables. The generated random number is converted in this function to an exponentially distributed random variable by using the formula:

$$EXPON = -THETA*LN(RANDOM) , (10)$$

where:

EXPON = an exponentially distributed random number

THETA = the MTBF for the exponential distribution

RANDOM = a randomly generated number, Unif(0..1).

3.2.9 <u>Uniform Distribution Value Generation</u>. Function UNFRM creates uniformly distributed random variables. The generated random number is converted in this function to a uniformly distributed random variable by using the formula:

$$UNFRM = A + (B - A) * RANDOM , \qquad (11)$$

where:

UNFRM = a uniformly distributed random number

A =the lowest possible value

B = the highest possible value

RANDOM = a randomly generated number, Unif(0..1).

- 3.2.10 SRB Time to Failure Generation. Function SRBFT determines the failure time for the SRB pair. As can be seen from the code, it is first determined whether the SRB pair will fail, based on the probability of failure. If it is determined that it will fail, a time of failure is generated which will lie in the time from SRB ignition to SRB separation. If it is determined that it will not fail, the failure time is set to be a very high number.
- 3.2.11 ET Time to Failure Generation. Function ETFT determines the failure time for the ET. As can be seen from the code, it is first determined whether the ET will fail, based on the probability of failure. If it is determined that it will fail, a time of failure is generated which will lie in the time from SRB ignition to nominal MECO separation. If it is determined that it will not fail, the failure time is set to be a very high number.

3.2.12 <u>SSME Time to Failure Generation</u>. Subroutine FLRTIME determines engine failure times. This function is used for calculating several different times-to-failure for the SSME's: the time-to-failure for the first engine at 100 percent, the time-to-failure for the first engine at 104 percent, the time-to-failure for an enabled SSME for the second failure, the time-to-failure at 104 percent for an inhibited SSME for the third failure, the time-to-failure at 109 percent for an inhibited SSME for the third failure, and the time-to-failure at 109 percent for an enabled SSME for the third failure.

FLRTIME(1) is called to determine the failure times before a failure occurs. The engines are first sorted according to their times-to-failure at 100 percent. The position of the engine that experiences the first failure, its time-to-failure (ENGT(1)), and the criticality of the failure are the returned values. The engines are then sorted according to their times-to-failure at 104 percent. The position of the engine that experiences the first failure, its time-to-failure (ENGT(2)), and the criticality of the failure are the returned values.

FLRTIME(2) is called to determine the failure times after one engine failure occurs. The inhibited engine at 104 percent that experiences the second failure is determined by comparing the inhibited engine failure times at 104 percent. The position of the second engine that failed, its time-to-failure (ENGT(3)), and its criticality are the returned values. The enabled engine at 104 percent that experiences the second failure is determined by comparing the enabled engine failure times at 104 percent. The position of the second engine that failed, its time-to-failure (ENGT(4)), and its criticality are the returned values.

FLRTIME(3) is called to determine the failure times after a second engine failure occurs. The inhibited engine at 104 percent that experiences the third failure is determined by comparing the inhibited engine failure times at 104 percent. The position of the third engine that failed, its time-to-failure (ENGT(5)), and its criticality are the returned values. The enabled engine failure times at 104 percent. The position of the third engine that failed, its time-to-failure (ENGT(6)), and its criticality are the returned values. The inhibited engine at 109 percent that experiences the third failure is determined by comparing the inhibited engine failure times at 109 percent. The position of the third engine that failed, its time-to-failure (ENGT(7)), and its criticality are the returned values. The enabled engine at 109 percent that experiences the third failure is determined by comparing the enabled engine failure times at 109 percent. The position of the third engine that failed, its time-to-failure (ENGT(8)), and its criticality are the returned values.

3.2.13 <u>SSME Failure Time Determination</u>. Function TIMEF determines the corresponding mission times at which engine failures occur. This function is used to calculate engine failure time for several different conditions during a mission: the time of failure for engines exposed to prelaunch operation, the time of failure for the engines exposed to first stage operation, the time of the second engine failure, the time of failure for engines exposed to second stage operation, the time interval between the first and second engine failures, the time interval between the second and third engine failures, the time of failure of the third engine at 104 percent, the time of failure of the third engine for TAL redesignation option attempts, and the time of failure of the third engine at 109 percent.

For TIMEF(1), the time of the first engine failure at 100 percent is determined. The engine with the earliest failure time at 100 percent, its failure time, and criticality are returned.

For TIMEF(2), the time of a failure for the first stage is determined. It is determined if a failure occurs before, during, or after the throttle-bucket based on the earliest engine failures at 100 and 104 percent. If a failure occurs during one of the three phases, the appropriate time of the engine failure is determined by considering the engine times to failure at 100 and 104 percent. The returned values are the time of the first engine failure, the position of the engine, the criticality of failure, and a value that represents the number of engine failures at 104 percent.

For TIMEF(3), the time of a second engine failure is determined by considering whether the engines are inhibited, and whether there was a previous engine failure at 104 percent. The returned values are the time of the second engine failure, the position of the engine, and the criticality of the failure.

For TIMEF(4), the time of an engine failure for the second stage is determined. The failure time is determined by considering if a failure occurs either before pre-MECO throttle-down or during pre-MECO throttle-down. If a failure occurs during either phase, the appropriate time of the engine failure is determined by considering the engine times to failure at 100 and 104 percent. The returned values are the time of the first engine failure, the position of the engine, and the criticality of the failure.

For TIMEF(5), the time between the first and second engine failures is determined by considering whether the engines are inhibited, and whether there was a previous engine failure at 104 percent. The returned values are the time between the first and second engine failures, the time of the second engine failure, the position of the engine that fails second, and the criticality of the second engine failure.

For TIMEF(6), the time between the second and the third engine failures is determined by considering whether engines are inhibited. The returned values are the time between the second and third engine failures, the time of the third engine failure, the position of the engine that fails third, and the criticality of the third engine failure.

For TIMEF(7), the time that a third engine fails while performing at 104 percent is determined by considering whether the engines are inhibited. The returned values are the time of the third engine failure, the position of the failed engine, and the criticality of the failure.

For TIMEF(8), the time that a third engine fails while a TAL redesignation attempt is being performed is determined by considering whether the engines are inhibited and what thrust level is being used with the engine to complete the abort attempt. The returned values are the time of the third engine failure, the position of the failed engine, and the criticality of the failure.

For TIMEF(9), the time that a third engine fails while performing at 109 percent is determined by considering whether the engines are inhibited. The returned values are the time of the third engine failure, the position of the failed engine, and the criticality of the failure.

3.2.14 <u>SSME Required Run Time Determination</u>. Function TREQD determines the required engine run times. This function is used to calculate the required engine run times for several different situations: the time required for the remaining engine to run to complete a one-engine PTM, the time required for the remaining engine to run to complete a one-engine TAL at 104 percent, the time required for the remaining engine to run to complete a TAL droop, the time required for the remaining engines to run to complete a two-engine RTLS, the time required for the remaining engines to run to complete a two-engine PTA, the time required for the remaining engines to run to complete a two-engine PTA, the

remaining engine to run to complete a one-engine TAL to a redesignation site, the time required to complete the throttle-bucket phase of the first stage, the time required to complete the 104-percent portion of the first stage, the time required to complete the pre-MECO throttle-down phase of the second stage, the time required for the remaining engines to run to complete a two-engine TAL, and the time required to complete the 104-percent portion of the second stage.

For TREQD(1), the time that is required for the completion of a 1-E PTM, which is a function of the times of the first and second engine failures, is returned.

For TREQD(2), the time that is required for the completion of a 1-E TAL at 104 percent, which is a function of the times of the engine failures and the vehicle acceleration values, is returned.

For TREQD(3), the time that is required for the completion of a TAL droop, which is a function of the times of the engine failures and the vehicle acceleration values, is returned.

For TREQD(4), the time that is required for the completion of a 2-E RTLS, which is a function of the time of the engine failure, is returned.

For TREQD(5), the time that is required for the completion of a 1-E RTLS, which is a function of the times of engine failures, is returned.

For TREQD(6), the time that is required for the completion of a 2-E PTA, which is a function of the time of the engine failure, is returned.

For TREQD(7), the time that is required for the completion of a 2-E PTM, which is a function of the time of the engine failure, is returned.

For TREQD(8), the time that is required for the completion of a 1-E TAL to a redesignation site, which is a function of the times of the engine failures and the acceleration values, is returned.

For TREQD(9), the time that is required for the engines to operate at 100 percent during the prelaunch and the first stage is returned.

For TREQD(10), the time that is required for the engines to operate at 104 percent during the first stage is returned.

For TREQD(11), the time that is required for the engines to operate at 100 percent during the second stage is returned.

For TREQD(12), the time that is required for the completion of a 2-E TAL, which is a function of the vehicle's acceleration, is returned.

For TREQD(13), the time that is required for the engines to operate at 104 percent during the second stage is returned.

3.2.15 <u>Vehicle's Black Zone Status Determination</u>. Function BLKZONE determines whether or not the vehicle is in a three-engine out black zone.

As can be seen from the code, this subprogram compares the VI at the time of the third engine failure with the boundaries of the black zone VI boundaries for three-SSME's out. The vehicle is said to be in a black zone if the VI at the time of the third engine failure is greater than or equal to 8,000 and less than or equal to 18,000.

3.2.16 <u>Vehicle Inertial Velocity Determination</u>. Function VI determines the inertial velocity which corresponds to the engine failure times. This function is used to calculate the vehicle's inertial velocity for various engine failure situations: the inertial velocity of the vehicle at the time of the first engine failure, the inertial velocity at the time of the second engine failure, the inertial velocity at the time of the third engine failure for the last engine functioning at 104 percent, and the inertial velocity at the time of the third engine failure for the last engine functioning at 109 percent.

For VI(1), the vehicle's inertial velocity at the time of the first engine failure, which is a function of the ascent trajectory coefficients, is returned.

For VI(2), the vehicle's inertial velocity at the time of the second engine failure, which is a function of times of the engine failures and the acceleration values, is returned.

For VI(3), the vehicle's inertial velocity at the time of the third engine failure for the last engine functioning at 104 percent, which is a function of the times of engine failures and the acceleration values, is returned.

For VI(4), the vehicle's inertial velocity at the time of the third engine failure for the last engine functioning at 109 percent, which is a function of the times of the engine failures and the acceleration values, is returned.

IV. SAMPLE APPLICATION

Data were input into the simulation program to determine the frequency of occurrence of the various ascent/abort options for the flight of STS-32. The results are limited by the assumptions and may indicate where further refinement of the shuttle system element models, ascent trajectory, or abort mode models are required. The results presented are for the purpose of demonstrating the use of the program only and are not official NASA estimates of probabilities. The summary from the simulation is shown in appendix I.

