
1.10

Lany G. Hull

NASAJGoddard Space Flight Center
Greenbelt Maryland 20771, USA

Sofhvare and Automation Systems B

ABSTRACT

To support the distributed and complex operational
scheduling required for future National Aeronautics
and Space Administration (NASA) missions, a
formal, textual language, the Scheduling
Applications Interface Language (SAIL), has been
developed. Increased geographic dispersion of
investigators is leading to distributed mission and
science activity planning, scheduling, and operations.
SAIL is an innovation which supports the effective
and efficient communication of scheduling
information among physically dispersed applications
in distributed scheduling environments.

SAIL offers a clear, concise, unambiguous
expression of scheduling information in a readable,
hardware independent format. The language concept,
syntax, and semantics incorporate language features
found useful during 5 years of research and
prototyping with scheduling languages in physically
distributed environments. SAIL allows concise
specification of mission and science activity plans in
a format which promotes repetition and reuse.

Key Words: Scheduling, language, data
representation, distributed mission operations

1. DISTFtIBUTED OPERATIONAL SGHEDULING

Operational scheduling for NASA missions is
becoming more geographically distributed and more
operationally complex (Ref. 1). Increased
geographic dispersion of investigators (including
Japanese and Europ leading to distributed
mission and scienc
operations. The growing number of sophisticated
instruments that generate very high data rates and
volumes is leading to a requirement for more
complex and more automated planning, scheduling,
and resource management.

planning, scheduling and

The focus in this paper is on the scheduling of NASA
mission operations, specifically on the scheduling.of
spacecraft resources to support spacecraft operations
and geographically dispersed investigators. Figure 1
is an end-to-end scheduling environment (Ref. 2).

From the point of view of the network, scheduling
serves to allocate shared communications resources.
From the point of view of the mission, scheduling
serves to maintain the health and safety of the
spacecraft and to allocate shared spacecraft resources.

Figure I . End-to-end Scheduling Environment

697

From the point of view of investigators, scheduling
serves to maintain the health and safety of the science
instruments and to support science data acquisition.
Although all use the same or similar data for
generating schedules which must eventually be
consistent, objectives and techniques differ.

2. SCHEDULING DATA REPRESENTATION

As indicated, the scheduling of NASA mission
operations is becoming an increasingly intricate and
distributed process. To support future mission
operations, scheduling information must be
communicated effectively among physically
dispersed applications in distributed scheduling
environments. The scheduling information
representation must allow expression of complex,
variable scheduling requirements. For effective and
efficient scheduling, the representation must also
provide sufficient flexibility to accommodate
changing requirements and scheduling alternatives.
Finally, the representation should be concise,
unambiguous, and in a hardware-independent format
that can be processed by computer.

The Software and Automation Systems Branch at
GSFC has addressed the problem of defining a
scheduling data representation for two specific
scheduling domains: communications support
scheduling and spacecraft resource scheduling
(Ref. 3). Each domain is a physically distributed
scheduling environment with several different
scheduling applications running on several different
hardware configurations. Consequently, a suitable
data representation could not presume a specific
physical topology, a specific communications
protocol, or a specific operations scenario. On the
other hand, efficient and effective scheduling
required reusable scheduling data representations
supporting repetitive activities, sufficient flexibility
to express often complex scheduling requirements
and constraints, and the capability to communicate
scheduling alternatives. The scheduling data
representation had to be self-documenting, easily
maintained, and physically and logically portable.
Requirements analysis (Ref. 4) concluded that a
formal, textual language was needed.

SAIL is a formal, textual language (Ref. 5) for
expressing scheduling information communicated
between nodes of a distributed, activity scheduling
system. SAIL provides interoperability between
differenr scheduling applications running on different
hardware configurations. SAIL expresses scheduling
infomation in a clear, concise, unambiguous format
that can be processed by computer.

SATL expresses the inputs to the scheduling process,
the outputs of the scheduling process, and other
transactions needed to maintain schedules in an
operational environment. SAIL expresses nominal
and contingency operations plans for instruments and
spacecraft, the constituent activities of the operations
plans, the resource needs of these activities, and the
constraints that restrict when these activities can be
scheduled. SAIL also expresses both the resources
available to satisfy activity resource needs and the
resources allocated to activities (the schedule).

