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Box Codes of Lengths 48 and 72
G. Solomon z and Y. Jin2

A self-dual code of length 48, dimension 24, with Hamming distance essentially

equal to 12 is constructed here. There are only six codewords of weight 8. All the
other eodewords have weights that are multiples of 4 and have a minimum weight

equal to 12. This code may be encoded systematically and arises from a strict

binary representation of the (8,4;5) Reed-Solomon (RS) Code over GF(64). The

code may be considered as six interrelated (8,7;2) codes. The Mattson-Solomon

representation of the cyclic decomposition of these codes and their parity sums are
used to detect an odd number of errors in any of the six codes. These may then be

used in a correction algorithm for hard or soft decision decoding.

A (72,36;15) box code was constructed from a (63,35;8) cyclic code. The theo-

retical justification is presented herein.

A second (72,36;15) code is constructed from an inner (63,27;16) Bose-

Chaudhuri-Hocquenghem (BCH) code and expanded to length 72 using box code

algorithms for extension. This code was simulated and verified to have a minimum

distance of 15 with even weight words congruent to 0 modulo 4. The decoding for
hard and soft decision is still more complex than the first code constructed above.

Finally, an (8,4;5) RS Code over GF(512) in the binary representation of the

(7_,36;15) box code gives rise to a (72,36;I6") code with nine words of weight 8,

and all the rest have weights >__I6.

I. Codes of Length 48

The self-dual (48,24;12) Quadratic Residue Code had

a history of difficulty and complexity in decoding for five

errors algebraically as well as decoding for soft decision.

z Independent consultant to the Communications Systems Research
Section.

2Student at the California Institute of Technology, Pasadena,
California.

This led us to apply the techniques of box codes as suc-

cessfully developed for Golay Codes to rate 1/2 codes of

length 48. See [1,2]. Subcodes of dimension 23 and Ham-
ming distance 12 were easily found. In addition, the box

structure gave parity information to detect odd errors in

rows that simplify decoding procedures.

The attempt to avoid the six codewords of weight 8

in the natural box code construction yielded two self-dual
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(48,24;12) codes [1]. Upon closer examination of computer
simulation, these codes were found to contain 42 words of

weight 8.

In [1], the two codes constructed were designed to be

self-dual. The (48,23;12) systematic subcodes of each were
easily found. The 24th dimension in each was more elab-

orately constructed with the proviso that odd parities of
the rows were induced to be used as tools in an erasure-

error correcting decoding procedure. A search of the code-

word weights' structure indicated the presence of 42 words

of weights 8 and 40 in both these codes. The remaining

nonzero words were of minimum weight 12. There exists

a straight systematic construction of the Reed-Solomon

(RS) (8,4;5) Code over GF(64) for the 24th dimension

given below, still using the particular binary representa-

tion in [1], which yields only six codewords of weights 8

and 40. This gives a box code with even parity on the

rows. So for a low signal-to-noise ratio, this code and the

previously constructed codes of dimension 48, rate 1/2, are
effectively of minimum distance 12. The decoding proce-

dure for soft decision mentioned in [1] is still applicable and

preferred over any current soft decoding of the (48,24;12)
Quadratic Residue Code.

In [2], a code of length 72 and distance 15 was con-

structed specifically to have simplified soft decoding. The

(72,35;16) subcode was constructed with even parity on
the nine rows in a nonsystematic manner as a subcode

of the Reed-Solomon (8,4;5) Code over GF(512). The

36th dimension was constructed to give odd parity on the

rows and yield a code of minimum distance 15. The full

code was designed to have a systematic encoding. This

code, however, upon investigation, was found to have a

very small number of words of length 11.

To meet this emergency, a new (72,36;15) box code is
constructed here with rows of even or odd parity, and so

it possesses, perhaps, a simple hard decision 7-8 error cor-

recting procedure. This code has been simulated and ver-

ified to have a minimum distance of 15 and even weight

words congruent to 0 modulo 4.

II. (8,4;5) RS Code Over GF (64)

Represent the Reed-Solomon (8,4;5) Code over GF(64)

in binary using the particular normal basis in [1]. One

can generate a rate 1/2 self-dual code of length 48 and

dimension 24 with weights that are multiples of 4.