4.1 Model Input

Data for the simulation were obtained from the ascent checklist—STS-32 flight supplement, SSME reliability studies, ET and SRB reliability studies, and mission duration information. The input data used are as follows:

Number of simulations: 1,000,000

TAL Sites:

Primary two-engine TAL site: Ben Guerir (BEN)
Primary one-engine TAL site: Banjul (BYD)

Primary TAL droop target: Banjul

Last two-engine TAL site: Moron (MRN)

First late TAL site: Amilcar Cabral (AML)

Second late TAL site: Banjul

Third late TAL site:

Fourth late TAL site:

First TAL redesignation option:

Second TAL redesignation option:

TAL to Banjul

Third TAL redesignation option:

TAL to Ben Guerir

VI Boundary Values (ft/s)

Two-engine to primary TAL:	6,200
MECO for TAL:	24,000
Nominal MECO:	25,918
Negative return:	8,400
Two-engine Press to ATO:	9,600
Two-engine Press to MECO:	13,900
One-engine Press to MECO:	16,800
One-engine to primary TAL:	13,700
TAL droop to primary target:	12,000
Last two-engine TAL:	13,500
First late TAL:	22,700
Second late TAL:	24,500
Third late TAL:	25,200
Fourth late TAL:	25,500
Earliest late TAL:	22,000
Lower black zone boundary:	8,000
Upper black zone boundary:	18,000

First Engine-Out TAL Redesignation Increments (ft/s)

1	6,200	11	7,200	21	8,200
2	6,300	12	7,300	22	8,300
3	6,400	13	7,400	23	8,400
4	6,500	14	7,500	24	8,500
5	6,600	15	7,600	25	8,600
6	6,700	16	7,700	26	8,700
7	6,800	17	7,800	27	8,800
8	6,900	18	7,900	28	8,900
9	7,000	19	8,000	29	9,000
10	7,100	20	8,100	30	9,100

31

32 33

34

9,200 9,300

9,400 9,500

11,500

11,500

11,500

11,500

Droop to BYD TAL (109 percent) Redesignation Option (ft/s)

1	10,900	11	11,100	21	11,300	31
2	10,900	12	11,200	22	11,300	32
3	11,000	13	11,200	23	11,400	33
4	11,000	14	11,200	24	11,400	34
5	11,000	15	11,200	25	11,400	
6	11,000	16	11,200	26	11,400	
7	11,000	17	11,300	27	11,400	
8	11,100	18	11,300	28	11,400	
9	11,100	19	11,300	29	11,400	
10	11,100	20	11,300	30	11,500	

BYD TAL (104 percent) Redesignation Option (ft/s)

1	_	11		21	13,900	31	13,600
2		12		22	13,900	32	13,600
3		13		23	13,800	33	13,600
4		14		24	13,800	34	13,600
5		15		25	13,800		
6		16	14,300	26	13,700		
7		17	14,200	27	13,700		
8	_	18	14,100	28	13,700		
9		19	14,000	29	13,700		
10		20	13,900	30	13,700		

BEN TAL (109 percent) Redesignation Option (ft/s)

1	16,400	11	14,900	21	14,000	31	13,800
2	16,300	12	14,800	22	14,000	32	13,800
3	16,100	13	14,700	23	13,900	33	13,700
4	16,000	14	14,600	24	13,900	34	13,700
5	15,800	15	14,400	25	13,900		
6	15,700	16	14,300	26	13,900		
7	15,500	17	14,300	27	13,800		
8	15,400	18	14,200	28	13,800		
9	15,200	19	14,100	29	13,800		
10	15,100	20	14,100	30	13,800		

Element Failure Probabilities

SRB pair failure: 1/258 ET failure: 1/10,000

SSME Time-to-Failure Parameters

Benign failures (100 percent):	22,277.7 s
Benign failures (104 percent):	22,889.6 s
Benign failures (109 percent):	9,744.1 s
Catastrophic failures (100 percent):	149,693.5 s
Catastrophic failures (104 percent):	77,252.4 s
Catastrophic failures (109 percent):	13,181.1 s

Launch/Ascent Phase Times (s)

Duration of the prelaunch phase:	6.6
Beginning of "throttle bucket":	25
End of the "throttle bucket":	7 0
Time of SRB separation:	130
Time of RTLS capability:	150
Beginning of throttle down:	460
Time of MECO:	516

Vehicle Acceleration Values (ft/s²)

Two functioning SSME's

104-percent thrust: 44.31

One functioning SSME

104-percent thrust: 22.16 109-percent thrust: 23.23

Required Decision Time

15 s

Enable/Inhibit Switch Status

Enabled

4.2 Model Output

The frequency of occurrence of the ascent and abort events during the mission phases and abort modes (for 1,000,000 simulations) are as follows:

Prelaunch

On-pad shutdown	802
Catastrophic SSME failure	2

First Stage

Crew bail-out	142
Catastrophic SSME failure	4,197
ET failure	2
SRB failure	2,921

Second Stage

Nominal ascent	914,416
Successful one-engine TAL to BYD	36
Successful TAL droop to BYD	35
Successful one-engine PTM	2
Crew bail-out	110
Catastrophic SSME failure	13,338

Return to Launch Site

Successful two-engine RTLS	20,017
Successful one-engine RTLS	1,333
Catastrophic SSME failure	327

TAL

Successful two-engine TAL to Ben	13,191
Successful redesignation TAL droop to BYD	107
Successful redesignation TAL to BEN	219
Crew bail-out	74
Catastrophic SSME failure	37

Press to MECO and Abort to Orbit

Successful two-engine PTM	1,198
Successful two-engine ATO	514
Successful one-engine PTM	361
Successful one-engine TAL to BYD	145
Successful TAL droop to BYD	36
Crew bail-out	35
Catastrophic SSME failure	73

4.3 Results

For the sample application that was considered, several interesting observations can be made. The results showed that the shuttle achieved orbit without problems 91.442 percent of the time. The system was safely shut down on the pad 0.080 percent of the time. An ET failure occurred 0.0002 percent of the time, and an SRB failure occurred 0.292 percent of the time. The vehicle successfully completed an abort 6.352 percent of the time. Catastrophic main engine failures occurred 1.797 percent of the time. The crew survived by bailing out of the vehicle 0.036 percent of the time. The crew and vehicle survived the performance of abort attempts 99.147 percent of the time.

V. SUMMARY AND CONCLUSIONS

5.1 Conclusions

The model developed was a significant effort toward the use of probabilistic characterization of the performance of the space shuttle in relation to its abort modes. The model allows the estimation of percentages of occurrences of various abort options for provided input for a mission.

The computer program that was developed can be used to analyze the effects of the variation in parameters on the space shuttle performance of abort modes. The program can be used to analyze specific missions or the general effect of parameter variations on the space shuttle missions.

5.2 Recommendations for Future Research

The model that has been developed is intended to be a first step toward the development of a simulation model for the analysis of space shuttle aborts. Future work should be performed in relation to the following areas:

- 1. Incorporation of abort modes that are initiated for system failures
- 2. Refinement of the approaches that were used to estimate the performance of abort options
- 3. Expansion of the model to include other mission phases, such as aborts that occur from orbit
- 4. Improvement of the propulsion element failure models.
- 5. Incorporation of the use of a more accurate probability distribution, such as a Weibull distribution, into the program code to provide for a more accurate representation of the time to failure behavior of the SSME's.

REFERENCES

- 1. Briscoe, A.L.: "Ascent Flight Rules/Special Topics Preview." Johnson Space Center, Mission Operation Directorate, Houston, TX, May 19, 1988.
- 2. Brown, R.W.: "Description of Program to Simulate NSTS Abort Modes." MSFC, Preliminary Design Office, Huntsville, AL, September 20, 1988.
- 3. Fishman, G.S.: "Concepts and Methods in Discrete Event Digital Simulation." John Wiley and Sons, Inc., New York, NY, 1973.
- 4. "STS Operational Flight Rules—All Flights." NASA, Johnson Space Center, Mission Operations Directorate, Houston, TX, July 5, 1989.
- 5. "Flight Procedures Handbook—Ascent/Aborts." NASA, Johnson Space Center, Houston, TX, June 1988.
- 6. "NSTS Flight Data File—Ascent Checklist—Generic." NASA, Johnson Space Center, Houston, TX, March 1988.
- 7. "NSTS Flight Data File—Ascent Checklist—Flight Supplements (STS-26 to STS-34)." NASA, Johnson Space Center, Houston, TX, 1989.
- 8. "Space Transportation System Training Data—SSME Orientation (Part A-Engine), Course No. ME-110(A)RIR." Rockwell International Corp., Rocketdyne Division, 1986.
- 9. Safie, F.M.: "SSME Reliability Determination." MSFC, Systems Safety and Reliability Office, Huntsville, AL, April 5, 1989.

APPENDIX A

Ascent Checklist—STS-32 Flight Supplement

No Comm Mode Boundaries card definitions:

NEG RETURN (104)	= Last RTLS capability
PRESS TO ATO (104)	= First two-engine Press-to-ATO capability
DROOP BYD (109)	= First TAL droop capability at 109-percent RPL
PRESS TO MECO (104)	= First Press-to-MECO capability at 104-percent RPL
LAST MRN (104)	= Last two-engine TAL to Moron capability
SE BYD (104)	= First one-engine TAL to Banjul capability at 104-percent RPL
LAST BEN (104)	= Last two-engine TAL to Benguier capability
SE PRESS (104)	= First one-engine Press-to-MECO capability at 104-percent RPL
LAST AUTO BYD	
2 or 3 engine (65)	= Last Auto TAL capability to Banjul with two or three engines at 65-percent RPL
1 engine (104)	= Last Auto TAL capability to Banjul with one engine at 104-percent RPL
LAST LATE TAL BYD	= Last late TAL to Banjul capability
LAST LATE TAL KIN	= Last late TAL to Kinshasa capability
LAST LATE TAL HDS	= Last TAL to HDS capability
2 ENG BEN (104)	= First two-engine TAL capability to Benguier at 104-percent RPL
ABORT TAL BEN	
EO VI	= VI value at the time of the first engine failure
DROOP AML (109)	= TAL redesignation value for the first TAL droop capability at 109-percent RPL
SE BYD (109)	= TAL redesignation value for the first one-engine TAL capability to Banjul at 109-percent RPL
SE BEN (109)	= TAL redesignation value for the first one-engine TAL capability at Benguier at 109-percent RPL
2 ENG MRN (104)	= First two-engine TAL capability to Moron at 104-percent RPL
ABORT TAL MRN	•
EO VI	= VI value at the time of the first engine failure
DROOP GDV (109)	= TAL redesignation value for the first TAL droop capability at 109-percent RPL
SE BYD (109)	= TAL redesignation value for the first one-engine TAL capability to Banjul at 109-percent RPL
SE BEN (109)	= TAL redesignation value for the first one-engine TAL capability to Banguier at 109-percent RPL
SE MRN (109)	= TAL redesignation value for the first one-engine TAL capability to Banguier at 109-percent RPL

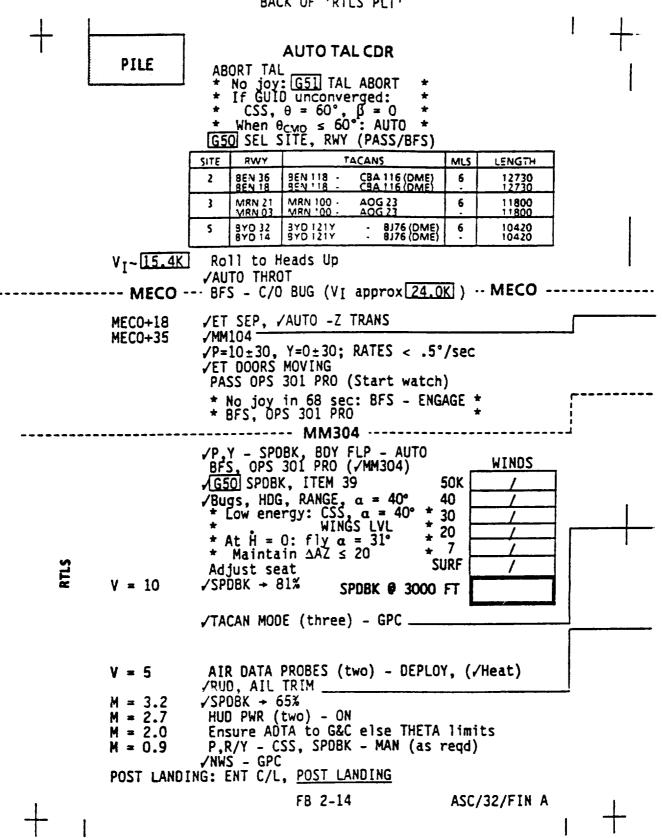
TOP BACK OF 'EGRESS (CDR & PLT)'