SAIL is intended to be used in the repetitive
scheduling process that occurs throughout the life of
a mission. In a typical operational environment,
users:

develop plans that reflect high level goals and

* derive scheduling information from these plans,

0 transmit scheduling information and requests to a

objectives for an instrument or facility,

e-g., instrument activities and target or view Limes,

scheduling facility,

instrument schedules received from scheduling
facilities, and

schedule local resources in accordance with

0 transmit rescheduling information as needed.
Scheduling facilities typically will:
* distribute appropriate scheduling information to

9 receive and store user-generated scheduling

coordinate with resource providers to build

users,

information and requests,

integrated schedules,
., disseminate schedules to users, and
0 accept new inputs and reschedule to meet changing

science needs.

4. A SCHEDULING NODE
3. SAIL

Requirements analysis led to the definition of the
Scheduling Applications Interface Language (SAIL).

Figure 2 shows a functional architecture for a
scheduling node that accepts scheduling requests
from multiple users. The scheduling node in the

698

process. The types of data stored typically include
requests for resources, resource availability
information, constraint information, and schedules.

I

Figure 2. Scheduling Node Functional Archiieciure

figure is somewhat representative of other nodes in
the network, since many applications in a scheduling
domain perform some scheduling functions (e.g., user
nodes schedule local resources.)

The SAIL, interpreter accepts messages and interacts
with the scheduler and the storage manager. The
interpreter transforms the incoming data for the
scheduler and the storage manager. Interpreting a
message may simply cause the receiving node to send
back an acknowledgment message. In many cases,
the message may have more substantial effects. A
message that specifies a request for resources (an
activity) for a future schedule results in this request
being added to the data store at the receiving node. A
message that requests a change be made to a current
schedule results in a reallocation of resources.

The scheduler creates and maintains schedules,
including the current on-line schedule. This function
is typically performed by operations personnel with
assistance from automated scheduling software. The
scheduler interacts with the SAIL interpreter and
processes messages that affect the current on-line
schedule. The scheduler interacts with the storage
manager to store schedules and to retrieve
information needed to create and maintain schedules.

The storage manager services requests from the
SAIL interpreter and the scheduler to store, update,
or access information in its data store. The data store
contains the information needed to create schedules
and the schedules that result from the scheduling

5. DATA MANAGE

The scheduling problem is a data management
problem. A scheduling node typically maintains
several schedules. Each of these schedules consists
of many pieces of data (requests for resources,
constraint information, resource availabilities, etc.).
Some data is relevant over a long period of time;
other data is relevant for only one or a few schedules.

SAIL contains data structures that make it suitable
for complex, multi-schedule environments. SAIL
statements enable users to specify the schedule(s) for
which the data is valid. Since multiple schedules can
be specified, data that is used repeatedly does not
have to be retransmitted.

SAIL handles the Flexible Scheduling Request
Concept. This concept is an alternative to traditional
methods of fixed format scheduling. With fixed
format scheduling, users submit requests that are
either approved or disapproved. Users frequently
submit many more requests than may be necessary in
anticipation that some of the requests will be rejected.
With flexible scheduling, users specify single or
repeated activities, and enough flexibility in activity
execution time and resource requirements to enable
&he scheduler to more optimally handle the request.

For instance, an activity might specify that the
duration of an operation must be "exactly 2 hours" or
that the duration must be "longer than 20 minutes."
Flexible requirements can potentially reduce the
number of conflicts in schedules, and may enable a
scheduler to produce a more optimal schedule. For
example, suppose Activity A has been scheduled at
2:OO p.m. on Tuesday but its requirements specify
that it really can be scheduled any time during the
day on Tuesday. Next, suppose that the scheduler
receives a request to schedule Activity B only at 200
p.m. on Tuesday. Given the flexibility specified in
the requirements of Activity A, the scheduler is free
to move Activity A to another time in order to
accommodate Activity B. The resulting schedule is
therefore more optimal.

Figure 3 shows the flexibility options SAIL is
capable of representing. The vertical axis illustrates
repeatability--in the upper left comer, more activities

699

Schedule an aciivity
each day starring at

exactly noon

Duration: 20 minutes
Repetition: Every day
Resource: IMAGER1
StartTime: 1200 noon
Period Next two weeks

Schedule one activity
starling at exadly

15:12:36

Resource: IMAGER1

Duration: 15-23 minutes
Repetition: Once
Resource: Any IMAGER

Start Time: 151 2:36 Start Time: Aner 1200 noon
Period: Tuesday Period: Tuesday

lncreasina Flexibilltv I
Figure 3. Flexible Scheduling Request Concept

will be scheduled per request. The horizontal axis
illustrates flexibility--in the lower right corner, more
flexibility is specified in a request providing the
scheduler with more scheduling options. In the upper
right comer, the request is both repeatable and
flexible--many activities can be scheduled from a
request with a lot of flexibility giving the scheduler
many scheduling options.

