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The rapid advances recently achieved by cryogenically cooled high electron mo-

bility transistor (HEMT) low-noise amplifiers (LNAs) in the I- to IO-GHz range

are making them extremely competitive with maser amplifiers. In order to address

future spacecraft navigation, telemetry, radar, and radio science needs, the Deep

Space Network is investigating both maser and IIEMT amplifiers for its Ka-band

(32-GHz) downlink capability. This article describes the current state of cryogenic
HEMT LNA development at Ka-band for the DSN. Noise performance results at

S-band (2.3 GHz) and X-band (8.5 GHz) for tIEMTs and masers are included for

completeness.

I. Introduction

A key figure of merit in the specification of the com-
munications link to a deep space mission is the ratio of

the gain of the ground-based antenna divided by the sys-

tem noise temperature (G/T, v8 ). The low-noise amplifier
addresses the need to keep the system noise temperature

as low as technology permits. Of secondary concern is
the provision of broad bandwidth and high gain. Cryo-

genically cooled amplifiers using masers and high-electron

mobility transistors (HEMTs) are employed by the DSN
to meet these needs.

Historically, the extraordinarily sensitive receiver sys-

tems operated by the DSN have employed ruby masers as

the low-noise front-end amplifier [1]. The rapid advances

recently achieved by cryogenically cooled IIEMT low-noise

amplifiers (LNAs) in the 1- to 10-GIIz range are making

them extremely competitive with maser amplifiers [2,3].

In order to address its future navigation, telemetry, radar,
and radio science needs, the DSN is investigating both

maser [4] and IIEMT amplifiers for its 32-GIIz downlink
capability.

The telemetry needs at 32 GIIz are best met with the
lowest noise devices. For bandwidths of less than 400 MIIz,

maser noise temperatures at this frequency are expected

to continue to outperform HEMT noise temperatures. On
the other hand, the maser's instantaneous bandwidth is

considerably smaller than the IIEMT's. Thus, future re-

quirements for large bandwidths, such as interferometric

techniques for navigation or for radio astronomy, are more
likely to be met with tIEMT LNAs. In addition, the use of

follow-up HEMT amplifiers reduces the gain requirements

for the maser, permitting wider maser bandwidths.

II. Cryogenic Cooling

Cryogenic cooling is applied to a variety of low-noise
microwave receivers, such as field-effect transistor (FET)

and ttEMT amplifiers, mixers, upconverters, parametric
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amplifiers, and masers, to reduce thermal noise. To pro-

vide physical temperatures down to 4.5 K, commercially

available helium closed-cycle refrigerators (CCRs) are usu-
ally employed. For temperatures below 4.5 K, a pumped,

open cycle liquid helium bath, or hybrid CCR with liquid
bath, is used. In the hybrid system, the CCR is used to

cool radiation heat shields in order to conserve liquid he-

lium. To obtain the lowest possible noise temperatures, as

many as are physically possible of the input and output

rf components are cooled below ambient. Currently, the
DSN relies on helium CCRs to provide the needed cryo-

genic temperatures [5].

Maser amplifiers provide the best possible telemetry

support for deep space missions. However, these systems

operate at a physical temperature of 4.5 K, requiring com-
plex and expensive cryogenic systems. HEMT LNAs, on

the other hand, require less cooling power and operate

at a higher physical temperature of 12 K, where more

cooling power is available. At this higher temperature,

a less complex (less expensive) and more reliable refriger-
ation system can be used. The lower cost of HEMT LNAs

will lead to greater frequency coverage and the economic

realization of multiple-element room-temperature and/or

cryogenic array feed systems. For example, in prepara-

tion for Voyager's encounter with Neptune in 1989, JPL
planned to array the DSN Goldstone antenna complex

with the National Radio Astronomy Observatory (NRAO)
Very Large Array (VLA) in Socorro, New Mexico. It cost
eight million dollars to equip the 27 VLA antennas with

8.4-GHz HEMT/CCR receivers. To equip the VLA with

maser/CCR receivers would have cost approximately 25
million dollars.

