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Analysis of Open-Loop Conical Scan Pointing Error
and Variance Estimators
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General pointing error and variance estimators for an open-loop conical scan

(conscan) system are derived and analyzed. The conscan algorithm is modeled as a
weighted least-squares estimator whose inputs are samples of receiver carrier power
and its associated measurement uncertainty. When the assumptions of constant

measurement noise and zero pointing error estimation are applied, the variance

equation is then strictly a function of the carrier power-to-uncertainty ratio and
the operator-selectable radius and period input to the algorithm. The performance

equation is applied to a 34-m mirror-based beam-waveguide conscan system inter-

faced with the Block V Receiver Subsystem tracking a Ka-band (32-GHz) downlink.
It is shown that for a carrier-to-noise power ratio >_30 dB-Hz, the conscan period

for Ka-band operation may be chosen well below the current DSN minimum of 32

sec. The analysis presented forms the basis of future conscan work in both research

and development as well as for the upcoming DSN antenna controller upgrade for
the new DSS-24 34-m beam-waveguide antenna.

I. Introduction

An analysis of open-loop conical scan (conscan) point-

ing error and variance estimators is presented. The analy-

sis models conscan as a beam-pointing error sensor whose

input consists of samples of receiver carrier power and un-

certainty. This choice of input is consistent with the up-

coming DSN upgrade of conscan that will involve the in-

terfacing of the Antenna Pointing Controller and the Block
V Receiver Subsystem. With this input, the conscan al-

gorithm is modeled as a weighted least-squares estimator
whose variance can be derived as a function of the un-

certainty on the receiver input and the operator-selectable

inputs to the algorithm. A general variance equation that

is applicable to either conscan axis is derived and then

simplified when assumptions of constant measurement un-
certainty and zero pointing error are applied.

Estimation of the uncertainty on the carrier power sam-

ples from the Block V Receiver Subsystem is briefly re-
viewed, and the results are used to rewrite the conscan

pointing-error-variance equation in terms of the carrier-

to-noise power ratio. The final equation can then be used

to easily quantify the pointing error uncertainty as a func-

tion of conscan radius and period for any given antenna's

half-power beamwidth and receiver carrier-to-noise power

operating condition. The article concludes with an appli-

cation of the performance equation to a beam-waveguide

mirror conscan implementation operating at the Ka-band

(32-GHz) frequency.
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II. Received Carrier Power Model For
Conscan

The conical scan received signal model presented below

is similar to the one described in [1]. The input to the
conscan algorithm in this analysis will be estimates of re-

ceived carrier power Pc with measurement uncertainty apo.
The assumption here is that the digital receiver subsystem

has derived both of these quantities from its estimate of

signM-to-noise ratio Pc�No. The main results of this analy-

sis will be general with respect to the conscan algorithm

input and can be modified slightly to accommodate other

received signal level input (e.g., voltages or noise temper-

atures).

The ratio of the received carrier power P(,) at time t to
nominal carrier power Pc, ore when the antenna boresight

is pointing at the target is

exp
(1)

where h is the antenna half-power beamwidth, # = 4 ln(2),
and e(t) is the angular displacement of the target to the

center of the beam. During conscan, e(t) 2 in [1] is shown
to be

c(t)2 = r 2 + _2 _ 2rs=_t cos(wt) - 2reel sin(wt) (2)

where r is the conscan radius, w is the conscan frequency,

and s=,t and cot are cross-elevation and elevation compo-

nents of the beam pointing error e,, defined as

2 2 2
E, = _t + _a (3)

Let L1 = exp ((-plh2)r _) be the loss factor when the

target is at the center of the scan pattern and L2 =

exp ((-#/h2)c_) be the loss factor due to the beam-

pointing error being estimated; then inserting Eq. (2) into

Eq. (1) and simplifying yields

P_(t) =P¢.omL1L_

/'2r_ r )× exp _--_- [e=,t cos(wt) + c,t sin(wt)] (4)

It can be shown that

Po = Pc.o_L1L2 (5)

and

k, 2r#
h (6)

where Po is the average carrier power received over the

conical scan period and k, is the conscan slope. Now for

small target errors, the approximation exp(z) _ 1 + z can

be applied to Eq. (4), and then inserting Eqs. (5) and (6)

gives the following:

( k, cos(wt)+_r_sin(wt))Pc(t) = Po 1 + --_r_,t (7)

or rewriting in vector notation,

[c,]Pc(t) = [ 1 cos(wt) sin(wt) ] C_
Ca

(8)

where C, = Do, C2 = ((k,/h)e=ct)Po, and C3 =
((k,/h)e_,t) Po. Equation (8) is the measurement equa-

tion used along with Pc and arc in the conscan pointing
error estimator.