+ SS PILE

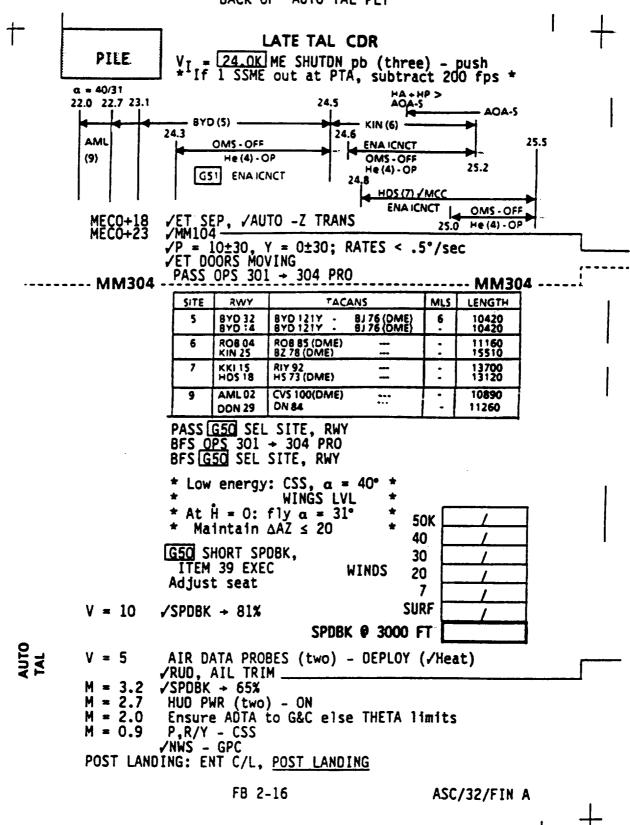
SYS FLIGHT RULES

	RTLS	LATE TAL
OMS - 2 He TKs		X
1 OX & 1 FU TKS (diff pods) 2 OX or 2 FU TKS		X
APU/HYD - 2+ & 1 failing	×	x
CABIN LEAK - dp/dt ≥ .15	х	x
CRYO - All Oz (Hz)	x	x
2 FREON LOOPS +	х	x
2 MAIN BUSSES +	х	
THERMAL WINDOW PANE	х	

NO COMM MODE BOUNDARIES

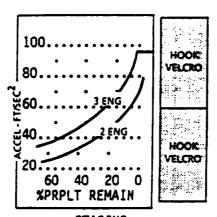

		DE ROUNDARIES
NEG RETURN (104)	8400	2 ENG BEN (104) 6200
PRESS TO ATO (104)	9600	ABORT TAL BEN (2)
DROOP BYD (109)	12000	EO VI
LAST MRN (104)	13500	DROOP BYD (109)(5)
SE BYD (104)	13700	SE BYD (104) (5)
PRESS TO MECO (104)		SE BEN (109) (2)
SE PRESS (104)	16800	
LAST BEN (104)	17600	2 ENG MRN (104) 6800
LAST AUTO BYD	1, 555	ABORT TAL MRN (3)
2 or 3 engine (65)	20000	EO VI
1 engine (104)	21500	DROOP BEN (109)(2)
LAST LATE TAL	22700	SE BEN (104) (2)
AML BYD		SE BYD (104) (5)
KIN HDS	25200 25500	SE MRN (109) (3)

FB 2-4


ASC/32/FIN A

TAL

TOP BACK OF 'RTLS PLT'


TOP BACK OF 'AUTO TAL PLT'

ASCENT ADI - NOMINAL (32 CY 2R)

_1 1

TIME	θ	Ĥ	Н
:30	70	640	9K
:50	64	940	25K
1:10	60	1360	47K
1:30	43	1880	80K
1:50	35	2250	122K

		<u>-ST</u>	AGING-		_
	٧I	θ	Ĥ	H	_
•	6	19	1800	38nm	_
	7	16	1330	48	
	8	13	960	54	:
	9	11	670	58	
	10	9	430	60	
	12	6	80	62	
	14	3	-130	62	_
	16	2	-240	61	
	18	0	-240	60	
•	20	-1	-160	59	_
	22	-1	-10	58	•
	24	-Ĩ	180	59	
•	25918	-Û	400	60	- I

ASC-14b/32/A/8

MS ONLY FS 2-28 ASC/32/FIN A

BEN TAL REDESIGNATION (32 CY 2R)

NOTE: DROOP IS 109% THROTTLE: FOR 104% THROTTLE, ADD 300 FPS

IST E.O. VI		6200	6300	6400	6500	6600	6700
SE DROOP BYD (109) SE BYD (104) SE BEN (109)	(5) (5) (2)	10900 16400	10900			11000	

IST E.O. VI		6800	6900	7000	7100	7200	7300
SE DROOP BYD (109) SE BYO (104) SE BEN (109)	(5) (5) (2)	11000 15500		•••		11100	

IST E.O. VI		7400	7500	7600	7700	7800	7900
SE DROOP BYD (109) SE BYD (104) SE BEN (109)	(5) (5) (2)				14300	11300 14200 14300	14100

IST E.O. VI		8000	8100	8200	8300	8400	8500
SE DROOP BYD (109) SE BYD (104) SE BEN (109)	(5) (5) (2)	14000	13900	13900	13900	11400 13800 13900	13800

IST E.O. VI		8600	8700	8800	8900	9000	9100
SE DROOP BYD (109) SE BYD (104) SE BEN (109)	(5) (5) (2)	13800	13700	13700	13700	11400 13700 13800	13700

1ST E.O. VI	9200	9300	9400	9500
SE DROOP BYD (109) (5 SE BYD (104) (5 SE BEN (109) (2	13600	11500 13600 13800	13800	13600

ASC-8a/32/A/B

MS ONLY

FS 2-30

ASC/32/FIN A

ı

-1

1

MRN TAL REDESIGNATION (32 CY 2R)

NOTE: OROOP IS 109% THROTTLE: FOR 104% THROTTLE. ADD 300 FPS

_1 1

IST E.O. VI		6900	7000	7100	7200	7300	7400
SE DROOP BEN (109) SE BEN (104) SE BYO (104) SE MRN (109)	(2) (2) (5) (3)	11000 15800 16700	11000 15700 16500	11000 15500 15400		11000 15400 16200	11100 15300 15000

IST E.O. VI		7500	7600	7700	7800	7900	8000
SE DROOP BEN (109) SE BEN (104) SE BYD (104) SE MRN (109)	(2) (2) (5) (3)	11100 15200 15900	11100 15100 15800	15000	11100 14900 15600	11100 14800 15500	11100 14700 15400

IST E.O. VI		8100	8200	8300	8400	8500	1600
SE DROOP BEN (109) SE BEN (104) SE BYD (104) SE MRN (109)	(2) (2) (5) (3)	11200 14700 15200 15300	11200 14800 15100 15300	14500	14500 14800	11200 14400 14700 15100	14400

IST E.O. VI		8700	8800	8900	9000	9100	9200
SE DROOP BEN (109) SE BEN (104) SE BYD (104) SE MRN (109)	(2) (2) (5) (3)	11300 14300 14400 15000	11300 14300 14300 15000	14300 14200	11300 14200 14100 15000	11300 14200 14100 15000	11400 14200 14000 14900

IST E.O. VI		9300	9400	9500
SE DROOP BEN (109) SE BEN (104) SE BYO (104) SE MRN (109)	(2) (2) (5) (3)	11400 14100 14000 14900	14100 14000	

ASC-8b/32/A/B

MS ONLY

7 1

FS 2-31

ASC/32/FIN A

1

APPENDIX B

Enable/Inhibit Switch Model

From conversations with engineers familiar with the SSME, there were two general observations about the performance of the SSME's with the switch in the inhibit position in relation to the performance of the SSME's with the switch in the enable position:

- 1. Approximately 50 percent of the failures that would have resulted in engine shutdown due to red-line exceedence for the enabled engine case would lead to catastrophic engine failure in the inhibited engine case.
- 2. The percentage of benign failures that occur in the inhibit situation is a small percentage of the total number of failures. The number of benign failures for the inhibited situation is about 1 percent of the number of benign failures for the enabled situation.

Solving for the time-to-failure parameter estimates for the inhibited engines:

Using the exponential distribution,

$$R(t) = \exp(-L^*t) = \exp(-t/P) ,$$

where

R(t) = reliability at time t

L = failure rate

P = mean time to failure.

For catastrophic failures of inhibited engines:

$$1-R(ic)(t) = 1/2*(1-R(eb)(t))$$

$$1-\exp(-t/P(ic)) = 1/2*(1-\exp(-t/P(eb)))$$

$$\exp(-t/P(ic)) = 1/2+1/2*\exp(-t/P(eb))$$

$$-t/P(ic) = \ln(1/2*(1+\exp(-t/P(eb)))) = \ln(1/2)+\ln(1+\exp(-t/P(eb)))$$

$$P(ic) = -t/(\ln(1/2)+\ln(1+\exp(-t/P(eb))))$$

$$P(ic) = -t/(-0.693+\ln(1+\exp(-t/P(eb))))$$

where:

t =time of the engine's exposure at the power level

ic = parameter for catastrophic failures of an inhibited engine

eb = parameter for benign failures of an enabled engine.

Since the catastrophic failures of an inhibited engine can result from either catastrophic failures that would have occurred in an enabled engine or catastrophic failures that are due to the engine being inhibited,

$$L(ict) = L(ic) + L(ec)$$

$$P(ict) = (P(ic)*(P(ec))/(P(ic)+P(ec)) ,$$

where

ict = the parameter for the total catastrophic failures of inhibited engines.

For benign failures of an inhibited engine:

$$1-R(ib)(t) = 1/100*(1-R(eb)(t))$$

$$1-\exp(-t/P(ib)) = 1/100-1/100*\exp(-t/P(eb))$$

$$\exp(-t/P(ib)) = 99/100+1/100*\exp(-t/P(eb))$$

$$-t/P(ib) = \ln((1/100)*(99+\exp(-t/P(eb))))$$

$$P(ib) = -t/(-4.60517 + \ln(99 + \exp(-t/P(eb)))).$$

Estimating the engine power level exposure time:

Using typical values:

$$t(100) = 110 \text{ s}$$

 $t(104) = 405 \text{ s}$

t(109) = 350 s.