Figure 4 illustrates possible scheduling time
windows, selected by a scheduler, based on a flexible
request. The request includes the constraints that
must be satisfied when scheduling a viewing activity
but does not specify specific start and end times. The
scheduler is given the option of determining when to
schedule the activity, taking into consideration the set
of constraints for this activity. In the example, for
the set of constraints specified, the scheduler has the
flexibility to schedule the viewing activity any time
during the time windows shown as shaded boxes.

Schedule a viewing activity, dudng every orbit, when
In vlew of oceans, dudng spacecraftdayllght, and not

dudng the South Atlantic Anomaly.

Orbit1 Orbit2 Orbi13 Orbit4

Oceans In View

Figure 4 . Possible Scheduling Time Windows

INTRODUCTION TO S A L

declarative messages. An
acknowledges the receipt of a declarative message.

information from one node to another.

A declarative message contains a header and a
sequence of statements. The declarative message
header specifies such information as the sender of the
message, the intended receiver, and the time the
message was sent. Each statement within a
declarative message specifies an action and some
data. The statement can be any of the following:
0 a request for the receiver of the message to perform

a response that indicates the success or failure of a

a notification that &he sender of the message has

the stated action on the specified data,

request, or

already performed an action on the specifieddata
(no response action is required).

A declarative message may contain any number of
request, response, and notification statements in any
order.

6.2 SAIL Statements I

SAIL has four request actions, four response
actions, and four notification actions. Each of these
actions, together with a SAIL structure (defined
below), form a SAIL statement.

6.2.1 Request Statement

Request statements are the "action" statements in
SAIL. Through request statements, the sender can
cause changes at a receiver's (remote) node. A user
node sends messages containing request statemeats to
a scheduling node to accomplish each of the
following:
0 add an activity to a schedule,

9 delete a scheduled activity from a schedule.

Request actions are CREATE, REPLACE,

change an activity already on a schedule, and

700

DELETE, and DESCRIBE. The first three are data
management actions that create, update, or remove
SAIL structures located at another node. The fourth
request action, DESCRIBE, allows a node to obtain
the definition of a structure stored at another node.

6.2.2 Response Statement

Response statements consist of the reserved word
RESPONSE-TO followed by the request action and
an indication of the success or failure of the request.
Response actions are the same as request actions.

6.2.3 Notification Statement

Notification statements consist of a notification
action usually followed by a structure. Notification
actions are: CREATED, REPLACED, DELETED,
and DESCRIBED. Notification statements are used
to notify other nodes that a change has occurred.
Notification statements differ from response
statements in that a notification statement is not the
result of any request statement. For instance, if a
scheduling node reschedules some events in response
to a change in predicted resource availabilities, it
notifies the affected users that a change has occurred.

6.3 SAIL Structures

Efficient planning and scheduling in a distributed
environment requires the capability to express several
types of information. For instance, user nodes must
be able to communicate their resource needs to the
provider of the resource or to the control center
responsible for allocating the resource. Scheduling
results (resource allocations) must be returned to the
user nodes that requested the resources.

This information is contained in the SAIL declarative
message. SAIL request and notification statements in
a SAIL declarative message identify an action and a
structure that is the object of the action. Structures
express an input or output of the activity scheduling
process. There are five structures defined in SAIL:
activities, plans, allocations, profiles, and
meta-schedules. Therefore, a facility may request
another facility to create, describe, delete, or replace
an activity, plan, allocation, profile, or
meta-schedule.

6.3.1 Activities

Activities specify the requirements of spacecraft and
instrument operations. These requirements consist of

resource needs and other restrictions that limit the
start time, end time, and duration of the activities. A
specification includes the name of the activity, the

ity with respect to other activities
requested by the same node, any requirements to
coordinate this activity with other activities and
spacecraft events, and options that a scheduler should
try in case the activity cannot be scheduled as
initially specified. Requirements can be specific or
flexible, as previously described.