This binary representation of the RS (8,4;5) Code over

GF(64) yields six (8,7;2) codewords whose decomposition

via Mattson-Solomon into two cyclic code components and

a constant component looks like (6,4;3) and (6,2;5) tLS
Codes over GF(8) and a (6,6;1) binary code, respectively.

In particular, let 7 be a root of the polynomial f(x) =
z 6 + z s + z 4 + z + 1, where 3' is a primitive generator of

the 63 roots of unity. Represent the elements of GF(64)

in the normal representation using the roots of f(z). The
roots are 7J; j E J; d = {1,2,4,8, 16,32}.

NOTE: For this particular choice of f(z), we have

TrTJ=l; jEJ; J={1,2,4,8,16,32}

Tr(7_7 _)=0; iCk; i, kEJ

Let fl be a root of the polynomial g(z) = _3 + z2 + 1. /?
is an element of GF(8), a subfield of GF(64), and//= 3'9.

A. Encoding

Now use the recursion or check polynomial h(z) =

l"13=o(Z + fli) to generate an extended (8,4;5) RS Code

over GF(64). This means that the initial shift register

contains four elements in GF(64) expressed as coefficients

in the normal representation above. The cyclic portion of
the code is of length 7, and the overall parity symbol is

the eighth dimension. Represent the binary code as com-

ponents Tr(P(z)7i); j = 1, 2, 4, 8, 16, 32.

The general Mattson-Solomon (M-S) polynomial of a

codeword a, similar to the Golay codeword over GF(8), is

Pa(z) = Co + ClZ + C2x _ + C_x 3 where Ci E GF(64) for

0<i<3andzE GF(8).

Encode the codeword in its cyclic portion. The ex-

tended codeword a expressed in terms of the M-S polyno-
mial is

= (P.(Z');o < i < 6, P.(O))

Writing the codewords in binary using the normal basis

7 j, j E J above, there are six binary codewords of length 8:

Tr(P(x)3"i); j = 1,2,4,8,16,32

where Tra denotes the value in GF(2) given by the Trace

of an element a E GF(64):

Tra = a + a s + a4 + a s + a is + a32
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Consider one of the six binary words in its Mattson-

Solomon setting,

T_(P.(x)_,J) = Z_((Co+ c,x + c2x 2 + c._3)?)

= T_(C07_) + T_'[(Cl_ + C2_2 + C3_")__

+ ((ClX+ c.x _ + c._")_) _1

Tr'a: a+a 2+a4; a6GF(8)

Set Co : 0 temporarily, as this does not affect the

arguments to follow.

Tr(P(x)7 j) = Tr'[(C17 / + (ClTJ) s + (C271) 4

-1- (C2_,j)32)x ._- ((C3_,J) 2 --_ (63_-/)16)x 6]

Lemma: The coefficient of x is a (6,4:3) code over

GF(8). The coefficient of z 3 is a (6,2;5) code over GF(8).
The code is indexed by the values of 7J;j E J =

{1,2,4,8,16,32}.

Proof." The set 7 i ;j E J = {1, 2, 4, 8, 16, 32} is a linear

independent set and thus can take zero values only one less
than the number of terms in the coefficient of x, x 6. The

term Tr(C07 j) in the code's expression when TrC0 = 0,

the constant terms, forms a (6,5;2) binary code.

Theorem: The RS Code determined by codewords

with M-S polynomials Pa(x); TrC0 = 0 forms a (48,23;12)

binary code with weight multiples of 4.

Proof: The multiple of 4 property of the weights fol-

lows, using the Solomon-McEliece F_ Formula.

Tr(P(z)7 j) = Tr'[(Cx7 j + (Cl"/J) 8 -Jr (C2,'/J) 4

+(c2_)"_)_+((c._)2+(c._)'6)_ _]

where Tr is defined in GF(64) and Tr' is defined in GF(8).

Now

r2(Trp(z)7_) = Tr,(ClC_.rzi ± psp2~10in- v 1 v31 "[- C1616717j

+ cfc_% _ + c_c_ "i + _c_¢_

+ c_"c'.s_J + c_c]% _°i)

= _(cic_"_ + c_c_ _°_+ c_c_.¢ j

+ c_c_6.r"°5)

and therefore _jej r2(TrP(z)7_) = 0.