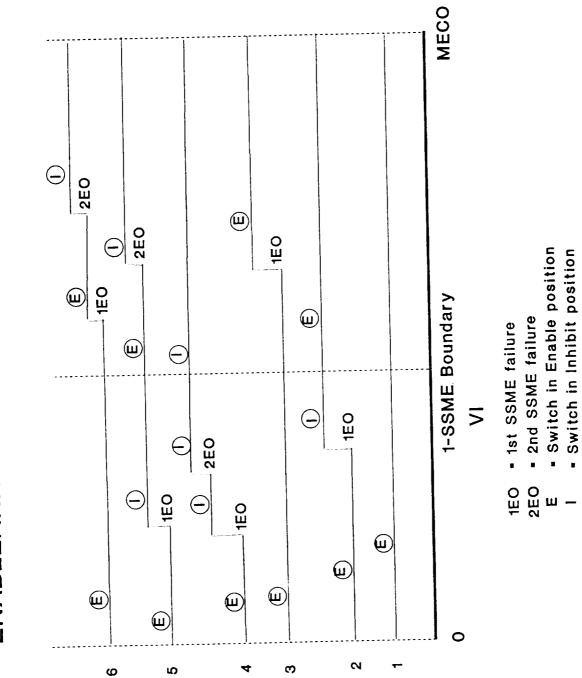
Time-to-failure parameter estimate functions for inhibited engines:

Benign, 100 percent: $P = -110/(-4.60517 + \ln(99 + \exp(-110/P(eb))))$

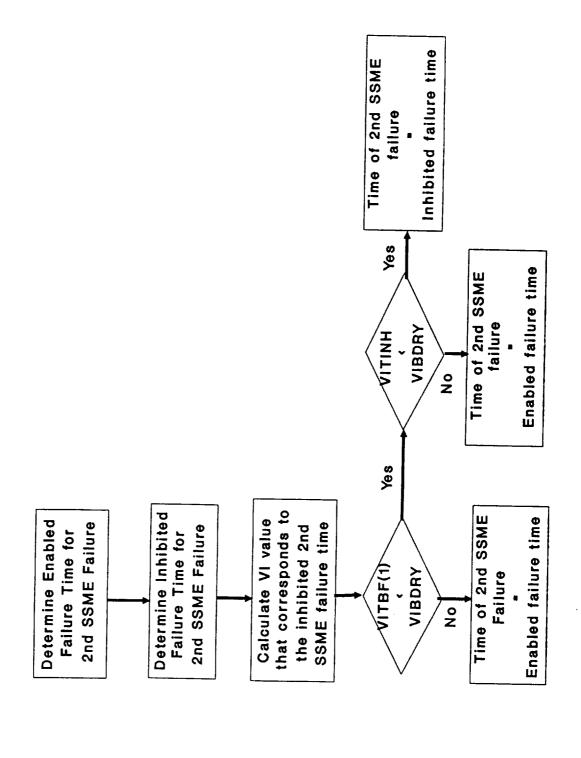
Benign, 104 percent: $P = -405/(-4.60517 + \ln(99 + \exp(-405/P(eb))))$

Benign, 109 percent: $P = -350/(-4.60517 + \ln(99 + \exp(-350/P(eb))))$

Catastrophic: P = (P(ic)*P(ec))/(P(ic)+P(ec)),


where

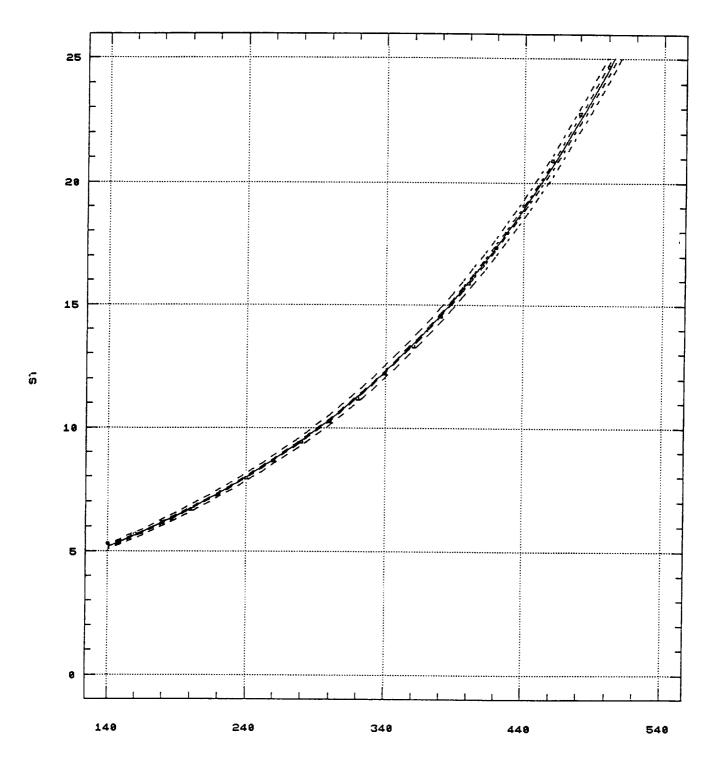
100 percent: $P(ic) = -110/(-0.693 + \ln(1 + \exp(-110/P(eb))))$


104 percent: $P(ic) = -405/(-0.693 + \ln(1 + \exp(-405/P(eb))))$

109 percent: $P(ic) = -350/(-0.693 + \ln(1 + \exp(-350/P(eb))))$

ENABLE/INHIBIT SWITCH LOGIC SUMMARY

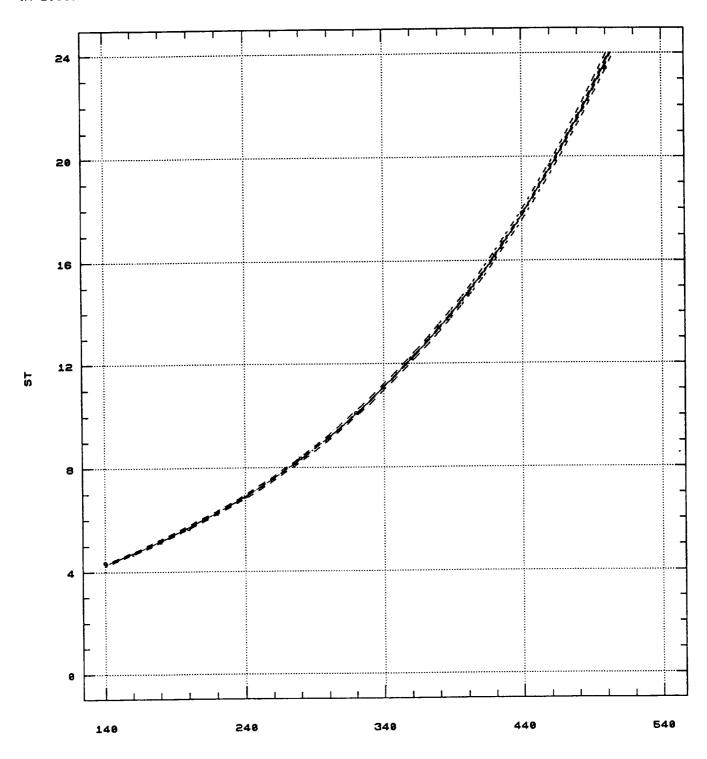
ENABLE/INHIBIT SWITCH MODEL FLOWCHART


APPENDIX C

Vehicle Ascent Model

The vehicle ascent model was an attempt to determine the inertial velocity of the vehicle as a function of the time in the ascent. Ascent simulation information for STS-27 and STS-29 was referenced. Curves were fit to the VI versus t data for the second stage for each of the missions. It was determined that an exponential function provided a good fit to both sets of data. The function is of the form:

 $VI = \exp(a + b^*t) .$


(× 1888)

Regression Analysis - Exponential model: Y = exp(a+bX)

Dependent var	riable: STS27				Independ	ent variable: T
Parameter	Estimate	6.5458E-3 12		T Value	Prob. Level .00000 .00000	
Intercept Slope	7.94512 4.32715E-3			1213.77 223.59		
		Analysis	of Va	riance		
Source Model Error	Sum of	Squares 4.269 .001452	Df 1 17	Mean Square 4.269 .000085	F-Ratio 49992.44	Prob. Level
Total (Corr.)	4	270571	18			
	coefficient = (R-squared =	99.97 per	cent

(X 1000)

Regression Analysis - Exponential model: Y = exp(a+bX)

5.153279 18

ndent v	ariable: STS29				Independ	ent variable: T
Parameter	Estimate	Standard Error 3.73546E-3 1.10441E-5		T Value	Prob. Level	
Intercept Slope	7.69441 4.75395E-3			2059.83 .00000 430.451 .00000		
		Analysis	of Va	riance		
Source Model Error	Sum of	Squares 5.15 .000473	Df 1 17	Mean Square 5.15 .000028	F-Ratio 185287.7	Prob. Level
			10			

Correlation Coefficient = 0.999954 R-squared = 99.99 percent Stnd. Error of Est. = 5.2735E-3

Total (Corr.)

APPENDIX D

Vehicle Acceleration Estimation

The acceleration of the STS vehicle for the TAL, PTA, and PTM abort modes was estimated by combining information from each of the abort modes to arrive at an estimate that could be used to represent all three of them. The data sources that were referenced to obtain the acceleration estimate were STS-31 TAL simulation data and the Briscoe presentation material.

Estimating the vehicle acceleration for TAL, PTA, and PTM attempts:

For TAL attempts (fig. D-1):

For a 2-E TAL initiated at 186 s MET,

 $ACC = dVI/dT = 34.09 \text{ ft/s}^2$.

For a 2-E TAL initiated at 328 s MET,

 $ACC = dVI/dT = 47.24 \text{ ft/s}^2$.

Estimating the acceleration for a 2-E TAL with the engines functioning at 104-percent RPL,

 $ACC(TAL) = (34.09+47.24)/2 = 40.7 \text{ ft/s}^2$.

For PTM attempts:

Using STS-26 data from reference 1:

Tmeco = 516 s

T(init.) = 320 s

T(comp.) = 600 s,

where

Tmeco = time of nominal MECO

T(init.) = time of the 2-E TAL at 104-percent initiation

T(comp.) = time of the 2-E TAL at 104-percent completion.

From the previous,

 $VI(init.) = \exp(a+b*320)$.

From the STS-26 data.

a = 7.97

b = 0.0042766

$$VI(init.) = 11,367 \text{ ft/s}$$
.

Similarly,

$$VImeco = \exp(a+b*516) ,$$

$$VImeco = 26,284 \text{ ft/s}$$
.

Estimating the acceleration for a PTM attempt,

$$ACC(PTM) = (VImeco-VI(init.))/(T(comp.)-Tmeco) = (26,284-11,367)/(600-320)$$

$$ACC(PTM) = 46.6$$
.

For a 2-E PTM with the engines functioning at 104-percent RPL,

$$ACC(PTM) = 46.6 \text{ ft/s}^2$$
.

For PTA attempts:

Using a similar approach as was used in determining the PTM acceleration estimate value,

Tmeco = 516 s

T(init.) = 281 s

T(comp.) = 619.

VImeco = 26,284 ft/s

VI(init.) = 9,621 ft/s.

For a 2-E PTA with the engines functioning at 104-percent RPL,

$$ACC(PTA) = 49.3 \text{ ft/s}$$
.