Cooling below 4.5 K can result in significant perfor-
mance improvements for masers, but not for ttEMTs.

Immersing a maser LNA in a bath of superfluid helium

(2.2 K) achieves more than just an improved thermal con-

tact. The gain of a maser in decibels increases in inverse

proportion to the physical temperature, while the noise
temperature decreases in direct proportion to it. For ex-

ample, on cooling an 8.4-GHz maser from 4.5 to 1.6 K, the

gain in decibels increases threefold, while the noise tem-

perature decreases by a factor of three. Figure 1 shows

the noise temperature for physical temperatures from 4.6

to 1.6 K [6].

The noise temperature and gain of a HEMT, on the

other hand, are relatively independent of temperature be-
low 12 K. 1 Noise temperature measurements at 8.4 GHz

l J. J. Bautista and G. G. Ortiz, "HEMT Noise at 1.6 K," submitted
to the Journal of the Electrochemical Society.

of a three-stage HEMT amplifier in liquid helium from 4.2

to 1.6 K are displayed in Figs. 2 and 3. The results show
that the amplifier noise temperature of 5.45 K remains con-

stant on cooling from 4.2 K to the lambda point (2.2 K),
decreases abruptly to 5.25 K, and remains constant on

further cooling from 2.2 to 1.6 K (the accuracy for these

measurements was -1-0.1 K). The gain was observed to re-

main constant throughout the temperature range. Mea-
surements of a two-stage 32-GHz HEMT LNA exhibited

similar behavior under the same physical conditions.

Sub-4-K temperature operation is easier to attain in

an open helium bath system than in a closed-cycle one.

Although sub-4-K physical temperatures are very difficult

to implement in a Cassegrain antenna, the laboratory-like
environment of a beam-waveguide antenna will allow the

implementation of a liquid helium open bath system. In a

tipping environment, large (more than 20 deg from zenith)
changes in orientation cause significant thermal load in-

creases, resulting in noise temperature increases and re-

duced operating times. Although the maser will clearly

benefit from the advent of beam-waveguide antennas, fur-
ther understanding of the noise limitations in HEMT de-
vices will result in the development of devices that continue

to improve, decreasing to liquid helium temperatures.

II!. Noise Fundamentals: Parameters and
Models

For purposes of circuit modeling and device characteri-
zation, any noisy linear two-port device can be represented
as a noiseless linear two-port device with the noise sources

at the input and/or output [7,8]. Depending upon the

utility of the representation, the internal (voltage and/or
current) noise sources can be placed at the input or out-

put port of the noiseless network. Figure 3 shows a con-

venient representation that leads to four noise parameters

(Tmln, Ropt, Xopt, and Rn) that can be determined from
the measurement of noise temperature as a function of in-

put match. It consists of a series noise voltage (e,) and
shunt noise current (in) source at the input [9]. In this
representation, the two-port device's noise parameters are

given by the equivalent noise resistance

Rib n

the noise conductance

gTl --

< le.I _ >
4kT,,B
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andthecorrelationcoefficient

<an in >
p_._.

_/< e_ >< i2. >

where To = 290 K, k is Boltzmann's constant, and B is
the noise bandwidth.

The noise temperature (Tn) of the two-port device

driven by a generator impedance Z 0 is given by the ex-
pression

T_ = T,m. +
Tog.

R9 IZg - Zop_12

where Zop, is the optimal generator impedance that yields

a minimum noise temperature and Zg = Ra + jXa is the
generator impedance. The relationship between the first

set of noise parameters and those in the above expression

is given by the following equations

Ira(C)
Xopt --

gn

Ropt = _f Rn/gn - X_pt

Tm,. = 2To[g.Ro,, + Re(C)]

where

C = r RVrk-_g.

In principle, the above noise parameters (Zopt, Tmi,,,

and R_) for FET and HEMT devices can be determined by
measuring the noise temperature for four or more different

known source impedances at a given frequency. However,

since there are errors associated with the source impedance
and the noise temperature measurements, additionM mea-

surements are usually taken to improve the statistics. The

noise parameters, along with the scattering parameters,

can then be utilized for the optimum design of an ampli-
fier circuit.