III. General Pointing Error and Variance
Estimators

A. Pointing Error Estimator

The conscan estimation period can be any interval of

time and, in general, does not have to be a complete period

of the sinusoid in Eq. (8); nor does receiver power have to

be measured uniformly over this interval. However, the

present analysis will assume received signal power Pc(l)
is uniformly sampled n times over a conscan period of

T sec with a receiver integration time of t_c sec, where

T = ntree. Substituting t = itr_c and w = 2_r/nt_

in Eq. (8) yields the conscan carrier power measurement

equation at the sampling instants i as

[cl]= C2
Pc(i) [1 COS (-_ i) sin (-_ i)] C3

(9)

Accumulating n input samples and storing them in matrix

form gives
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Pc(l)]

Pc(2)/
p !(n)J

1

1

1

cos(_) sin(_-)

27r
cos(2-W) sin(2-_)

cos(2r) sin(2r)

[Cl]C_

C3
(10)

or

Y=AC (11)

where the measurement vector Y is n x 1, the measure-
ment distribution matrix A is n x 3, and the parameter

vector C is 3 x 1. It is assumed that the uncertainties

on the carrier power estimates at the sampling times, de-

noted as c_p_(i), are also known and available. Assuming
that the uncertainties are random and independent over

the period T, they are accumulated in a weighting matrix
R as follows:

R=diag( 1 1 1 )c_[(1)' a_(2)' "'" a2pf(n)
(12)

B. Pointing Error Variance Estimator

In [2] it is shown that the covariance matrix of the error
in the estimate C is given by

V = (AtRA) -I (16)

where A is defined in Eq. (10) and R by Eq. (12). From

Eqs. (14) and (15), the uncertainty in the estimates of g,et
and f_eJ must be expressed in terms of the errors of the

estimator (_ (i.e., in terms of 3 x 3 error covariance V).
The calculations are carried out in Appendix A, and the

results are presented below:

_e.,, = _ _ cxe, V(1,1) +V(2,2)

-2 (_---'sCxe') V(I, 2)]
(17)

Given Eqs. (10) and (12), a weighted least-squares esti-
mate C is used for the estimator of C and is given by (see

[2])

(_ = (AtRA)-IAtRY (13)

and

where the superscript t is the transpose operator. With
(_ computed and the elements of C defined in the conscan

received signal model, Eq. (8), the cross-elevation and el-

evation pointing error estimators are chosen as

and

(14)

 0t- k, l (15)

The general conscan algorithm also derives the direction
of the error gs from the relative magnitudes of (_2 and

(_3, together with an operator input phase term, which

compensates for time delays in the antenna system. This

will not be pursued here, for the present analysis will only
focus on the accuracy of the magnitude of the open-loop

pointing error estimates.

O'gel = Eel v(1,1) + v(a, a)

-2 (_---' e_/V(1,3)] (18)

As can be seen, the axial pointing error variance equa-

tions, Eqs. (17) and (18), for conscan are a function of
many variables: the average received carrier power Po, the

uncertainties on the carrier power samples (embedded in

V), the antenna half-power beamwidth h, the conscan ra-
dius r and slope k,, and the magnitude of the assumed

static pointing error ¢s being estimated. Recalling that

_2 = ¢_et2 + E_t2 and Po = PcnomL1L2 and noting that the
loss factor L2 appears in both variance equations illus-

trates the axial cross-coupling of the algorithm (i.e., esti-

mating a large pointing error in one axis will increase the

estimation uncertainty in the other). The variance is also

a function of the number of input samples (and hence con-

scan estimation period) that form the measurement distri-
bution matrix A, which in turn influences the covariance

matrix V through Eq. (16). Equations (17) and (18) are,

in fact, general for any number of receiver power samples

measured uniformly or nonuniformly over the scan.
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One important point to note is the dependence of