Combining the TAL, PTA, and PTM results to obtain an overall estimate,

$$ACC = (ACC(TAL) + ACC(PTA) + ACC(PTM))/3 = (40.7 + 46.6 + 49.3)/3$$

$$ACC = 45.5 \text{ ft/s}^2.$$

Assuming that the vehicle's acceleration is proportional to the number of engines functioning and the power level at which the engines are performing,

$$ACC$$
(Engines,%RPL) = (Engines/2)*(%RPL/104)* ACC (2,104)
= (Engines/2)*(%RPL/104)*45.5,

where

Engines = number of engines functioning

%RPL = percent of the RPL at which the engines are functioning.

The acceleration values that will be used for the vehicle for the abort options at the various number of functioning engines and engine power levels are therefore:

$$ACC(1,104) = 22.8 \text{ ft/s}^2$$

$$ACC(1,109) = 23.8 \text{ ft/s}^2$$

$$ACC(2,104) = 45.5 \text{ ft/s}^2$$
.

2-E TAL to Moron VI vs. MET

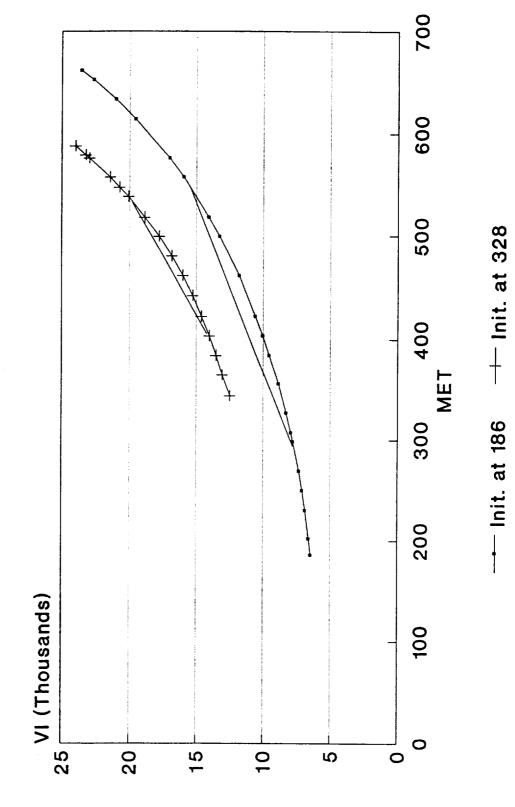


Fig. D-1 - TAL VI vs. MET

APPENDIX E

RTLS Model Development

The RTLS model involved determining the time that would be required to complete an RTLS based on the vehicle's current situation. Data sources that were referenced during the development of the model were the Flight Procedures Handbook—Ascent/Aborts and STS-31 RTLS simulation data.

Developing the RTLS required to complete model:

From the Flight Procedures Handbook, it appears that an RTLS attempt can be divided into two phases, the fuel dissipation phase and the flyback and powered pitchdown phase.

$$T(\text{reqd}) = T(fd) + T(fb \text{ and } PPD)$$
,

where

T(reqd) = time required for RTLS completion

T(fd) = time required for fuel dissipation

T(fb and PPD) = time required for flyback and powered pitchdown.

From the data (fig. E-1),

$$T(fb \text{ and } PPD) = C = 350 \text{ s}$$

$$T(fd) = b + m T(init) = (270/(T(L.RTLS) - T(E,RTLS))) (T(L.RTLS) - T(init.))$$
,

where

T(init) = time of RTLS initiation

T(L.RTLS) = time of last RTLS capability

T(E.RTLS) = time of earliest RTLS initiation capability.

Since the VI value for the last RTLS is given (from the no comm mode boundary cards),

$$VI(Last RTLS) = exp(a+b*T(last RTLS))$$
, or

$$T(\text{Last RTLS})-(\ln(\text{VI}(\text{Last RTLS}))-a)/b$$
,

where

VI(Last RTLS) = the VI value for last RTLS capability.

The required remaining run time for engines for the successful completion of a two-SSME RTLS abort is therefore:

$$T$$
reqd(2-E RTLS) = 350+(270/(T (L .RTLS)- T (E .RTLS)))*(T (L .RTLS)- T (init.)).

For the completion of an RTLS attempt with one function SSME, the thrust of the remaining engine is at 109 percent. Assuming that the acceleration of the vehicle (dVI/dT) is proportional to the number of engines functioning and the power level of the engines, we obtain:

$$T$$
reqd(1-E RTLS) = $(T$ reqd(2-E RTLS)- T (second failure))*((2*104)/(1*109)),

where

T(second failure) = the time of the second SSME failure relative to the beginning of the 2-E RTLS attempt.

The required remaining run time for the remaining engine with it function at 109-percent RPL is therefore:

Treqd(2-E RTLS) = 1.91*(Treqd(2-E RTLS)-T(second failure)).

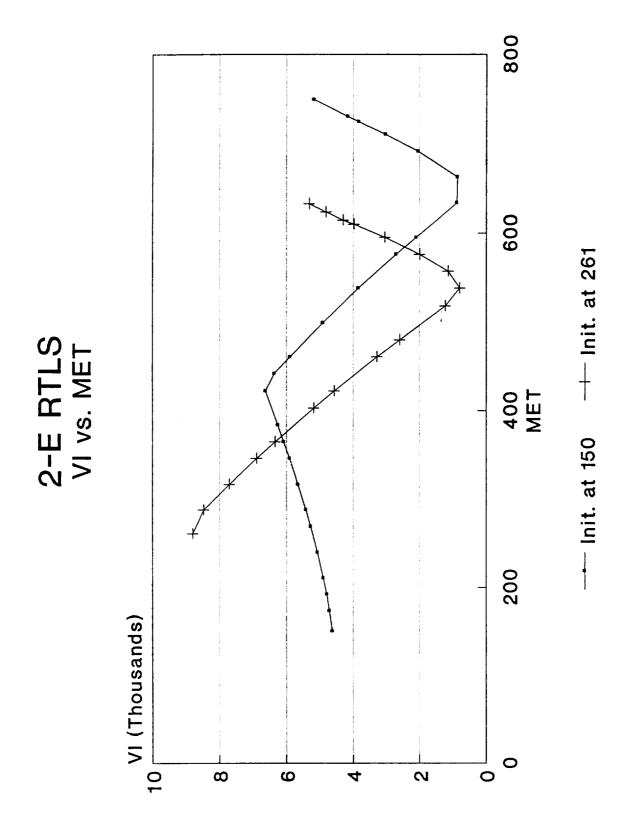


Fig. E-1 - RTLS VI vs. MET

APPENDIX F

TAL Model Development

The TAL model is used to determine the vehicle's inertial velocity as a function of the times of the engine failures. TAL situations that were considered were 2-ENG TAL attempts at 104 percent to the primary site, 1-ENG TAL attempts at 104 percent to the primary site, 1-ENG TAL attempts at 104 percent to a redesignation site, and 1-ENG TAL attempts at 109 percent to a redesignation site. The estimates of the vehicle's acceleration are used in the model.

Developing the TAL VI = f(time of engine failure) model:

For a 2-ENG TAL attempt at 104 percent:

VI = VI(1stEO) + (T(2ndEO) - T(1stEO)) * ACC(2-ENG at 104 percent),

where

VI(1stEO) = inertial velocity at the time of the first engine failure

T(2ndEO) = time of the second engine failure

T(1stEO) = time of the first engine failure

ACC(2-ENG at 104 percent) = the vehicle's acceleration with two engines functioning at 104 percent.

For a 1-ENG TAL attempt at 104 percent:

VI = VI(1stEO) + (T(2ndEO) - T(1stEO)) *ACC(2-ENG at 104 percent)

+(T(3rdEO)-T(2ndEO))*ACC(1-ENG at 104 percent),

where

T(3rdEO) = time of the third engine failure

ACC(1-ENG at 104 percent) = vehicle's acceleration with two engines functioning at 104 percent.

For a 1-ENG TAL attempt at 109 percent:

VI = VI(1stEO) + (T(2ndEO) - T(1stEO)) *ACC(2-ENG at 104 percent)

+(T(3rdEO)-T(2ndEO))*ACC(1-ENG at 109 percent),

where

ACC(1-ENG at 109 percent) = vehicle's acceleration with two engines functioning at 109 percent.

APPENDIX G

PTA and PTM Model Development

The PTA and PTM models involved determining the time that would be required to complete a PTA and PTM based on the vehicle's current situation. Abort situations that were considered were 2-ENG PTM and PTA attempts at 104 percent and a 1-ENG PTM attempt at 104 percent.

Developing the PTA and PTM required time to completion model:

For a 2-ENG PTM attempt:

Assumption: For a PTM attempt to be successful, the vehicle must attain the VI that would have been attained at the time of MECO for a nominal ascent.

Using the vehicle performance model,

$$VI(MECO) = exp(a+b*TMECO)$$
,

where

a,b = VI versus t profile parameters

TMECO = time of MECO.

Assumption: The acceleration of the vehicle is proportional to its thrust.

$$ACC(2E,104\%) = 2/3*104/104*ACC(3E,104\%)$$

VI(MECO) = ACC(3E,104%)*(TMECO = ACC(3E,104%)*T(1stEO)+ACC(2E,104%)*Treqd

where

Treqd = required remaining run time for the two remaining engines

T(MECO) = T(1stEO) + 2/3 * Treqd

Treqd = 3/2*(T(MECO)-T(1stEO)).

For a 2-ENG PTM:

$$T$$
reqd = $3/2*(T(MECO)-T(1stEO))$.

For a 1-ENG PTM attempt:

$$ACC(3E,104\%)*TMECO = ACC(3E,104\%)*T(1stEO)+ACC(2E,104\%)$$

* $(T(2ndEO)-(1stEO))+ACC(1E,104\%)*Treqd$,

$$TMECO = T(1stEO) + 2/3*(T(2ndEO) - T(1stEO)) + 1/3*Treqd,$$

$$Treqd = 3*TMECO - 2*T(2ndEO) - T(1stEO).$$

For a 2-ENG PTA attempt:

<u>Assumption</u>: The inertial velocity required for PTA completion is about the same as the inertial velocity required for PTM completion.

Using the same procedure as for the PTM case,

Treqd = 3/2*(TMECO-T(1stEO)).