The most often used model for device and circuit opti-

mization is the semi-empirical one developed by Fukui [10].

In this model, the noise parameters are simple functions of

the equivalent small-signal circuit elements (transconduc-

tance, g,,, gate-to-source capacitance, Cga , and source and

gate resistances, r, and ra) at a given frequency. These cir-
cuit elements are in turn analytic functions of the device's

geometrical and material parameters. The semiempirical

approach of Fukui yields the following expressions for the

noise parameters

T_ir , --
kl_ToCg, x/(R9 + R,)/gm

27f

k2

RFI _

gm

Ropt = k3(1/4gm + R 9 + R,)

27rk4

where kl, k2, k3, and k4 are fitting factors that are de-

termined experimentally. Although this model is widely

used by device designers and served to guide the develop-

ment of the first cryogenic HEMT devices for the Voyager

2 encounter with Neptune, the model provides very little

insight into the physics of noise in HEMTs and FETs.

Considerable research has been conducted in the area

of noise performance of field-effect transistors over the last

two decades. Currently, however, a noise model which is

useful for both device optimization and circuit design is
not available.

A good noise model must agree with measurements and

accurately predict noise parameters. The more recent an-

alytical models that consider fundamental semiconductor

steady-state transport properties only treat thermal noise
within the channel. These are progressively more complex

treatments of van der Ziel's original work [11,12]. The nu-

merical noise model approach taken by Cappy et al. [13]

takes into account electron dynamics and appears to ex-
plain noise temperature results. However, the dependence

of the measured noise temperature on device parasitics and

input circuit impedance complicates the full evaluation of
numerical models.

A potentially powerful approach for submicron gate-

width cryogenic device development would be a synthesis

of M. Pospieszalski's frequency- and temperature-

dependent circuit model [14] and Joshin's one-dimensional
electron transport noise model [15].

Pospieszalski's model uses simple (small signal) circuit

concepts that yield closed-form expressions for the noise
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parameters. This model introduces frequency-independent

equivalent temperatures for the intrinsic gate resistance

(Tg) and drain conductance (Td). The equivalent noise

model for an intrinsic chip device is shown in Fig. 4, For
low frequencies, that is for w/cot << x/(TJTd)(llrg,ga,)

and Ropt >> rgs, the noise parameters are given by the
following expressions

where

Tm_n -- --2wx/gdsTdr gs Tg
_t

and

Train

2Ropt To

The utility of this model is that it allows the prediction

of the noise parameters for a broad frequency range from a

single frequency noise-parameter measurement at a given
temperature.

In Joshin's microscopic model [15], the intrinsic gate
and drain noise generators are derived from the phys-

ical properties of the GaAs semiconductor at ambient.

By adding a physical temperature dependence to Joshin's

model, it may be possible to predict and calculate the
noise parameters directly from the physical properties of

the semiconductor materials. Most models are not appli-
cable at cryogenic temperatures and have shown limited

agreement with room-temperature measurements. In any

case, it is clear that much experimental and theoretical

work remains before the HEMT device is optimized and

exploited for cryogenic LNA applications.

IV. HEMT Devices

The HEMT is essentially a high-performance GaAs

FET with a more detailed and layered active material

structure. Although the HEMT structure has many sim-

ilarities to a conventional GaAs FET, different physical

mechanisms control or limit the carrier transport proper-

ties in the region between the source and the drain. The
conventional device structure shown in schematic cross-

section in Fig. 5. is grown in layers on a GaAs substrate.

First, to inhibit impurity diffusion into the active region,

a 1-pm-thick buffer of GaAs is grown on a semi-insulating
GaAs wafer. A spacer layer of AIGaAs from 20 to 60/_ is

grown to reduce dopant donor ion/conduction electron in-

teractions. Next a 300- to 400-/_ AlGaAs layer doped

with silicon atoms is grown. Finally, a heavily doped Al-
GaAs layer 450-_ thick is grown to provide ohmic contacts.