the estimation performance on the operating frequency,

which is inversely proportional to the antenna half-power
beamwidth h. The radius r can be chosen so that the

conscan slope remains constant with respect to operating

frequency (e.g., in the DSN, r is typically selected to have
a conscan loss of 0.1 dB from the factor LI which estab-

lishes k, = 0.5 for all frequencies). With k, constant, the

variance can then be seen to be directly proportional to h,

or inversely proportional to frequency, indicating a factor

of four performance increase at Ka-band (32.0 GHz) over

X-band (8.45-GHz) operation. This gain in performance

is only realized provided the pointing error E, is small, for
it will be shown later that loss from the factor L2 increases

dramatically with respect to e, at Ka-band.

x v + 2 (21)

where e, is the beam-pointing error and e is the axial-

pointing error. By simple inspection, the last factor can

be accurately approximated by

(22)

IV. Analysis of the Conscan Pointing Error
Variance Equation

A. Constant Measurement Error Assumption

Now, assuming the uncertainties 0.Pc(i) on the carrier
power samples are constant and equal to 0.pc over the scan

period, then the covariance matrix V defined by Eq. (16)
reduces to

0.2 t -1V = p.(A A) (19)

This is a valid assumption under ideal, closed-loop conscan

tracking conditions (benign wind, no spacecraft-induced

variations on the downlink signal, etc.) and if the beam-
pointing error E, is small (¢, ~ r). Further simplification

of V in Appendix A shows that when the carrier power in-

put is sampled uniformly over the scan period, the pointing

error variance Eqs. (17) and (18) each reduce to

I/Ill )h 2 6 + 2 (20)
ae = -_ \ Po ]

where _ represents the actual pointing error in either the
elevation or cross-elevation axis.

B. Effects of the Pointing Error Magnitude

1. Performance Degradation Due to Increasing

Pointing Errors. Inserting L_ = exp ((-p/h2)c_) into

Eq. (20) and taking the square root gives the axial pointing
error standard deviation as

when 6 < h and the eonscan slope is chosen as k, = 0.5

for the DSN application. For reference, the half-power

beamwidths (assuming a Gaussian beam) for a 34-m an-
tenna operating at the X- and Ka-band frequencies are

approximately 65 and 17 mdeg, respectively. Thus, as

the magnitude of the beam-pointing error 6, = (e2_t
,.2 _1/2 increases, both estimates g_:et and g_el are de-"q-"eli

graded equally by the inverse of the pointing-error loss

factor exp ((-p/h2)c_). This effect is obviously more dra-
matic at Ka-band due to the narrow beamwidth. Figure 1

illustrates the percentage of increase of the axial pointing

error standard deviation g against the magnitude of 6, for a
34-m antenna operating at the X- and Ka-band frequen-

cies. In addition to dropping received carrier power by

3 dB at Ka-band, a beam-pointing error of 8.5 mdeg (one-

half of the full half-power beamwidth h) is seen in Fig. 1
to double the Ka-band conscan estimation uncertainty.

Without considering actual receiver signal-to-noise operat-

ing conditions, this Ka-band performance degradation will

primarily affect conscan during acquisition, when blind

pointing errors may be large. For the closed-loop system,
this degradation will effectively increase the beam-pointing

error response time.

2. Zero Pointing Error Assumption. As noted

before, the magnitude of beam-pointing error 6, is typi-

cally very small during closed-loop conscan tracking. This

fact can be used to further simplify Eq. (21) in order to
quantify the performance of the conscan pointing error es-

timator as a function of the carrier power-to-uncertainty

ratio and the selectable input variables. Assuming E, is

essentially zero, then Eq. (21) reduces to

\ ap¢]
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whereit isrecalledthatPcno,',* is the nominal carrier power
received when the antenna is pointing directly at the target

and the uncertainty crpo is assumed to be known.

V. Carrier Power Uncertainty for the Block V

Receiver Subsystem

Estimation of the uncertainties o'p,(i) on the carrier

power samples Pc(i) in the Block V Receiver Subsystem

is briefly summarized in Appendix B. In general, calcula-
tion and analysis of this statistic for spacecraft tracking
in a DSN antenna environment is a complicated matter.