APPENDIX H

STS Ascent/Abort Event Tree Diagram

Definition of Symbols

<u>Symbol</u> <u>Definition</u>

A1 First anomaly occurs
A2 Second anomaly occurs
AT02 Successful 2-SSME ATO
BZN Vehicle is in a black zone
BZY Vehicle is not in a black zone

B9 Benign SSME failure
C1 Catastrophic SSME failure
DTME21 Time between ME2 and ME1
DTME32 Time between ME3 and ME2

ET ET failure

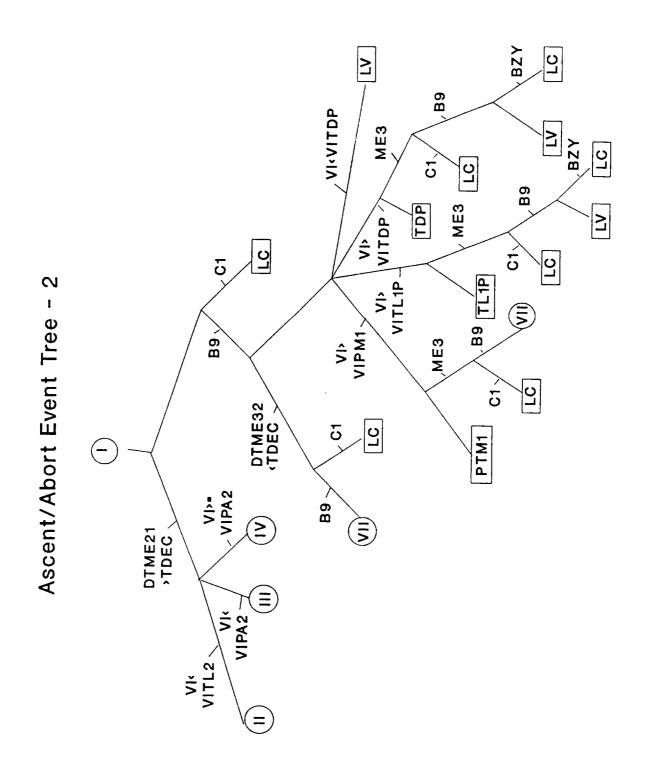
LC Loss of vehicle and crew
LV Loss of vehicle—crew bailout

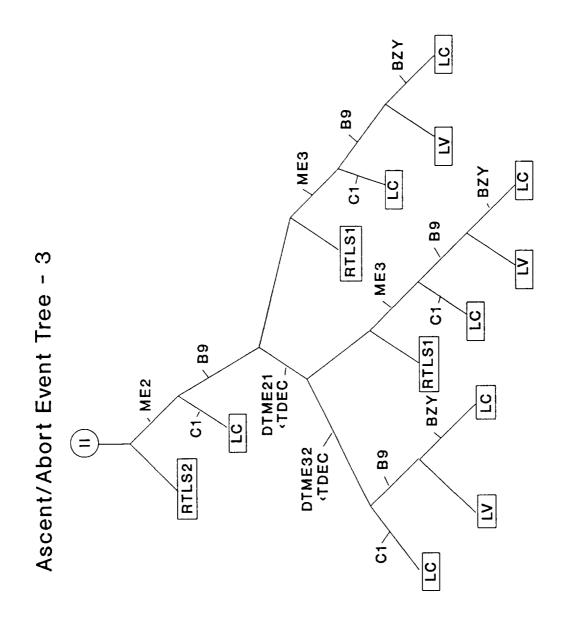
ME1 First SSME failure
ME2 Second SSME failure
ME3 Third SSME failure

NTM Nominal ascent to MECO
OP On-pad engine shutdown
PTM1 Successful 1-SSME PTM
PTM2 Successful 2-SSME PTM
RTLS1 Successful 1-SSME RTLS
RTLS2 Successful 2-SSME RTLS

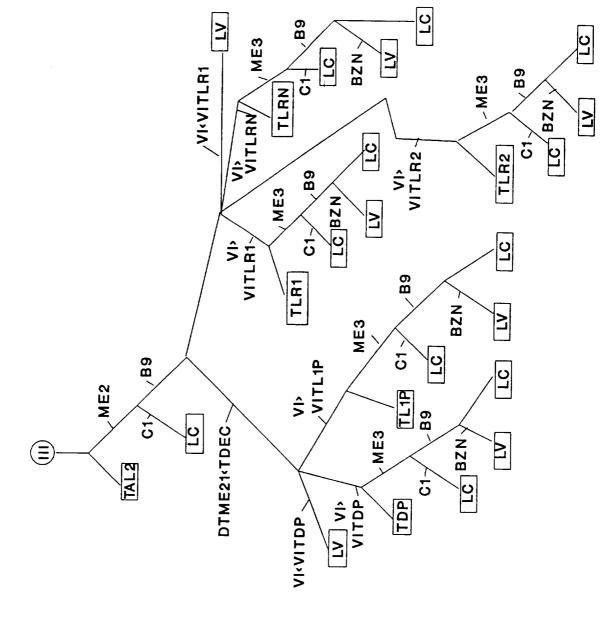
SRB SRB failure

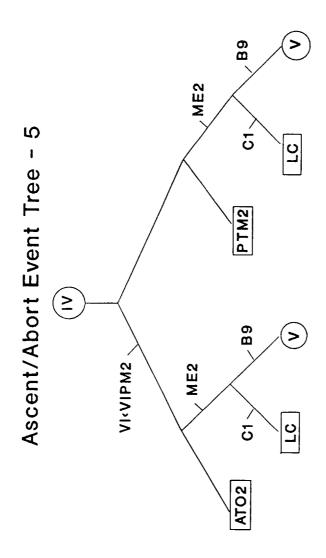
TA1 Time of first anomaly
TA2 Time of second anomaly
TA3 Time of third anomaly
TAL2 Successful 2-SSME TAL
TDEC Required decision time
TDP Successful TAL droop


TL1P Successful primary 1-SSME TAL
TLR1 Successful first redesignation site TAL
TLR2 Successful second redesignation site TAL
TLRN Successful Nth redesignation site TAL

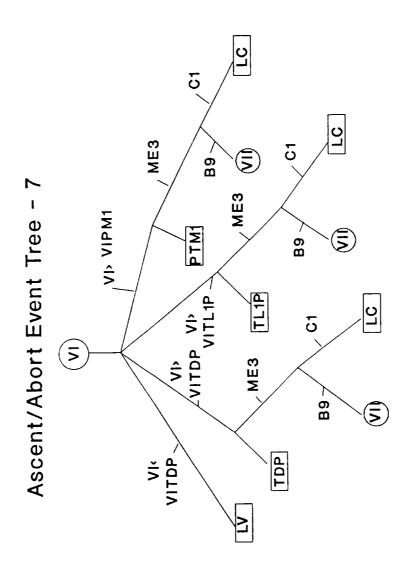

TRTLS Earliest RTLS initiation time
TSRBS Time of SRB separation
VI Vehicle inertial velocity

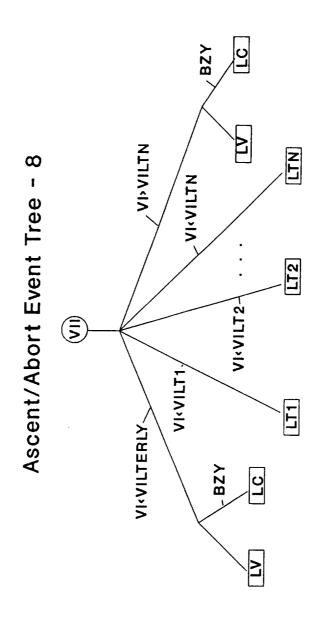
VILT1 VI boundary for first late TAL
VILT2 VI boundary for second late TAL
VILTN VI boundary for Nth late TAL
VILTERLY Early VI boundary for late TAL
VIPA2 2-SSME PTA VI boundary


VIPM1	1-SSME PTM VI boundary
VIPM2	2-SSME PTM VI boundary
VITDP	VI boundary for TAL droop
VITL1P	1-SSME primary TAL VI boundary
VITL2	2-SSME TAL VI boundary
VITLR1	First TAL redesignation TAL boundary
VITLR2	Second TAL redesignation TAL boundary
VITLRN	Nth TAL redesignation TAL boundary


Σ **B**9 ¥ F Z / ME2 **B**9 2 √ ME1 27 TA1. TRTLS 🗸 TA2 (2nd Stage LC ET 5 Ë ပ A11 **B**3 ✓ ME2 TA24 TRTLS LC Ascent/Abort Event Tree -5 LC TA2> ET $\tilde{\Omega}$ LC →ME2 ME3 **B**3 **B9** ပြ ပ SRB ME1 TA34 TSRBS 1st Stage 2 SRB **B**3 C LC A1 Ę SRB r S ET ET Pre-launch ပြ ME1 A1 OP **B9** ပ္

Ascent/Abort Event Tree - 4





DTME21*TDEC

DTME32*TDEC

WIND

APPENDIX I

Sample Application Simulation Output

*****	****	*****	*****	*****	****
****	SPACE	SHUTTLE	ABORT	MODES	****
****	SI	MULATION	RESULT	rs	****
*****	*****	****	*****	*****	****

Name of data:	STS-32
Number of simulations:	1000000

Ascent Checklist values:

2 ENG (104)	
Name of landing site	BEN
VI boundary value	6200
	24000
VI value for Nominal MECO	25918
NEG RETURN (104)	8400
PRESS TO ATO (104)	9600
	13900
SE PRESS (104)	16800
SE (104)	
Name of landing site	BYD
VI boundary value	13700
DROOP (109)	
Name of target site	BYD
VI boundary value	12000
LAST (104)	
Name of landing site	MRN
VI boundary value	13500
Late TALs	
Total number of sites	4
Late TAL site:	AML
VI boundary value	22700
	BYD
· - · · · · · · · · · · · · · · · · · ·	24500
	KIN
	25200
	HDS
· =	25500
Earliest Late TAL	22000

TAL Redesignations

Total number of 1st EO values 34

Number	VI Value
1	6200
2	6300
3	6400
4	6500
5	6600
6	6700
7	6800
8	6900

9	7000
10	7100
11	7200
12	7300
13	7400
14	7500
15	7600
16	7700
17	7800
18	7900
19	8000
20	8100
21	8200
22	8300
23	8400
24	8500
25	8600
26	8700
27	8800
28	8900
29	9000
30	9100
31	9200
32	9300
33 34	9400 9500
J.44	9000

Number of redesig. options

TAL redesignation option: Option power level:

SE DROOP B 109

3

Number	VI Value
	10000
1	10900
2	10900
3	11000
4	11000
5	11000
6	11000
7	11000
8	11100
9	11100
10	11100
11	11100
12	11200
13	11200
14	11200
15	11200
16	11200
17	11300
18	11300
19	11300
20	11300
21	11300
2 2	11300
23	11400
24	11400
25	11400
26	11400

27	11400
28	11400
29	11400
30	11500
31	11500
32	11500
33	11500
34	11500

TAL redesignation option: SE BYD Option power level: 104

Number	VI Valu
1	16400
2	16300
3	16100
4	16000
5	15800
6	15700
7	15500
8	15400
9	15200
10	15100
11	14900
12	14800
13	14700
14	14600
15	14400
16	14300
17	14200
18	14100
19	14000
20	13900
21	13900
22	13900
23	13800
24	13800
25	13800
26	13700
27	13700
28	13700
29	13700
30	13700
31	13600
32	13600
33	13600
34	13600

TAL redesignation option: SE BEN Option power level: 109

Number	VI Value
1	16400
2	16300
3	16100
4	16000
5	15800
6	15700

7	15500
8	15400
9	15200
10	15100
11	14900
12	14800
13	14700
14	14600
15	14400
16	14300
17	14300
18	14200
19	14100
20	14100
21	14000
22	14000
23	13900
24	13900
25	13900
26	13900
27	13800
28	13800
29	13800
30	13800
31	13800
32	13800
33	13700
34	13700

Probability of SRB pair failure 3.875969E-03
Probability of ET failure 1.000000E-04

. - - - - - - - - - - - - - - - - -

Enabled SSME time-to-failure parameters:

Self-contained	-	100%	RPL	22277.700000
Self-contained	_	104%	RPL	22889.600000
Self-contained	-	109%	\mathtt{RPL}	9744.100000
Catastrophic	-	100%	\mathtt{RPL}	149693.500000
Catastrophic	-	104%	RPL	77252.400000
Catastrophic	_	109%	RPL	13181.100000

Launch/ascent phase times (sec):

Dunation of the way love to the	
Duration of the pre-launch phase	6.600000
Beginning of "throttle bucket"	25.000000
End of the "throttle bucket"	70.000000
Time of SRB separation	130.000000
Time of RTLS capability	150.000000
Beginning of throttle down	460.000000
Time of MECO	516.000000