Recall that the normal basis was chosen so that TrTi =

1;j E JTr(7/7 _) = 0; i _ k; and i,k E J.

It has been demonstrated that the binary weight of any

codeword in the tLS Code above is a multiple of 4. Since

the symbol distance of the code is greater than 5, we have

narrowed the weights down to 8, 12, 16, 20,.-., 40.

III. Structure of the Code

Using the same arguments given in [1], the minimum

weight of the code for TrC0 = 0 is equal to 12. However,
note that for each Co = 7_; { = 1,2,4,8,16,32 and C_ =

0; and i -- 1,2,3, one obtains a codeword of weight 8.

We proved that these six are the only words of weight 8.

A counting argument on the weights would do the same.

Since all words have weight multiples of 4, the code is self-
dual.

IV. (72,36;15) Code

In [2], an alternate (72,36;15) box code was constructed
from the (63,35;8) cyclic code, generated by the check poly-

nomial f(x) = YIfi(x);i = 1,3,5,7,9, 13,21 where fi(x)
is a polynomial irreducible over GF(2) with/3 _ as a root

where/_ is a primitive 63rd root of unity. We now present

the theoretical justification.

Place the codewords in the usual 9 x 7 box code matrices

corresponding to their values 7i + 9j (mod 63) for 0 < i
_<8,0_<j_<6. Let z=zywherex 7= 1,y 9=1,z=/39j,

and y = flri. Indexing the rows by y, the M-S polynomial

for each row y is
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Py(x) -- r_(ClZ -_- C3z 3 -_- C5 z5 -_- CTz 7 -_- C13z 13)

+ Cgz 9 + Clsz is + Ca6z 36 + C21z _1 + C42z 42

= c2_y3 + c22,y6+ Tr(CTy7)

+ a_'[(c_+ c,y + _y')_ + (c'_y2+ c_2y_

+ c_sy_+ c_y_+ c,_y"+ c_y_)__]

Proof." Weight pattern 6 6 6 6 6 6 6 6 6 gives the sum
F_ to be 1. This is impossible.

Let

P(y)= C_+ C,y+ C_ys

Q(y)= _y_ + C_y_+ C'__+ C_y_+ C,_y_+ C_y_

then

where Tr is defined in GF(64) and Tr' is defined in GF(8).

Thus the coefficient of x is a (9,3;7) code over GF(8),
and the coefficient of x 6 is a (9,6;4) code over GF(8).

Construct an eighth column on the nine rows by the

usual parity rule. The eighth column will have the same F2

value as the original (63,35;8) code. Then we immediately
have the following lemma:

Lemma 1: The extended box code is a (72,35;16) code.

Proof: Consider the Solomon-McEliece Formula. The

sum F2 over the nine rows and eight columns gives 0, show-

ing that the weight of every codeword is a multiple of 4.

The properties of the coefficients of x and x s for the sub-

code or dimension 27 imply the minimum weight of the
entire code to be 16.

Now adjoin a vector of all ones to the original 9 x 7
matrix setting. This will make the rows have odd parity

and will complement the column sums. It is easy to show

that all odd-weight codewords have weights of the form

4m- 1. We will prove that the minimum code distance is
15.

The degree of the Mattson-Solomon polynomial for the

entire 63 length code is 56; the next highest degree is 52.

From this and the properties of the coefficients of z and

x 6, one can easily see that the weight of the inner cyclic

codeword is less than or equal to 54. If the inner weight

is 54, the nine-row weight patterns 6 6 6 6 6 6 6 6 6,

7 6 6 6 6 6 6 6 5, and 776 6 6 6 6 6 4 could generate

codewords of weights less than 15. If the inner weight is

52, the weight pattern 6 6 6 6 6 6 6 6 4 could generate

codewords of weights less than 15.

Lemma 2: For the original cyclic (63,35;8) code, none
of the weight patterns above are possible.

EyP(y)Q(y) = 0

deg(p6(y) + Q(y)) = 7

If the weight pattern is 7 6 6 6 6 6 6 6 5, then

F_yP(y)Q(y) = 1 + a _ 0 for some a ¢ 1; o_ E GF(8).