For this reason, it will not be rigorously pursued here; for

a more thorough analysis, the details of the Block V re-
ceiver calculation can be found in [3,4], Aung, et al., 1 and

Scheid. _ Of more interest in the present analysis is the

approximation of the expression for _eo given in the refer-

ences, so that Eq. (23) can be written in terms of the nomi-
nal receiver carrier-to-noise power ratio CNR = Pcnom/No

instead of P¢,om/aP,. The quantity CNR is measured
when the antenna is pointed directly at the spacecraft.

The simplification is carried out in Appendix B with the

following result

apo _ (2PenomNo) ½ (24)

VI. Application to a 34-m Antenna Beam-
Waveguide Mirror Conscan System at
Ka-Band

All of the conscan equations thus far have been general,

but they will now be applied to a 34-m beam-waveguide
mirror-based conscan system operating at Ka-band. For

this scenario, h = 17 mdeg and the radius r = 1.55 mdeg

for a scan loss of 0.1 dB (L1 = 0.977) and ks = 0.5. These

values are inserted into Eq. (25), and the axial pointing
error standard deviation _re is then plotted in Fig. 2 as a

function of conscan period for various CNR. Also plotted

is the line corresponding to the magnitude of the chosen

radius r. In Fig. 2, it is assumed that the receiver integra-
tion time per carrier power sample is 1 sec and the conscan

period is then just equal to n. This performance plot im-

plies that for CNR > 30 dB-Hz, the conscan estimation

period for Ka-band operation may be chosen well below
the current DSN minimum of 32 sec and still maintain

estimation accuracy of less than 1.55 mdeg.

Advantages of scanning a beam-waveguide mirror in-
stead of the entire antenna dish structure include the ease

of obtaining precision pointing of a drastically smaller and

stiffer mirror gimbal assembly and also the higher band-

widths achievable by the small-scale axis servos. A con-

ceptual sketch of such a system is presented in Fig. 3,
in which it is proposed that either the first or last beam

waveguide mirror be actuated in such a conscan scheme.

Because high-rate, accurate mirror tracking is available,
which is a valid approximation for a 1-see receiver esti- it was assumed in the previous Ka-band performance plot

mation period when the loop tracking error is very small

and Pc,,o,,,/No < 40 dB-Hz. Now, inserting this expres-
sion into the conscan pointing-error estimation Eq. (23)

and simplifying yields

Equation (25) is a very useful equation as it allows quick

evaluation of the pointing error estimation accuracy as a
function of the selectable conscan algorithm input (radius

r and number of input samples n) for any given operating

CNR and antenna half-power beamwidth h.

1M. Aung and S. Stepher_, "Statistics of the Pc�No Estimator in
the Block V Receiver," JPL Interoffice Memorandum 3338-92-089
(internal document), Jet Propulsion Laboratory, Pasadena, Cali-
fornia, April 29, 1992.

2 R. E. Scheid, "Statistical Analysis of Antenna Carrier Power,"
JPL Interoffice Memorandum 343-92-1291 (internal document), Jet
Propulsion Laboratory, Pasadena, California, October 9, 1992.

that the move times between measurement points over the

scan are negligible. In fact, with an efficient interface be-

tween the conscan computer and the receiver subsystem,
it is conceivable that the mirror-based conscan system can

actually achieve pointing correction update rates as ambi-

tious as those shown in Fig. 2.

VII. Summary and Future Work

General pointing error and variance estimators for con-
scan have been derived in order to characterize the es-

timated performance in terms of the operator-selectable
input to the algorithm and carrier-to-noise ratio. After as-

suming constant measurement noise on the carrier power

inputs in the variance equation, it was shown that the

magnitude of the beam-pointing error being estimated de-

grades performance in each axis of the estimator. The

effect is especially dramatic when conscaning at the Ka-

band frequency due to the the narrow antenna half-power
beamwidths. For the closed-loop conscan tracking appli-

cation, the zero pointing error assumption was applied in

order to express the pointing error estimation accuracy as
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a function of the selectable algorithm input (radius and
number of input samples) for any given operating car-

rier power to the uncertainty ratio and antenna half-power

beamwidth. The performance equation was then applied

to a 34-m beam-waveguide, mirror-based conscan system
interfaced with the Block V Receiver Subsystem tracking

a Ka-band downlink. Simulation of conscan pointing er-

ror uncertainty against conscan estimation period showed

that for a carrier-to-noise power > 30 dB-Hz, the period

for Ka-band operation may be chosen well below the cur-
rent DSN minimum of 32 sec and still maintain estimation

accuracy of less than 1.55 mdeg.