This layered structure produces a conduction band dis-

continuity that forms a triangular one-dimensional quan-

tum well at the A1GaAs heterojunction. Electrons from

the A1GaAs layer are attracted to and collect at the one-
dimensional conduction band minimum in the vertical di-

rection on the GaAs side of the heterojunction, forming
a two-dimensional electron gas in a plane normal to the
vertical direction.

The primary advantage of this heterojunction structure

is that, unlike the heavily doped channel of a conventional

GaAs FET, there are significantly fewer impurities in the

undoped GaAs where the two-dimensional electron gas re-
sides. The result is that electrons experience fewer scat-

tering events and thus travel at higher saturated velocities

than in conventional FETs. The additional spatial separa-
tion provided by the spacer layer of the channel electrons

from their parent ions results in enhanced electron mobil-

ity. At room temperature, HEMT mobility is more than

a factor of two greater than the FET's, while at cryogenic

temperatures its mobility is more than two orders of mag-
nitude greater than the FET's.

Additional device enhancements currently being inves-

tigated are new materials with higher intrinsic mobility

(e.g., InGaAs and InP), shorter gate lengths (<0.10 pm)
to further reduce scattering events, and alternate doping

strategies such as planar doping (i.e., confining the dopants

to an atomic plane) for stronger carrier confinement.

The three-terminal device is completed with the fabri-

cation of a Schottky-barrier gate which controls the num-

ber of electrons in the two-dimensional electron gas. In :

addition to a lower noise figure than for a GaAs FET,
the HEMT also has several other inherent characteris-

tics that make it more attractive for low-noise amp]ifiers.

The scattering parameters (S-parameters) of a HEMT

in a 50-ohm impedance circuit exhibit lower output re-

turn loss (Sn) and higher gain ($21) than a GaAs FET

of the same dimensions. This results in an inherently
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better output match and larger gain-bandwidth product.
The HEMT also has much lower noise conductance, g,,

and Xopt (where Zopt = Ropt + jXopt is the optimum

source impedance) than the comparable metal semicon-

ductor FET (MESFET), resulting in a lower noise tem-

perature over a broader bandwidth. In addition, its per-
formance improves more rapidly with cooling than that of

the GaAs FET. Figure 6 shows the noise temperature re-

sponse comparison for a FET and HEMT at 8.4 Giiz, as
a function of physical temperature.

V. Device Characterization

Since one of the primary functions of the LNA is to

minimize the receiver system noise temperature, the char-
acterization and selection of IIEMT devices is critical to

LNA performance. The selection of the 0.25-pm gate
length conventional A1GaAs/GaAs IIEMTs for the 32-

GHz LNAs was based on its previously demonstrated re-

liability and exceptionally high-gain and low-noise char-

acteristics [16,17] at 8.4 Gttz. The selected device gate
width of 75 pm was determined by the trade-offs associated

with optimum impedance matching, circuit bandwidth, in-

termodulation distortion, power handling capability, and
power dissipation.

The devices were fabricated on selectively doped

the device suffers from IV (current voltage) collapse [21]

and exhibits the persistent photoconductivity effect asso-

ciated with the presence of deep donor traps (so called DX

centers). In order to obtain excellent device performance

at cryogenic temperatures and to eliminate light sensitiv-

ity, previous work [2,20] has demonstrated that the A1
composition must not exceed 23 percent, and the doping

concentration must equal approximately 1.0 × 101S/cm 3.

The data shown in Table 1, comparing two HEMTs

with the same A1 mole fraction (23 percent) but differ-
ent doping concentrations in the n-A1GaAs layer, serve

to illustrate the difference between low temperature and

room-temperature device optimization. Device A has an

n-A1GaAs doping concentration of 1.0 x 101S/cm 3, while

that of B is two times higher. As expected, at ambient,

device B exhibited a higher grn and associated gain than
device A, with approximately the same noise figure for

both devices. However, at a physical temperature of 13 K

and 8.5 Gttz, device B exhibited a minimum noise temper-

ature of 13.1 K, while device A yielded a value of 5.3 K.