Schedulers use activities in determining how to
allocate available resources. When an activity is
"scheduled," resources are allocated for the operation
described by the activity. Resource allocations are
expressed using the allocation structure.

6.3.2 Plans

The plans provided in SAIL represent a sequence of
activities that some facility or system performs.
SAIL plans are expressed as repeating sequences of
activity structures and are often reusable. For
instance, the plan "perform a tape recorder dump
every fourth orbit using TDRS-East" is a reusable
SAIL plan.

6.3.3 Allocations

Allocations represent the output of the scheduling
process. An allocation expresses assignment of
resources needed to perform an operation or a part of
an operation with specific start and end times for
each resource assignment. Collectively, the
allocations for a given time period (e.g., a day)
represent a schedule.

6.3.4 Profiles

Profiles are a general data representation structure
primarily used to represent numeric data that varies
over time. The data in profiles consist of words,
numbers, and character strings; thus, profiles can
express a variety of types of information, such as:

the varying amount of a resource available over
time as activities obligate and release the resource,

0 user antenna view (UAV) times, and
user spacecraft ascending node, descending node,
apogee, and perigee.

Profiles that represent resource amounts, such as
available power, often constrain activities. For
instance, an activity might require 20 watts of power

701

for 30 minutes. The power profiie specifies the
available power and restricts the scheduling of the
activity. Figure 5 shows an example of an available
power profile with a maximum value of 30 watts and
a minimum value of 10 watts. The profile is defined
for a 6-hour period. Using this available power
profile, an activity that requires 20 watts of power
could be scheduled only from 630 to 7:30.

from 6:30 t o 7:30

2:oo 5:OO 8:OO
Time

support effective and efficient communication of
scheduling information among physically dispersed
applications in distributed scheduling environments.
The language is an innovation which allows both for

sion of complex, variable requirements and for
concise specification of mission and science activity
plans in a format which promotes repetition and
reuse. SAIL'S ability to express plan flexibilities and
alternatives reduces the need for schedule iterations.
SAIL does not presume a specific physical topology,
communications protocol, or operations scenario.

Experience with predecessor languages in
prototyping environments indicates that SAIL can
express the control and data information that must be
communicated between nodes in a distributed
scheduling environment, and the complex scheduling
requirements of instruments and spacecraft. SAIL is
viewed as a relatively high-payoff, low-risk approach
for operational implementation.

Figure 5. Power Profile
8. REFERENCES

6.3.5 Meta-schedules

A SAIL meta-schedule structure contains a schedule
(i.e., a list of allocations) and additional information
about the schedule. This information consists of the
inputs to the scheduling process (SAIL activity, plan,
and profile structures) and metrics that express the
quality of the schedule with respect to scheduling
goals. A meta-schedule structure provides a record
of the information used to create a particular schedule
and a record of the results of the scheduling process.
Structure headers specify the names of the schedules
(more specifically, meta-schedules) to be used when
performing an action on a structure.

SAIL meta-schedules are either active or inactive.
An inactive meta-schedule does not contain specific
assignments of resources (i.e., it does not contain
allocations). Meta-schedules are initially inactive.
During this period, a scheduling node that creates
schedules collects requests for resources. At some
point in time, the scheduling node "creates a
schedule." To "create a schedule" is to make an
active meta-schedule from an inactive meta-schedule
&e., to assign resources to activities and create the
allocation structures that specify the assignments).

1. Hull, Larry G. et al. 1990. Distributed Planning
and Scheduling for Instrument and Platform
Operations. In AIAA/NASA Second International
Symposium on Space Information Systems.
Washington, DC: American Institute of Aeronautics
and Astronautics.

2. Moe, Karen. 1992. End-to-End Planning and
Scheduling Systems Technology for Space
Operations. In 43rd Congress of the International
Astronautical Federation. Paris: International
Astronautical Federation.

3. Buford, Carolyn. 1992. Scheduling Data
Representation: Concept and Experience in Code
520, (DSTL-92-010). Greenbelt, MD:
NASNGoddard Space Flight Center.

4. Zoch, David. 1991. Requirements for the
Scheduling Applications Interface Language (SAIL).
Seabrook, MD Loral AeroSys.

5. Sary , Charisse. 1992. The Scheduling
Application Interface Language (SAIL) Reference
Manual, (DSTL-9 1-021) Revision 1. Greenbelt,
MD: NASA/Goddard Space Flight Center.

7. SUMMARY

SAIL is a formal, textual language developed to

702