If the weight patterns are 6 6 6 6 6 6 6 6 4 or

7 7 6 6 6 6 6 6 4, the polynomial p6(y)+Q(y) has

eight zeros. Then p6(y) = Q(y). But P(y)Q(y) = 0 and
p6(y) = Q(y) cannot give weight 4 for any row indexed

by y.

Theorem: The box code is a (72,36;15) code, where

the even-weight subcode is a (72,35;16) code with all code-

words having weights of the form 4m, and the odd-weight

subcode is a (72,35;15) code with all codewords having
weights of the form 4m - 1. QED

V. (72,36;15) Alternate Code

One can construct the Bose-Chaudhari-Hocquenghem

(BCH) (63,27;16) code generated by the check polynomial

f(x) = 1-I fi(x), i = 1, 3, 5, 9, 11. The cyclic decomposition

in the box code setting yields a (9,5;5) code over GF(8) for

the coefficient of x and a (9,4;6) code over GF(8) for the

coefficient of x 6. This does extend to a (72,36;15) code,

too. In fact, this code has been simulated and verified to

have a minimum distance of 15 with even weight words

congruent to 0 modulo 4. If we try all possibilites for the

check polynomial g(z) = I_ fi(x); i = 7,21, which totals
to 256 codewords, we are left with an inner BCH code

that can algebraically correct 7 errors. This leaves soft

decoding still very complex and unworkable.

Note that because of the Mattson-Solomon decompo-

sition here, one may correct five errors easily by hard de-

cision, but six or more take more trials. Similarly, a soft
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decision would require 84 = 212 trials. This requires more
trials for both hard and soft decisions than the alternate

code mentioned above in [2]. Note the advantage that the

(9,3;7) code over GF(8), the coefficient of z s, has over the

(9,4;6) code over GF(8), the coefficient of z.

VI. (8,4;5) RS Code Over GF_512)

The (8,4;5) RS Code over GF(512) in the binary repre-

sentation of [2] gives rise to a systematic (72,36;16") code

with nine words of weight 8, and all the rest have weights
> 16. The normal basis consists of 7i;i = 2J;0 < j < 8

withTaroot off(x) = x 9 + x s + x 6 + x _ + x 4 + x + l.
The proof that there are no words of weight 12 is a sim-

ple counting argument. We prove there are no words of

weight 60 in the code of dimension 35 given by Co = 0.

Represent the elements of GF(512) in the normal repre-

sentation using the roots of f(z). The roots are 7 j ; j E J;

and J = {1,2,4,8, 16,32,64,128,256}.

For this particular choice of/(x), we have

TrTJ : 1; jEJ; J = {1,2,4, 8, 16, 32, 64,128,256}

Tr(7i7 k)=o; i#k; i, kEJ

Represent the binary code as components Tr(P(x)Ti);

i = 1,2,4,8,16,32,64,128,256, giving nine words of

length 8.

Let fl be a root of the polynomial g(x) = x 3 + x 2 + 1. fl
is an element of GF(8), a subfield of GF(512) and/3 = .),73.

A. Encoding

Now use the recursion or check polynomial h(x) =

I]_=0(z+_/) to generate an extended (8,4;5) RS code over

GF(512). This means that the initial shift register contains

four elements in GF(512) expressed as coefficients in the
normal representation above. The cyclic portion of the

code is of length 7, the overall parity symbol; tile eighth
dimension is the usual sum over the seven symbols.

In the (72.36;16') binary representation of the RS

(8,4;5) Code over GF(512), any codeword with the co-
effiecients of x and x s nonzero has a minimum weight of

16. When these are zero, then clearly there are only nine

words of weight 8, which come from the encoding of the
symbol 7J; j • J; J = {1, 2, 4, 8, 16, 32, 64,128,256}. A

similar proof would argue that there are only six words

of weight 8 in the binary representation of the (48,24;12")

RS Code over GF(64).

To prove there are no words of weight 12, a counting
argument notes that there are no words of weight 60 in the

even-weight codes, where TrC0 -- 0. Words of weight 60

must possess a weight distribution over the nine words in

any permutation of 8 8 8 6 6 6 6 6 6. This implies that three

rows are zero and six rows are nonzero with weights 6 or

F2 = 1, to say the least. However, in [2], we note that this

cannot be. The cyclic coefficients are (9,3;7) and (9,6;4)
codes over GF(8), so there are at least seven rows with

F2 = 1. QED
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