The analysis presented forms the basis of future con-

scan work in both research and development as well as

for the upcoming DSN antenna controller upgrade for the

new DSS-24, 34-m beam-waveguide antenna. The con-
scan model and performance equations derived will be

used in designing advanced tracking algorithms and gen-
erating predictions for experimentation on the new beam-

wavegui_e mirror conscan system currently being imple-
mented at the DSS-13 antenna. These equations will also

be utilized in the DSN conscan upgrade, which will use an
automatic algorithm parameter selection as a function of

signal-to-noise input ratio. Lastly, an augmented analy-

sis that integrates the effects of spacecraft spin (as in [5])
and dynamic wind loading on the antenna structure needs

to be pursued in order to more precisely simulate open-
and closed-loop conscan performance at the Ka.band fre-

quency.

Acknowledgment

The author wishes to thank Mike Thorburn for his helpful technical discussions

and encouragement.

References

[11

[2]

[3]

[4]

G. Biernson, Optimal Radar Tracking Systems, New York, New York: John

Wiley and Sons, Inc., 1990.

A. E. Bryson and Y. Ho, Applied Optimal Control, Waltham, Massachusetts:

Blaisdell Publishing Company, 1969.

A. M. Monk, "Carrier-to-Noise Power Estimation for the Block V Receiver,"

The Telecommunications and Data Acquisition Progress Report 42-106,
vol. April-June 1991, Jet Propulsion Laboratory, Pasadena, California,
pp. 353-363, August 15, 1991.

T. J. Brunzie, "The Parkes Front-End Controller and Noise-Adding Ra-
diometer," The Telecommunications and Data Acquisition Progress Report

4_-10_, vol. April-June 1990, Jet Propulsion Laboratory, Pasadena, Califor-
nia, pp. 119-137, August 15, 1990.

A. Mileant, and T. Peng, "Pointing a Ground Antenna at a Spinning Space-

craft Using Conscan-Simulation Results," The Telecommunications and Data

Acquisition Progress Report _2-95, vol. July-September 1988, Jet Propulsion

Laboratory, Pasadena, California, pp. 246-260, November 15, 1988.

86



Appendix A

Simplification of the Conscan Pointing Error Estimation Variance

Assuming that the uncertainties <rpo(i) on the ith carrier power sample are random and independent, then the
covariance matrix of the error in the weighted least squares estimator C of Eq. (13) is given by

where the measurement distribution matrix A is

A _-

and the weighting matrix R is

v = (A_RA)-1 (A-t)

1 cos(_) sin(_)

1 cos(2--_) sin(2-_)

1 co_(2.) sin(2_)

R = diag a 1)

Given the above expressions, Eq. (A-l) can be expanded as follows

E 1
P¢(O

E _ cos(_i)
ape(1)

E o_-'_.., sin($ i)
P©(i)

1

where the summations run over i = 1,2,

E _ e°s('_ "_i)
--pc(i )

E _1 cos2(_.__i)
¢rpc( i )

_ cos(-_i)sin(-_i)
aPc(O

E _ sin(_i)
-Pc(1) ""

y]_ _ eos(_-_ i)sin(_-i)
-Pc(i) " "

_ sin2('_i)
ape(1)

-I

(A-2)

(A-3)

(A-4)

• ..,n, and n is the total number of samples taken over the scan. If the

measurement uncertainties are assumed to be constant over this period and equal to ap,, then Eq. (A-4) simplifies to

n Ecos(-_i) Esin(_i) ] -_

JE c°s(2a'_ i) E c°s_ ('_ i) E cos(_-i) sin(_-_ i)

E sin(_-i) E cos(_i) sin(-_-i) E sin_(-_i)

(A-5)

Now if the samples Pc(i) are measured uniformly over the scan period as indicated above and n >_ 3, then Eq. (A-5)

simplifies to

(A-6)

100

o_o

oo_
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The conscan pointing-error estimation variances are derived from the following pointing-error estimator equations

hb_
e.. = k.d_ (A-T)

h(_3

e,t = k,(_ (A-S)

To find the variances of these estimates (each of which is a function of two random variables from C), the following

formula is applied:

()2VAR(g)= ( Og _VAR(e,) + o_ VAR(ei) + 2 0e O_ VAR(e,,e,)
\0C1} "_# 0C10C_

(A-9)

for j = 2, 3 and where the partial derivatives are evaluated at the statistical averages of the estimators Ci, i = 1,2, 3.