Vehicle acceleration values (ft/sec^2): 2 functioning SSMEs - 104% RPL 44.310000 1 functioning SSME - 104% RPL 22.160000 1 functioning SSME - 109% RPL 23.230000 _____. Required decision time (sec): 15.000000 ______ Enable/inhibit switch status: ON ______ Black zone VI boundaries (ft/sec): 8000.00000 Lower boundary 18000.00000 Upper boundary ASCENT/ABORT SUMMARY * * * * * * * * * * * 914416 Nominal to MECO 802 On-pad shutdown 21350 Successful RTLS 13769 Successful TAL Successful Aborts to Orbit 10413 Successful Aborts to MECO 17992 361 Non-intact abort - crew bailout Non-intact abort - loss of crew 0 67796 17974 Benign SSME failure Catastrophic SSME failure 2 External Tank failure 2921 Solid Rocket Booster failure PRE-LAUNCH SUMMARY +-+-+-+-+-+-+-+-+ 802 On-pad shutdown Benign 1st SSME failure 802 2 Catastrophic 1st SSME failure 0 External Tank failure FIRST STAGE SUMMARY +-+-+-+-+-+-+-+-+-+

Non-intact abort - crew bailout

Benign 1st SSME failure Benign 2nd SSME failure

Benign 3rd SSME failure

Non-intact abort - loss of crew
Benign 1st SSME failure

142

15801 142

0

0

Catastrophic 1st SSME failure	4196
Catastrophic 2nd SSME failure	1130
Catastrophic 3rd SSME failure	0
External Tank failure	2
Solid Rocket Booster failure	2921

SECOND STAGE SUMMARY

Nominal to MECO	914416
Successful 1-E TAL BYD	36
Successful TAL Droop BYD	35
Successful 1-E Press to MECO	2
Successful Late TAL AML	0
Successful Late TAL BYD	Ö
Successful Late TAL KIN	ő
Successful Late TAL HDS	0
Non-intact abort - crew bailout	110
Non-intact abort - loss of crew	0
Benign 1st SSME failure	48522
Benign 2nd SSME failure	183
Benign 3rd SSME failure	0
Catastrophic 1st SSME failure	13338
Catastrophic 2nd SSME failure	0
Catastrophic 3rd SSME failure	Ö
External Tank failure	Ö

Return to Launch Site (RTLS) Summary

Successful 2-E RTLS	20017
Successful 1-E RTLS	1333
Non-intact abort - crew bailout	0
Non-intact abort - loss of crew	0
Benign 2nd SSME failure	1369
Benign 3rd SSME failure	0
Catastrophic 2nd SSME failure	291
Catastrophic 3rd SSME failure	36

Trans-oceanic Abort Landing (TAL) Summary

Successful Successful Successful Successful Successful Successful Successful Successful Successful Successful	1-E TAL TAL Droop 1-E TAL 1-E TAL 1-E TAL Late TAL Late TAL Late TAL Late TAL	BEN BYD BYD SE DROOP B SE BYD SE BEN AML BYD KIN HDS	13191 0 0 107 0 219 0 0 0
Non-intact	abort - crew abort - loss	/ bailout	0 74 0

Benign 2nd SSME failure	400
Benign 3rd SSME failure	0
Catastrophic 2nd SSME failure	37
Catastrophic 3rd SSME failure	0

Press to MECO and ATO Summary

Successful 2-E PTM	17629
Successful 2-E ATO	10413
Successful 1-E PTM	361
Successful 1-E TAL BYD	145
	36
Successful ind brook	
Successful Late TAL AML	0
Successful Late TAL BYD	0
Successful Late TAL KIN	0
Successive Face III	0
Successful Late TAL HDS	=
Non-intact abort - crew bailout	35
Non-intact abort - loss of crew	0
	577
Benign 2nd SSME failure	0
Benign 3rd SSME failure	_
Catastrophic 2nd SSME failure	73
catastrophic and come failure	0
Catastrophic 3rd SSME failure	_

APPENDIX J

Program Tutorial

This section is intended to acquaint the program user with how to use the program by walking them through an example application. The example application involves assessing the expected risk involved for STS-32.

Start the Program

The simulation program has been developed for use with a Microsoft FORTRAN version 4.1 or an equivalent compiler. The executable file for this program must first be loaded into the directory that contains the compiler.

To begin the program enter: ABTSIM

Entering Program Input

This section will show the sample input of data. The default values included Ascent Checklist values for STS-26 and values that appeared reasonable to the author. The entered data includes values from the STS-32 Ascent Checklist—Flight Supplement and information that is intended to be for illustration purposes only. The reader is encouraged in particular to follow the Ascent Checklist data as they are entered and to locate their position within the document. The reader should also note that when data are entered for the TAL redesignation values, if an option is not available at a particular first engine out inertial velocity value, the inertial velocity value of the next possible option at that first engine out inertial velocity value is entered in its position. If the last option is not available at the first engine out velocity value, a very large number is entered as the velocity value for that option. The data that are requested and the information that is entered in response for this application is as follows:

What is the name of the data? STS-32

Would you like to have the results sent to an output file (Y or N)?

What is the name for the output file? STS-32

How many simulation runs are desired? 10000

Please enter your selection.

-2 ENG (104)? {6300} 6200

Name of landing site? {BEN} **BEN** VI value for Abort MECO? {24000} 24000 VI value for Nominal MECO?? {25918} - NEG RETURN (104)? {8300} 8400 - PRESS TO ATO (104)? {9800} 9600 - PRESS TO MECO (104)? {12200} 13900 - SE PRESS (104)? {18600} 16800 - SE (104)? {14000) 13700 Name of landing site? {BYD} **BYD** - DROOP (109)? {11100} 12000 Name of target site? {BYD} **BYD** - LAST (104)? {24600} 13500 Name of the landing site? {BEN} **MRN** What is the total number of Late TAL sites? {3}

- LAST LATE TAL VI Value 1

Name of the landing site?

22700

AML

```
- LAST LATE TAL VI Value 2
24500
Name of the landing site?
BYD
- LAST LATE TAL VI Value 3
25200
Name of the landing site?
- LAST LATE TAL VI Value 4
25500
Name of the landing site?
HDS
- Earliest Late TAL? {24000}
22000
Total number of TAL redesignation options? {3}
Total number of TAL redesignation velocities? {33}
34
Do you wish to use all the default 1st engine
out VI redesignation values? (Y or N)
N
1st EO VI 1
6200
1st EO VI 2
6300
1st EO VI 3
6400
1st EO VI 4
6500
 1st EO VI 5
 6600
```

1st EO VI 6

6700

1st EO VI 7 6800

1st EO VI 8 6900

1st EO VI 9 7000

1st EO VI 10 7100

1st EO VI 11 7200

1st EO VI 12 7300

1st EO VI 13 7400

1st EO VI 14 7500

1st EO VI 15 7600

1st EO VI 16 7700

1st EO VI 17 7800

1st EO VI 18 7900

1st EO VI 19 8000

1st EO VI 20 8100

1st EO VI 21 8200

1st EO VI 22 8300 1st EO VI 23 8400

1st EO VI 24 8500

1st EO VI 25 8600

1st EO VI 26 8700

1st EO VI 27 8800

1st EO VI 28 8900

1st EO VI 29 9000

1st EO VI 30 9100

1st EO VI 31 9200

1st EO VI 32 9300

1st EO VI 33 9400

1st EO VI 34 9500

Name of the TAL redesignation option 1 DROOP BYD

Power level required for this option (104 or 109) 109

Name of the TAL redesignation option 2

Power level required for this option (104 or 109) 104

Name of the TAL redesignation option 3 **BEN** Power level required for this option (104 or 109) 109 Do you wish to use all the default 2nd engine out VI redesignation values for option 1? (Y or N) N - TAL REDES VI Value 1 1 10900 - TAL REDES VI Value 1 2 10900 - TAL REDES VI Value 1 3 11000 - TAL REDES VI Value 1 4 11000 - TAL REDES VI Value 1 5 11000 - TAL REDES VI Value 1 6 11000 - TAL REDES VI Value 1 7 11000 - TAL REDES VI Value 1 8 11100 - TAL REDES VI Value 1 9 11100 - TAL REDES VI Value 1 10 11100 - TAL REDES VI Value 1 11 11100 - TAL REDES VI Value 1 12

11200

11200

- TAL REDES VI Value 1 13

- TAL REDES VI Value 11200	1	14
- TAL REDES VI Value 11200	1	15
- TAL REDES VI Value 11200	1	16
- TAL REDES VI Value 11300	1	17
- TAL REDES VI Value 11300	1	18
- TAL REDES VI Value 11300	1	19
- TAL REDES VI Value 11300	1	20
- TAL REDES VI Value 11300	1	21
- TAL REDES VI Value 11300	1	22
- TAL REDES VI Value 11400	1	23
- TAL REDES VI Value 11400	1	24
- TAL REDES VI Value 11400	1	25
- TAL REDES VI Value 11400	1	26
- TAL REDES VI Value 11400	1	27
- TAL REDES VI Value 11400	1	28
- TAL REDES VI Value 11400	1	29

- TAL REDES VI Value 11500	1 30
- TAL REDES VI Value 11500	1 31
- TAL REDES VI Value 11500	1 32
- TAL REDES VI Value 11500	1 33
- TAL REDES VI Value 11500	1 34
Do you wish to use all the	0
VI redesignation values fo N	or option 2? (Y or N)
- TAL REDES VI Value 16400	2 1
- TAL REDES VI Value 16300	2 2
- TAL REDES VI Value 16100	2 3
- TAL REDES VI Value 16000	2 4
- TAL REDES VI Value 15800	2 5
- TAL REDES VI Value 15700	2 6
- TAL REDES VI Value 15500	2 7
- TAL REDES VI Value 15400	2 8
- TAL REDES VI Value 15200	2 9
- TAL REDES VI Value 15100	2 10

14900		
- TAL REDES VI Value 14800	2	12
- TAL REDES VI Value 14700	2	13
- TAL REDES VI Value 14600	2	14
- TAL REDES VI Value 14400	2	15
- TAL REDES VI Value 14300	2	16
- TAL REDES VI Value 14200	2	17
- TAL REDES VI Value 14100	2	18
- TAL REDES VI Value 14000	2	19
- TAL REDES VI Value 13900	2	20
- TAL REDES VI Value 13900	2	21
- TAL REDES VI Value 13900	2	22
- TAL REDES VI Value 13800	2	23
- TAL REDES VI Value 13800	2	24
- TAL REDES VI Value 13800	2	25
- TAL REDES VI Value 13700	2	26

- TAL REDES VI Value 2 11

- TAL REDES VI Value 13700	2	27
- TAL REDES VI Value 13700	2	28
- TAL REDES VI Value 13700	2	29
- TAL REDES VI Value 13700	2	30
- TAL REDES VI Value 13600	2	31
- TAL REDES VI Value 13600	2	32
- TAL REDES VI Value 13600	2	33
- TAL REDES VI Value 13600	2	34
Do you wish to use all the VI redesignation values f	e de or e	efault 2nd engine out option 3? (Y or N)
VI redesignation values f	or (option 3? (Y or N)
VI redesignation values f N - TAL REDES VI Value	or o	option 3? (Y or N)
VI redesignation values f N - TAL REDES VI Value 16400 - TAL REDES VI Value	3 3	option 3? (Y or N) 1 2
VI redesignation values f N - TAL REDES VI Value 16400 - TAL REDES VI Value 16300 - TAL REDES VI Value	3 3	option 3? (Y or N) 1 2 3
VI redesignation values f N - TAL REDES VI Value 16400 - TAL REDES VI Value 16300 - TAL REDES VI Value 16100 - TAL REDES VI Value	3 3	option 3? (Y or N) 1 2 3
VI redesignation values f N - TAL REDES VI Value 16400 - TAL REDES VI Value 16300 - TAL REDES VI Value 16100 - TAL REDES VI Value 16000 - TAL REDES VI Value	3 3 3	option 3? (Y or N) 1 2 3 4