These results illustrate that cryogenic measurements must
be carried out in order to verify the device's noise perfor-
mance.

VI. LNA Design Approach

A1GaAs/GaAs heterostructures grown by molecular beam A semiempirical method was utilized to obtain mini-
epitaxy (MBE) with a Varian GENII system on a 3-
in.-diameter GaAs substrate. The details of the mate-

rial growth conditions are discussed elsewhere [18]. The

IIEMT wafer exhibited a sheet carrier density of
8.1 x 1012/cm 2 with a mobility at 77 K of more than

75,000 cm2/Vsec. All levels were defined by electron beam

lithography, and the T-shape gates were fabricated using
a tri-layer resistance technique [19] to achieve a low series

gate resistance.

For low-noise performance at cryogenic temperatures,
the IIEMT device must exhibit good pinch-off characteris-

tics and high transconductance, gin. Good pinch-off char-

acteristics are achieved by strong confinement of the charge

carriers to the channel region, with a sharp interface of
high quality and a large conduction band discontinuity.

An enhanced g,n at the operating bias is obtained by ju-

dicious choices for doping concentration and space layer

thickness [20]. An Al mole fraction of approximately 30

percent is required for a large conduction band discontinu-

ity, while the high g,n is achieved with a 40-/_ space layer

and a doping concentration of approximately 2 x 101S/cm a.

Although these values result in a high-performance room-

temperature device, at physical temperatures below 150 K

mum noise temperature performance of the 0.25- by 75-pm

devices [22]. A two-stage LNA fixture was used to perform

the noise characterization of the devices at cryogenic tem-

peratures. The two-stage LNA fixture was designed to
achieve the best room temperature low-noise performance

based on the measured room-temperature device param-

eters. Following construction and room-temperature op-

timization, the LNAs are biased for lowest noise perfor-

mance at cryogenic temperatures. This approach was cho-
sen for two important reasons. First, a cryogenic noise-

parameter measurement system was still under develop-

ment for frequencies from 26 to 40 GHz and was not avail-

able for these measurements. Second, since the device pro-

ceasing was uniform across the wafer and device gains var-
ied from 5 to 8 dB, two cascaded identical devices were

required to reduce the noise temperature contribution of

the room-temperature noise measurement receiver.

The LNA fixture oxygen-free high-conductivity

(OFIIC) copper and dc bias circuits [23] are designed

for operation at cryogenic temperatures. Diode protec-

tion was included in both the gate and drain bias circuits.

Light-emitting diodes (LEDs) were mounted on the cover

of the fixture above each of the HEMTs for the purpose
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of examining their light sensitivity at cryogenic tempera-

tures. The input and output ports utilize a broadband-

WR28 to stepped-ridge-waveguide to microstrip transi-
tion. The dimensions of the transition are detailed in

Fig. 7. Figure 8 shows the insertion loss and return loss of

a stepped-ridge fixture that consists of two stepped-ridge
transitions connected back-to-back with a half-inch long

microstrip 50-ohm line. The input and output matching

networks were designed based on the device equivalent cir-
cuit values obtained from fitting measured S-parameters
at the low-noise bias condition to the model from 2 to 20

GHz at room temperature. The noise parameters are then

calculated from the small signal circuit elements using the
previously noted Fukui expressions. Input, output, and in-

terstage matching circuits were designed on 10-mil quartz
substrate with TaN thin film resistors and TiWAu met-

allization. A schematic diagram of the two-stage hybrid

!tEMT LNA is shown in Fig. 9. The edge-coupled sym-
metric microstrip dc-blocking transmission line also served

as a bandpass filter, improving the out-of-band stability.

The three- and four-stage LNAs are constructed from the

two-stage by the insertion of additional interstage match-
ing circuits.

VII. LNA and Radiometer Performance

The two- and three-stage LNAs were first measured at

room temperature with the devices biased for lowest noise
at room temperature and then biased for lowest noise per-

formance at cryogenic temperatures. Both LNAs exhibited

an average noise figure of approximately 2 dB from 28 to
36 GHz. From 29 to 34 GHz, the gains measured approx-
imately 17 and 23 dB for the two-stage and three-stage

LNAs, respectively. The addition of an external isolator

only slightly (0.3 dB) degraded the gain and noise figure.