It can easily be proved that the statistical average of C is just the vector (2, whose elements are defined by the

conscan received signal model given in Eq. (8). Thus, the partial derivatives above are to be evaluated at C1 = Po,

C_ = ((k,/h)e,,l) Po, and C3 = ((k,/h)e,et) To. Applying the formula in Eq. (A-9) to Uqs. (A-7) and (A-8) yields

and

at..,= _ \C V(i,i) + _--_12V(2,2)- 2 V(1,2)
(A-10)

C_.__ _V(3,3)- 2_--5a (1,3)) (A-11)0.L-- (c v(1,1) + C:v .

Next, inserting the given expressions for the elements of C and using V defined by Eq. (A-6) for the constant measurement
error case, the above variance equations can be rewritten as

and

o'e=., = _ e.,, --n + nP2o ]

o'? = (h)2((h_ ° ) 20.2 20._,'_,., g e,, nP° + nP_o ]

Finally, after some rearranging, Eqs. (A-12) and (A-13) can be rewritten as

0.e= -_, \ Po J e +2

where e represents the actual pointing error in either the elevation or cross-elevation axis.
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Appendix B

Received Carrier Power Uncertainty for the Block V Receiver

Inputs to the conical scan algorithm are estimates of

received carrier power Pc and its uncertainty apo. A brief

summary of the Block V receiver variance estimator is

given below; however, a more detailed derivation may be

obtained from [3] and footnotes 1 and 2. The receiver

calculates apo from its estimates of signal-to-noise ratio

(Pc�No) and variance a(po2�No), and system noise power

No and variance a_v° . The system noise power over a 1-Hz
bandwidth is No = tcT_,, where T_8 is the system noise

temperature with standard deviation aT, v, (defined in [4])
and _ is Boltzmann Constant. The estimated noise power

variance is then given by a_v° = tc2a 2. ,. Multiplication
1/ , •

negates the noise power from the received carner signal

power as follows:

Pc= _ No (B-l)

Now, assuming that the above equation is the product

of two independent random variables, the carrier power
variance can then be shown to be

a2 =4. 2 -' , (B-2 
Pc \No] + a(_) N° + °'lv°_r(_o)

as a function of Toys, noise diode temperature, noise band-

width, and estimation interval.

For this article, it is best to express the uncertainty on

the carrier power in terms of the receiver carrier power Pc

and the system noise power No. In [3], in-phase arm (I-

arm) and in-phase/quadrature-phase arm (IQ-arm) Pc/No

algorithms are presented. Of the two, a slightly modified

version of the I-arm estimator will be implemented in the

Block V receiver (see footnote 1). The equation for the
variance of this estimator given in footnote 1 can be ap-

proximated by

credo) _ 2 _ (B-3)

assuming a 1-sec receiver estimation period when the loop

tracking error ¢ is small enough so that cos(C) _ 1. Nu-

merical simulation of Eq. (B-2) shows that for Pc/No < 40
db-Hz the contribution of the noise power variance aN°

in the calculation of ap c is minimal and can be neglected.
From Eq. (B-3), the carrier power uncertainty can then be
reduced to

m

crpc _ a(_)No (B-4)

where the overbar denotes average values. Equation

(B-2) gives the uncertainty of the received carrier power
Pc in terms of the uncertainties of the estimates of (Pc/No)

and (No). As described in [3] and footnote 1, the statis-

tics of (Pc/No) are a function of receiver parameters (i.e.,

PJNo, tracking loop error, tracking loop bandwidth, esti-
mation interval, etc.) while the statistics of No are given

or inserting aCPo/lVo) from Eq. (B-3) and simplifying yields

(2 o o) (B-5)

which is the desired approximation.
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