- TAL REDES VI Value 15400	3	8
- TAL REDES VI Value 15200	3	9
- TAL REDES VI Value 15100	3	10
- TAL REDES VI Value 14900	3	11
- TAL REDES VI Value 14800	3	12
- TAL REDES VI Value 14700	3	13
- TAL REDES VI Value 14600	3	14
- TAL REDES VI Value 14400	3	15
- TAL REDES VI Value 14300	3	16
- TAL REDES VI Value 14300	3	17
- TAL REDES VI Value 14200	3	18
- TAL REDES VI Value 14100	3	19
- TAL REDES VI Value 14100	3	20
- TAL REDES VI Value 14000	3	21
- TAL REDES VI Value 14000	3	22
- TAL REDES VI Value 13900	3	23

- TAL REDES VI Value 3 24 13900
- TAL REDES VI Value 3 25 13900
- TAL REDES VI Value 3 26 13900
- TAL REDES VI Value 3 27 13800
- TAL REDES VI Value 3 28 13800
- TAL REDES VI Value 3 29 13800
- TAL REDES VI Value 3 30 13800
- TAL REDES VI Value 3 31 13800
- TAL REDES VI Value 3 32 13800
- TAL REDES VI Value 3 33 13700
- TAL REDES VI Value 3 34 13700
Please enter your selection.
What is the probability of SRB failure? {.00388}
Please enter your selection.
What is the probability of ET failure? {.0001}

92

Please enter your selection.

```
Enabled - catastrophic parameter values:
-- for 100% SSME thrust: {149693.5}
149693.5
-- for 104% SSME thrust: {77252.4}
77252.4
-- for 109% SSME thrust: {13181.1}
13181.1
Enabled – benign parameter values:
-- for 100% SSME thrust: {22277.7}
22277.7
-- for 104% SSME thrust: {22889.6}
22889.6
-- for 109% SSME thrust: {9744.1}
9744.1
Please enter your selection.
5
- duration of the prelaunch phase: {6.6}
6.6
- beginning of the "throttle bucket": {25}
- end of the "throttle bucket": {70}
- time of SRB separation: {130}
130
- time of RTLS capability: {150}
150
- time of pre-MECO throttle down: {460}
460
- time of MECO: {516}
516
Please enter your selection.
```

```
What is the required decision time? {15}
15

Please enter your selection.
7

Will the SSMEs be inhibited during black zones (Y or N)? (Y)
Y

Please enter your selection.
8

- the lower back zone VI bound: {8000}
8000.

- the upper black zone VI bound: {18000}
18000.

Please enter your selection.
```

Viewing Program Summaries

The results of the simulation are summarized on the screen and, since the output file option was chosen

, a summary of the results is also sent to a file. The output to the screen is menu-driven and straight forward. The output to the file may be sent to a printer. The output file for the input data in this tutorial is shown in this appendix.

*****	****	****	*****	*****	****
****	SPACE	SHUTTLE	ABORT	MODES	****
****	SI	MULATION	RESULT	rs	****
*****	****	*****	*****	*****	*****

SIMULATION INPUT DATA

Name of data: STS-32 Number of simulations: 10000

- - - - - - - - - - - - - - - - - - -

Ascent Checklist values:

	BEN 6200 24000 25918 8400 9600 13900
SE PRESS (104)	16800
SE (104)	
Name of landing site	BYD
VI boundary value	13700
DROOP (109)	
Name of target site	BYD
VI boundary value	12000
LAST (104)	
Name of landing site	MRN
VI boundary value	13500
Late TALs	
Total number of sites	4
Late TAL site:	AML
VI boundary value	22700
Late TAL site:	BYD
VI boundary value	24500
Late TAL site:	KIN
VI boundary value	25200
Late TAL site:	HDS
VI boundary value	25500
Earliest Late TAL	22000

TAL Redesignations

Total number of 1st EO values 34

Number	VI Value
1	6200
2	6300
3	6400
4	6500
5	6600
6	6700
7	6800
8	6900

C-2

9	7000
10	7100
11	7200
12	7300
13	7400
14	7500
15	7600
16	7700
17	7800
18	7900
19	8000
20	8100
21	8200
22	8300
23	8400
24	8500
25	8600
26	8700
27	8800
28	8900
29	9000
30	9100
31	9200
32	9300
33	9400
34	9500

Number of redesig. options

3

TAL redesignation option: Option power level:

DROOP BYD

Number	VI Value
1	10900
2	10900
3	11000
4	11000
5	11000
6	11000
7	11000
8	11100
9	11100
10	11100
11	11100
12	11200
13	11200
14	11200
15	11200
16	11200
17	11300
18	11300
19	11300
20	11300
21	11300
22	11300
23	11400
24	11400
25	11400
26	11400

27	11400
28	11400
29	11400
30	11500
31	11500
32	11500
33	11500
34	11500

TAL redesignation option: BYD Option power level: 104

Number	VI Value
1	16400
2	16300
3	16100
4	16000
5	15800
6	15700
7	15500
8	15400
9	15200
10	15100
11	14900
12	14800
13	14700 14600
14	14400
15	14300
16 17	14200
18	14100
19	14000
20	13900
21	13900
22	13900
23	13800
24	13800
25	13800
26	13700
27	13700
28	13700
29	13700
30	13700
31	13600
32	13600 13600
33	13600
34	13000

TAL redesignation option: Option power level:

BEN 109

Number	VI Value
1	16400
2	16300
3	16100
4	16000
5	15800
6	15700

7	15500
8	15400
9	15200
10	15100
11	14900
12	14800
13	14700
14	14600
15	14400
16	14300
17	14300
18	14200
19	14100
20	14100
21	14000
22	14000
23	13900
24	13900
25	13900
26	13900
27	13800
28	13800
29	13800
30	13800
31	13800
32	13800
33	13700
34	13700

Probability of SRB pair failure 3.875969E-03
Probability of ET failure 1.000000E-04

Enabled SSME time-to-failure parameters:

Self-contained				22277.700000
Self-contained	-	104%	RPL	22889.600000
Self-contained	-	109%	RPL	9744.100000
Catastrophic		100%	RPL	149693.500000
Catastrophic	-	104%	RPL	77252.400000
Catastrophic	-	109%	RPL	13181.100000

Launch/ascent phase times (sec):

Duration of the pre-launch phase	6.600000
Beginning of "throttle bucket"	25.000000
End of the "throttle bucket"	70.000000
Time of SRB separation	130.000000
Time of RTLS capability	150.000000
Beginning of throttle down	460.000000
Time of MECO	516.000000

Vehicle acceleration values (ft/sec^2)	:
2 functioning SSMEs - 104% RPL 1 functioning SSME - 104% RPL 1 functioning SSME - 109% RPL	44.310000 22.160000 23.230000
	-
Required decision time (sec):	15.000000
	_ ,
Enable/inhibit switch status:	ON
	-
Black zone VI boundaries (ft/sec):	
Lower boundary Upper boundary	8000.000000 18000.000000
ASCENT/ABORT SUMMARY * * * * * * * * * * *	
Nominal to MECO On-pad shutdown	9146
Successful RTLS	14 206
Successful TAL Successful Aborts to Orbit	134
Successful Aborts to MECO	96 190
Non-intact abort - crew bailout Non-intact abort - loss of crew	2
Benign SSME failure	0 667
Catastrophic SSME failure	178
External Tank failure Solid Rocket Booster failure	1 33
PRE-LAUNCH SUMMARY +-+-+-+-+-+-+-+	
On-pad shutdown	14
Benign 1st SSME failure Catastrophic 1st SSME failure	14 2
External Tank failure	0
FIRST STAGE SUMMARY +-+-+-+-+-+	
Non-intact abort - crew bailout	0
Non-intact abort - loss of crew Benign 1st SSME failure	0 163
Benign 2nd SSME failure	0
Benign 3rd SSME failure	0

Catastrophic 1st SSME failure	36
Catastrophic 2nd SSME failure	1
Catastrophic 3rd SSME failure	0
External Tank failure	1
Solid Rocket Booster failure	33

SECOND STAGE SUMMARY

Nominal to MECO	9146
Successful 1-E TAL BYD	0
Successful TAL Droop BYD	0
Successful 1-E Press to MECO	2
Successful Late TAL AML	0
Successful Late TAL BYD	0
Successful Late TAL KIN	0
Successful Late TAL HDS	0
Non-intact abort - crew bailout	1
Non-intact abort - loss of crew	0
Benign 1st SSME failure	471
Benign 2nd SSME failure	3
Benign 3rd SSME failure	0
Catastrophic 1st SSME failure	134
Catastrophic 2nd SSME failure	0
Catastrophic 3rd SSME failure	0
External Tank failure	0

Return to Launch Site (RTLS) Summary

Successful 2-E RTLS	198
Successful 1-E RTLS	8
Non-intact abort - crew bailout	0
Non-intact abort - loss of crew	0
Benign 2nd SSME failure	8
Benign 3rd SSME failure	0
Catastrophic 2nd SSME failure	4
Catastrophic 3rd SSME failure	0
Catastrophic Std SSML rarrare	_

Trans-oceanic Abort Landing (TAL) Summary

Successful	2-E TAL	BEN	130
Successful	1-E TAL	BYD	0
Successful	TAL Droop	BYD	0
Successful	_	DROOP BYD	0
Successful	1-E TAL	BYD	0
Successful	1-E TAL	BEN	3
Successful	Late TAL	AML	0
Successful	Late TAL	BYD	0
Successful	Late TAL	KIN	0
Successful		HDS	0
	abort - cre		Ť
Non-intact	abort - los	s of crew	0

m tom and comp failure	4
Benign 2nd SSME failure	0
Benign 3rd SSME failure Catastrophic 2nd SSME failure	1
Catastrophic 3rd SSME failure	0
Catastrophite 314 daile	

Press to MECO and ATO Summary

Successful 2-E PTM	185
Successful 2-E ATO	96 3
Successful 1-E PTM	3
Successful 1-E TAL BYD	0
Successful TAL Droop BYD	0
Successful Late TAL AML	0
Successful Late TAL BYD	0
Successful Late TAL KIN	0
Successful Late TAL HDS	0
Non-intact abort - crew bailout	Õ
Non-intact abort - loss of crew	4
Benign 2nd SSME failure	ó
Benign 3rd SSME failure	0
Catastrophic 2nd SSME failure	o o
Catastrophic 3rd SSME failure	•

APPROVAL

A SIMULATION MODEL FOR PROBABILISTIC ANALYSIS OF SPACE SHUTTLE ABORT MODES

By R.T. Hage

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

Trank & Swalley W.K. FIKES

Director, Preliminary Design Office, Program Development

☆ U.S. GOVERNMENT PRINTING OFFICE 1993-533-108/80150

		•