With the devices biased for lo.west noise at cryogenic

temperature (12 K), the noise temperature (referenced

at the room-temperature input waveguide flange) of both
LNAs was observed to decrease nearly quadratically as a

function of physical temperature as they cooled from 300

to 12 K. The noise temperature of the two-stage LNA de-
creased from 350 K at ambient to 35 K at 14.5 K, while

that of the three-stage LNA decreased from 400 to 41 K at

12.5 K (see Fig. 10). Figure 11 shows the cryogenic noise
temperature and gain response from 31 to 33 GHz, along

with bias settings for the three-stage LNA. At 32 GHz, the

two-stage LNA noise temperature measured 35 K, with an

associated gain of i6.5 dB, at a physical temperature of

14 K, while the three-stage LNA yielded a value of 41 K

with 26.0-dB associated gain. it is also noted that the

three-stage LNA displayed an almost flat noise tempera-

ture response across the measurement band with a mini-
mum noise temperature of 39 K at 32 GHz, while the two-

stage LNA displayed a noise temperature response mono-

tonically decreasing from 31 to 33 GHz with a minimum

noise temperature of 31 K at 33 GHz.

It was further observed that neither amplifier showed a

persistent photoconductivity effect. That is, it was found
that these devices can be cooled with or without illumina-

tion and/or dc bias, without any observable effect on the

cryogenic low-noise performance.

Two 32-Gttz cryogenic HEMT radiometers were devel-

oped employing four-stage LNAs based on the two- and

three-stage LNA results. Figure 12 shows a picture'of

the four-stage LNA; its cryogenic gain and noise perfor-

mance are plotted in Fig. 13. The first system, pictured
in Fig. 14, is a total power radiometer that exhibited an

input noise temperature referenced to the input room-

temperature flange of 45 K. Its noise temperature and gain

response as functions of frequency are plotted in Fig. 15.
The other system, shown in Fig. 16 without its vacuum

jacket and radiation shield, is a Dicke-switching radiome-

ter which demonstrated an input noise temperature refer-

enced to the horn aperture of 59 K. The noise temperature
response as a function of frequency is plotted in Fig. 17.

VIII. Conclusion

Since the invention of the HEMT device in 1983, noise

temperatures and device yields have steadily improved.

Using devices with 0.25-pm gates produced by electron

beam lithography, key parameters of the device structure,
such as the thicknesses and doping semiconductor layers,

have been systematically optimized for cryogenic opera-

tion. Figure 18 summarizes the evolution of performance

improvement for both maser and HEMT amplifier systems

over the past 25 years. When cooled to 15 K, the best de-

vice noise temperatures at 8.4 GItz were improved steadily
from 8.5 K in 1985 to 5.3 K in 1987.

The results of the cryogenic coolable state-of-the-art 32-
Gttz ttEMT LNAs and radiometers clearly demonstrate

their potential to meet the future space science needs

of the DSN. Currently, JPL is investigating 0.1-pm gate

lengths and promising alternate structures (planar doped

and single and double heterojunction) and materials (In-

GaAs and InP). Further advances in HEMT technology

[24,25] promise to lead to improved performance at all fre-

quencies and to make possible the development of ampli-
tiers above 100 Gttz.
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Tablo 1. Portormanco comparison of conventional AIGeAs/GaAs HEMTs.

Ambient temperature, 300 K Ambient temperature, 13 K

Frequency, GHz -- 8 18 32 8.5

Performance gin, mS/turn NF/GA NF/GA NF/GA T c, K/GA

(NF _, dB/GA b, dB)

Type A (1 × 101S/crn 3) 380 0.4/15.2 0.7/11,5 1.3/7.5 5.3/13.9

Type B (2 x 101S/cm 3) 450 -- 0.7/15 1.2/10.0 13.1/14.5

aNF = noise figure

bGA = associated gain

¢T = noise temperature
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